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Positive energy Weinberg states are defined and numerically calculated in the presence of
a general complex Woods-Saxon potential. The numerical procedure is checked for the

limit of a square well potential for which the Weinberg states and the corresponding eigen-

values are known. A finite number M of these (auxiliary) positive energy Weinberg states

are then used as a set of basis functions in order to provide a separable approximation of
rarik M, V~, to a potential V, and also to the scattering matrix element Swhich obtains as a
result of the presence of V,S~. Both VM and S~ are obtained by means of algebraic ma-

nipulations which involve the matrix elements of V calculated in terms of the auxiliary pos-

itive energy Weinberg states. Next, expressions are derived which enable one to iteratively

correct for the error in V—V~. These expressions are a modified version of the quasiparti-

cle method of Weinberg. The convergence of S~ to S, as well as the first order iteration of
the error in S~, is examined as a function of'M for a numerical example which uses a com-

plex Woods-Saxon potential for V and assumes zero angular momentum. With M =5 and

one iteration an error of less than 10% in S is achieved; for M =8 the error is less than 1 /o.

The method is expected to be useful for the solution of large systems of coupled equations

by matrix techniques or when a part of the potential is nonlocal.

NUCLEAR REACTIONS Scattering theory, expansions on a basis set
of positive energy Weinberg states, removal of truncation error by the

quasiparticle method. Normal mode effective scattering channels.

I. INTRODUCTION

Weinberg states, also called Sturmian functions,
were introduced many years ago into the physics
literature. ' Negative energy Weinberg states,
which asymptotically decrease exponentially {like
bound states} have been used as a discrete basis set
in the case of scattering of composite particles, ' in
order to evaluate the effect of the breakup of a tar-
get, consisting of a bound state of two or more par-
ticles, by the scattering of a third particle.

The positive energy Weinberg states also form a
discrete set. Asymptotically they have only outgo-
ing waves, all with the same wave number corre-
sponding to the physical scattering energy. They
are regular at the origin, and they differ from each
other by the number of nodes within the scattering
region. These functions have been used as an aid in
the solution of scattering equations, particularly as

a way to extend shell model methods into the con-
tinuum. However, since the exact Weinberg states
are as hard to calculate as the scattering solution it-
self, only rough approximations to the positive ener-

gy Weinberg states have been found practical thus
far. These approximations consist of Gamow states
{complex energy), scattering states {at the physical
energy}, or resonance states {at a nearby energy),
calculated for a much simplified Hamiltonian, as
reviewed by Rorno. Or approximations to the
Weinberg states have been simply guessed.

The advantage of using such states, even though
approximate, is to obtain a finite rank separable ap-
proximation for a potential whose effect is hard to
calculate exactly or a separable expression for the
Green's function. The separability enables one to
approximate the solution by means of algebraic
equations, and the correction to the approximation
can then be found, within the quasiparticle formal-

25 2196 1982 The American Physical Society



25 POSITIVE ENERGY WEINBERG STATES FOR THE SOLUTION. . . 2197

ism, by iterations which converge.
It is the purpose of the present paper to provide a

method of obtaining systematic approximations to
the positive energy Weinberg states, by solving only
local uncoupled Schrodinger equations in the pres-
ence of an auxiliary potential V(r) and then by in-

verting algebraic equations. The hope is to eventu-
ally provide a systematic way of solving either large
systems of coupled equations, or nonlocal equa-
tions, by methods which are numerically faster
than the ones used until now. These methods either
solve numerically the N coupled equations N times,
or use a set of expansion functions. s'9 The present
method also uses a set of expansion functions,
which are the Weinberg states, but requires no
division into interior and exterior regions, and rests
on the well developed theoretical foundation of the
quasiparticle formalism.

In Sec. II, the Weinberg states will be defined and
their properties reviewed, in the present context,
even though Weinberg has already given an exten-
sive discussion of their properties. In Sec. III a nu-

merical calculation is described and comparison is
made with results based on analytical expressions
obtained for the square well potential.

In Secs. IV and V the scattering solution is ex-

panded in Weinberg states, convergence for the
scattering matrix elements is examined, and a
Green's function which corrects for the truncation
errors is written down.

In Sec. VI the eigenstates of the operator Gp V are
discussed, and a relation established with the func-
tions encountered in Sec. IV. In Sec. VII expres-
sions needed for the quasiparticle iterative method
are derived, and a numerical example of the first or-

der iteration in GM(V —V~) is given. Section VIII
contains the summary and conclusions.

II. THE AUXILIARY WEINBERG STATES

The auxiliary Weinberg states are denoted as

PJ.(r) with j=1,2. . .. They obey the equation

(Hp E)pj(r) = —aj V(r)pj(r), — (2.1)

where

auxiliary potential, to be chosen such that its range
is similar to the nonlocal or off diagonal coupling
potential to be introduced later. In case there is
coupling between several channels, one V„will be
introduced in each channel n so that Eq. (2.1)
remains uncoupled. The boundary conditions for
the PJ. are

PJ(r) =0, r =0, (2.3a)

PJ.(r) =P~HL+'(r), r +ao,— (2.3b)

where HI+' is the usual outgoing radial Coulomb
wave function corresponding to angular momentum
L and energy E. If the latter is negative one obtains
the usual negative energy Weinberg states, which
decay exponentially at large distances. If the energy
is positive, the complex constants nJ are such that
the net potential V0 + aJ V has a positive imaginary
part, such that it becomes "emissive, " rather than
what is usually the case in optical model applica-
tions, where it is absorptive. The constants Pi are
fixed by the normalization of the P's, which is

I P;(r)V(r)PI(r) dr =(1/aJ )51 . (2.4)

A differently normalized set of Weinberg func-
tions qadi(r) is also convenient. They obey the same
equation as the P's, in particular the eigenvalues a;
are the same, but asymptotically they are all equal
to H,'+'(r)

Pi(r) =PJq)g(r); q&q -Hl.(+)

As a result of Eq. (2.4) one obtains

(2.5)

(2.6)

V0 —+ V0 ——V0+qV . (2.7a)

The normalization, Eq. (2.4) for the (t)'s is so chosen
as to make a matrix V, to be defined further on,
symmetric.

It should be noted that if V is multiplied by a
constant factor A,, then the eigenvalues ai are divid-

ed by the same factor, and the quantities PJ, pj.(r),
and PJ(r) remain unchanged. One can also modify

V0 by adding to it a multiple q times V

Hp ——— d /dr +Vp(r) .2' (2.2)

Then, by inspection of Eq. (2.1), one sees that the
a's are all shifted by the same amount q

The distorting potential V0 is assumed to be local.
It contains the centrifugal potential as well as a
Coulomb potential, should it be present. The a' s
are the Weinberg eigenvalues. The potential V is an

I
QJ +CONJ QJ (2.7b)

while the y's remain unchanged. In view of Eq.
(2.6), the normalization constants Pi change and

thus the Pi also changes.
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PJ.~QJ ——(1 q—/aq ) (2.7c)

=(aj q)—' '(ipJVq; ) ' 'qi . (2.7d)

If Gp(r p ) is the Green s function (E Hp —+ le)
for the left hand side of Eq. (2.1), then this equation
can also be written

J Go(r, r') V(r')itij(r') dr'=(1/aJ. )p/(r), (2.8)

i.e., (('ij is an eigenstate of Go V and the correspond-
ing eigenvalue is 1/uJ. . For values of aj inside the
unit circle iterations in Go V do not converge.

A numerical example of Weinberg eigenvalues aj.
and eigenfunctions (pj is given in. Table I and Fig. 1,
respectively. The numerical procedure used to cal-
culate these quantities is described in Sec. III. The
potential Vo in Eq. (2.1) is set equal to zero and V is
a real Woods-Saxon potential of depth Vo ———50
MeV, radius Ro ——3 fm, and diffuseness ao ——0.5 fm.
The projectile is a neutron of 15 MeV laboratory en-

ergy, incident on a nucleus of ' O. This example is
the same as that used by Soper' in his study of the
Born and Sasakawa-Austern" series.

As the table shows, for a depth of 50 MeV for V,
not all eigenvalues lie outside the unit circle and
hence the Born series will not converge. If the
depth of V is changed from 50 MeV to
50X0.255=12.75 MeV the first eigenvalue would

just lie on the unit circle, and all others would be
outside, i.e., the Born series would just cease to con-

verge. This is close to the value of —15 MeV es-
timated by Soper to be the convergence limit. If the
depth of V is changed to 50)&0.806=40.3 MeV,
then the first two eigenvalues a lie within the unit
circle and the Born series diverges strongly while
the Sasakawa-Austern series" still converges. (The
latter begins to diverge at 55 MeV. ' ) In Fig. 1 the
first four eigenfunctions qrj are displayed. One sees
how for each increment in the index j an additional
node appears in the wave function, and that beyond
the range of V all functions become identical. The
first of these functions is qualitatively similar to the
expression [I—exp( —r/a)]exp(ikr) given by Wein-
berg for the Hulthen potential. It has no node
within the range of V.

III. THE NUMERICAL CALCULATIGN

The numerical code solves the Schrodinger equa-
tion by the Numerov method, for an initially
guessed value of aj. The corresponding potential is

Vo + aj V. A. matching radius R;„, is chosen some-
where inside the radial region where the potential is
appreciable. The function ipj. is started as a regular
function at the origin and is integrated out towards

Next, the function is independently started at
an asymptotic radius R~, where it obeys the boun-
dary conditions given by Eq. (2.3b), and is integrat-

TABLE I. Values of aj' and
~ P~ ~

' for a 50 MeV deep Woods-Saxon potential. b

1

2
3
4
5
6
7
8
9

10
11
12
13

—0.100
0.652
2.103
4.196
6.930

10.31
14.32
18.98
24.29
30.23
36.82
44.05
51.92

—0.235
—0.474
—0.710
—0.963
—1.218
—1.473
—1.730
—1.986
—2.242
—2.498
—2.754
—3.010
—3.267

0.255
0.806
2.22
4.30
7.04

10.41
14.43
19.09
24.39
30.34
36.92
44.15
52.02

3.61
3.96
5.25
6.17
6.91
7.57
8.16
8.71
9.23
9.72

10.18
10.62
11.04

'The aj are potential eigenvalues defined in Eq. (2.1). The asymptotic value of the Weinberg
states is given in terms of P&, defined in Eqs. (2.3b) and (2.6).
The potential Vo in Eq. (2.2) is set equal to zero. The potential V is of a real Woods-Saxon

form with depth radius and diffuseness given by —50 MeV, 3 fm, 0.50 fm. This potential
has also been used by Soper (Ref. 10) as a test of convergence of the Sasakawa-Austern
series.
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creases approximately by one significant figure for
each successive iteration. The result is, of course,
independent of the choice for RxNT. The initial
guess for aj is taken from a treatment of the square
well case, where j is taken to have a value larger
than ten.

For large values of j one obtains for the square
well case

rp (m/fP)WJ. =krp+O(j ),
rp (m/xrx )(E —V )=—,(j —, ) xx +—O(j ) . (3.3)

lO—
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FIG. 1. Real and imaginary parts of positive energy

Weinberg states, defined in Eq. (2.1) for 15 MeV neutrons

incident on ' O. The eigenvalues are given in Table I, the

potential Vo is set equal to zero, V is a real Woods-Saxon

potential of radius R =3 fm, diffuseness a =0.5 fm, and

depth —50 MeV. The angular momentum L is zero.

ed inward towards the radius R &NT. From the
discrepancy between the two derivatives at Rq~T a
correction for a is determined.

If the incorrect value of a is denoted as a„, and
the corresponding solutions of Eq. (2.1) are p,"„,and

y,"„, respectively, and if the correct (but unknown)

quantities are denoted by a and q, then one obtains
for the correction b,a =a—a„ the exact result

ha=(fi /2m)[q(dye„/dr dy,"„,/dr)]z—,
RwT

x I yVpo„,dr+ J yVqr,"„dr

(3.1)

Here it is assumed that y,"„,is normalized such that

q,"«——q,"„at I =R»T. If y is replaced by q,„, and
in the two radial intervals (O,RxNT ) and

(RxNT+M), respectively, the desired iteration
correction (ba)„ to a„ is obtained.

Once convergence sets in, the error in a„de-

Here VJ+iWJ is the depth of the square well poten-
tial of radius rp for the energy E, which accommo-
dates the j 'th Weinberg state. The corresponding
value of aj is obtained by equating V~ + iWJ. to
Vo+aJV at some convenient radius. One sees
from the above that iaj i

goes to zero as j for
large values of j, and that as E increases, so does VJ.
Once the value of aj is found, the next value of
aj &

is searched for along the straight line in the
complex plane which connects aj to the origin. The
value aj 2 is searched for along the straight line
which connects aj to aj. ~, and so on until nz ~ is
found.

The results reported in Tables I and II are per-
formed with an integration step of 0.03125 fm be-
tween 0 and 11 fm. The overlap integrals are per-
formed using Simpson's rule, and an accuracy of 1

part in 10 is obtained when the calculation is per-
formed in single precision on an IBM 360/65. The
Central Processing Unit (CPU) time required for
obtaining 13 Weinberg states and performing the
manipulations indicated in Table II is approximate-
ly 60 s.

A check of the code is obtained by assuming a
Woods-Saxon dependence for V, setting Vp equal to
zero, and decreasing the diffuseness a to successive-

ly smaller values until agreement with the square
well results (the exact ones, not the asymptotic ones
given in Sec. III), is obtained. The depth and radius
of V are —50 MeV and 3.00 fm, respectively, and a
is varied successively from 0.50 to 0.20 to 0.08 fm.
The resulting values of aj are shown in Fig. 2. One
sees that the numerical values approach the square
well result (open circles) in a satisfactory manner.
Other internal checks are also performed, such as
changing the value of RxNT, making transforma-
tions on Vp and V of the type described by Eq. (2.7),
going to full double precision, etc. One important
confirmation is described in the next section, where
a simple application of the formalism is made to
the calculation of the correction to a scattering
phase shift due to V. The eigenvalues aj for the
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TABLE II. The sum in Eq. (4.10) for 15 MeV n —' Q potential scattering. The Woods-Saxon potentials V and Vo
are real of equal depth —25 MeV, radius 3 fm, and diffuseness 6.5 fm.

(p; Vfo)
(a; —11(q;Vq&; )

l

g (qr; Vf, ) l[(y, Vy, )(a, —1)]
j=1

Im

1

2
3
4
5
6
7
8
9

10
11
12
13

13.71
17.83
5.04
2.32
1.35
0.89
0.64
0.47
0.37
0.30
0.24
0.20
0.17

6.239
1.55
6.308
0.079
6.632
6.017
6.010
0.007
6.004
6.003
0.002
0.602
6.001

Exact result

—0.016
—6.374
—0.320
—0.252
—0.219
—6.203
—0.195
—0.190
—0.188
—0.187
—0.187
—0.187
—0.187
—0.186

0.238
—1.273
—0.968
—6.927
—0.926
—0.931
—0.937
—0.942
—0.946
—0.949
—6.952
—0.953
—0.955
—0.956

case of a complex Woods-Saxon potential are shown
in Fig. 3.

auxiliary potential Vis similar to that of V.
The equation to be solved is

(Ho —E)f(r)= —Vf . (4.1)

IV. EXPANSION OF THE SCATTERING
FUNCTION IN TERMS OF THE AUXILIARY

WEINBERG STATES

If the scattering solution fp for potential Vp ls

known, theo the addition of a potential V will

change the solution by an additional function which
is regular at the origin and which is purely outgoing
at large distances. The auxiliary Weinberg states

Il)j, defined in Sec. II, have the same property and
should therefore provide a good expansion basis for
the addition to fp provided that the range of the

Re (~1)
2 4 6 8 10 l2 l4

I I I I I I I I I I I I I I

(Ho —Z)fo =O . (4.2)

Re or

4 6 8 IO l2
I I I I I I I I I I

-8-
Real

x
0

Here Hp contains local distorting potentials, as in
Eq. (2.2), and V is the potential whose effect upon
fp is to be calculated. The potential V can be either
local or nonlocal, large or small. The scattering
solution fo to Hp is assumed to be known

Square well
a= 05fm

+ a= 02fm
~ a= 0.08fm

Woods Saxon

FIG. 2. Comparison of the eigenvalues uj for V a
Woods-Saxon well of varying diffuseness a with those for
a square well potential (open circles). The depth of the
well is —50 MeV, the radius is 3 fm, the laboratory ener-

gy of the incident neutron is 15 MeV, the mass of the tar-
get is that of ' O. The result for j= 1 is the one closest to
the origin.

FIG. 3. Effect of an imaginary potential on the eigen-
values aj. The potentials Vo and V are set equal to each
other. The real parts are of volume Woods-Saxon radial
dependence with depth —25 MeV, radius 8 =3 fm, and
diffuseness a =0.5 fm. The results for this potential are
denoted by the open circles. If a surface derivative ima-
ginary potential of depth —5 MeV, E. =3 fm, and
a =0.5 fm is added to both Vo and V, one obtains the re-
sults marked by the crosses.
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The asymptotic form of fo is

fp (r )=F1.( r) +(SL ' 1)—HI+ '( r ) l2i (4.3)

where Fq and HL are the usual regular and outgo-(+)

ing irregular Coulomb wave functions and SL'
' also

written as So is the scattering matrix element. The
subscript I. denotes orbital angular momentum. In
what follows it will be suppressed. The numerical
calculations presented in this paper all correspond
to L=0.

The calculation consists in defining a local. poten-
tial V whose range is approximately equal to the
range of V, and obtaining a finite set of Weinberg
states PJ. , j= 1,2. . .M as in Eq. (2.1). One then ex-
pands

M

fl(r) =fo(r)+ g CJP; (r), (4.4)

(4.5)

Here VJ J are the elements of a symmetric M&&M
matrix V, given by

v, ,'=&y, vyj)
—= I PJ(r)V(r)PJ(r)dr .

Solving Eq. (4.5) for the C 's one obtains

(4.6)

fM(r)=fo(r)+ g 4, (r)[(j V) '3;J'&0,'Vf—o& .

(4.7}

One finds an expression for the S matrix elements

by using the asymptotic forms for fp and PJ, Eqs.
(4.3) and (2.3b),

SM =So+2i g 13J[(1 v) )',J'(NJ'vfo &—

(4.8}

The matrix V is symmetric but non-Hermitian.
Such a matrix is not always diagonalizable, and the
eigenstates may, in general, not be complete nor in-

where, because of the truncation of the sum over j,
fear is an approximation to f. One can obtain alge-
braic equations for the CJ's by inserting Eq. (4A}
into (4.1), using Eq. (2.1) and (4.2), multiplying on
the left with & PJ.(r), integrating over r and making
use of the orthonormality of the P's, Eq. (2.4). The
result is

dependent. This situation is not expected to occur
in the present context, as is discussed further in Sec.
VI, following Eq. (6.7), and in the Appendix. The
equations above contain the matrix elements

(PJVPJ ) and (Pjvfo) which can be generalized
without difficulty to the case that V is nonlocal. If
V is very small, the solution of Eq. (4.5) can be ob-
tained perturbatively. One obtains for the correc-
tion to S the result

S(&) S +2 y ( Vf(+) )P 2

+2 gn, '&~, vy, '&e, '(q, Vf. )+

(4 9)

Note that the PJ's and the yj. 's are independent of
the choice of the strength of V. This series is very
similar to the one obtained in conventional pertur-
bation theory (expansion in eigenstates of Ho) for
the correction to an unperturbed negative energy
eigenvalue. The main difference is that the energy
denominators Ep EJ' are r—eplaced here by PJ.

By comparison the distorted wave series in (Govt
gives for the correction to So the result

S=Sp —2i(2mfiri k)

x[(f,vf, &+&f,vG, vf, &+" ].
The condition for this series to converge is that

&fo(VGo)"fo&«&fo(VGo)" 'fo&

while for series (4.9) to converge one needs

g &W, VW,' &13,"&W,'VW,'&«&~, v~, & .

The quantities ( q&J Vfp )pz decrease rapidly with j
(approximately like j ), as is shown further below
in connection with a numerical evaluation of Eq.
(4.10). Hence not many terms in j are expected to
be needed in the sums in Eq. (4.9), thus making this
type of perturbative approach of practical value.

If V is local and if V is chosen to be equal to V
then V becomes diagonal and the eigenvalues of V
are equal to Ifaj; defined in Eqs. (2.1) or (2.8).
Under these conditions Eq. (4.8) can be rewritten as

(SM' —So)f»= X &m, Vfo&/[(~, 1)&V, VV, &f. —

(4.10)

~en V is local, SL can be calculated by the
same Numerov method as SL, and hence Sl. —Sl.(0) (0)

is known, and thus Eq. (4.10) can be used to gain in-
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M
S(0) S 2. y d~(

) (4.11)

sight into the accuracy of SM' as a function of M.
The result is shown in Table II, which illustrates a
case similar to that of Table I. One sees that
(p;Vfo) does not decrease very rapidly with j
(roughly like j ), but the denominator (aJ —1)

(pJ. Vq&J. ) increases with j fast enough (roughly like

j ) so as to make the magnitude of each term in the
sum in Eq. (4.10} decrease rapidly (roughly like

j }. Most of the contribution to the sum comes
from the first five or six terms, nevertheless 13
terms are needed in order to reach an accuracy of
1% in the S matrix elements. In actual calculations
it would probably be preferable to choose M=5 or 6
and correct the result by either the quasiparticle
method, or the Green's function procedure de-
scribed below. A very similar conclusion is reached
if both Vo and V are made complex, or if Vo is set
equal to zero and the depth of V is increased to a
value of, say, 50 MeV.

A second example for which V is different from
V is given below. In this example V is chosen as
differently as possible from V in order to make the
test of the convergence with M as stringent as possi-
ble. The energy is again 15 MeV, the potential
parameters are given in Table III. The real part of
V is of the surface type, and the imaginary part is
of a volume type, while the reverse is the case for V.
The maximum magnitude of the real part of V is
either 25 or 50 MeV.

According to Eq. (4.8), the correction to So is

The rate of convergence with M of SM' to S, the ex-
act value of the scattering matrix elements, is
shown in Figs. 4 and 5, dashed lines. These lines
show the absolute value of the deviation of Ssr'
from S. For M=10 that deviation is still larger
than 0.04 and 0.08 for the two numerical examples,
respectively, which shows that the convergence with
M is slow. If the dotted line in Fig. 4 is approxi-
mated by the expression

~
M

~

=EM between the
points M=3 and 14, then one obtains for a the
value —2.37. In Fig. 5, a similar procedure carried
out between the points with M=S and 14 yields
a= —2.78. This falloff of Msr' with M is some-
what slow, and hence an iterative treatment which
significantly improves the convergence is described
in the next section. The method is based on a
slightly modified version of the "quasiparticle"
method proposed by Weinberg. The improved re-
sults are shown by the solid lines in Figs. 4 and 5.

V. THE SEPARABLE POTENTIAL V~
AND THE GREEN'S FUNCTION G~

The M approximant to the regular solution of Eq.
(4.1) is given by Eq. (4.7). Similarly one can obtain
the M approximant to an irregular solution, As'(r)
by replacing fo in Eq. (4.7) by the irregular solution
ho of Eq. (4.2). The function ho is defined such
that asymptotically it equals the usual outgoing
Coulomb wave function III+'. One obtains

with

M
d' '=p g [(1—V) '] '(p'Vfo) . (4.12)

M
~M(r)=Iio(r)+ y yj(r)[(1 —V) '], ,'(y,'Vh, ) .

1,j'=1

(5.1)

TABLE III. Parameters for the potentials Vp, V, and V.

Vp av Type' 8'p
Imaginary

R a~ Type'

Case 1

Case 2

Vp

V
V
V

(Mev)
—25
—25
—25
—50

(fm)
3.0
3.5
3.0
3.0

(fm)
0.5
0.5
0.5
0.5

Volume
Volume
Surface
Surface

(MeV)
—5
—5
—10
—10

(fm)
3.0
3.5
3.5
3.5

(fm)
0.5
0.5
0.5
0.5

Surface
Surface
Volume
Volume

'The r dependence of the two types is of the form

V= Vp/(1+ e), volume,

V=4)( Vpe/(1+e), surface,

with e =exp(r —8)/a in both cases.
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FIG. 4. Error in the scattering matrix elements, as a
function of the number M of Weinberg states. The re-
sults for

f
ESM'

f
are based on Eq. (4.11) or (7.7), while

f
ASM' f, based on Eq. (7.6). The latter contains the ef-

fect of one iteration GM(V —V~)fM. The potentials for
Vo, V, and V are given by case 1 in Table III. The corre-
sponding eigenvalues of Go V are shown by open circles in

Fig. 6.

Both fM and hM are approximate solutions to Eq.
(4.1), but they are exact solutions of the equation

(Hp E+ VM) 'h ———0,
M

(5.2)

where VM is a nonlocal separable potential given by

M
V (r, r')=V(r) g P, (r)(P, VP, ) '&P, (r')V(r') .

(5.3)

The symbol & means that the integration over r ' is
to be performed when VM(r, r ') acts upon a function
g(r'). If V is a many channel potential, & indi-
cates that a sum over the first channel index is also
to be carried out. The exact function f satisfies the
equation

or,

f=fM+GM(V VM)f . — (5.5)

Since V —VM is small, as will be seen in the next
section, iterations in GM(V —VM) should converge
rapidly.

For the one channel case, the Green's function

GM can be given exactly in terms of fM and hM as

GM(r, r ')= fM(r ()hM(r &
—)IIVM(r & ),

where the Wronskian

[(dhM i«)fM hM(dfM i«)]—2'

(5.6)

is not independent of r in this case because VM is a
nonlocal separable potential.

An alternate expression for GM, more suitable for
the generalization to the many channel case, is
given by

GM(r, r') =Gp(r, r')

+ g P, (r)[(l V) 'ji, (P, V—Gp), ,

FIG. 5. Same as Fig. 4, with the potentials given by
case 2. The corresponding eigenvalues of Go V are shown

by crosses in Fig. 6.

(Hp+ VM E)f= (V VM )f— — —(5A) (5.8)
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where

&yJ VGp &„= y,'(r)V(r)G, (r, r ') dr .
0

The above result follows from the identity

(5.9)

then the formalism discussed above can be easily

generalized. In this case Ho —E is replaced by the
diagonal operator (H„' ' —E„)5„„,the expansion in

Eq. (4.4) is replaced by

GM =Go+6() Vmg~ (5.10) f„' '( )=f"'( )6. + g C.,4.,( ), (5.11)

and the fact that V~ is separable.
If the problem contains X channels, coupled to

each other by the potential V, which now has the
elements V„„with n and n' running from 1,2. . .N

where it is understood that the only incident wave

occurs in channel 1, and in each channel n a set of
auxiliary Weinberg states P„J.J = 1. . .M is defined.

In this case the solution is

f.' '(r)=fi"(r)6, i+ g p„,( ) g g [(1—V) '],„J.„.&p„.'V„.,f', '&,
j'=1 n'=1

(5.12)

where Vis now a (N X M ) matrix whose elements are

(V).J.,'f = &Ink V- N. J'& .

The result for G„'„'(r,r ') follows from Eq. (5.8) if
Gp is replaced by G„' ', V by V„, PJ. by P„J., etc. As
will be seen in the next section, the matrix of the
eigenvectors of the matrix V serves to define the (M)
approximant to the eigenvectors of the operator
G(o) V

The numerical examples presented in this paper
refer to an orbital angular momentum L of zero.
The cases of L+0 can be treated in one of two
ways. Either for each L a set of new %einberg
basis states is calculated in each channel n, and the
formalism as it is described here is used —in this
case there is a different V~ for each value of I.—or
the other alternative is to keep the potential VM

fixed as defined for L =0, and recalculate the func-
tions fp, fl, and GM after adding to Hp the
L (L + I )/r term. Since Vsr is separable, the effect
of the centrifugal term can be incorporated without
much difficulty. For example, the function fear can
be written as

fr.,M=fs.'+Gc VMfL„M
(o) (o)

VI. EIGENSTATES OP GO V AND
THE QUASIPARTICLE FORMALISM

The usefulness of the quasiparticle method is
based on the fact that the large eigenvalues of the
operator E

K(r, r ') =Gp(r, r ') V(r ') (6.1)

can be subtracted off if Vis replaced by V—VM and
hence iterations in Gp(V —V~) will converge if the
remaining eigenvalues of Gp(V —V~) all lie inside
the unit circle. This (quasiparticle) method is more
transparent if it is formulated in terms of the eigen-
vectors 1(r) of the operator E These. eigenvectors
and their M approximants will now be defined.

The exact eigenvalues and eigenvectors of E will
be denoted as k, and I', (r), respectively. They obey
the equation

Xl.,=—&G, VI; &, =k, l, (r),

(Hp E+k, 'V)I;—=0; s=1,2. . . ,

(6.2a)

(6.2b)

where it is understood that the I"s are regular at the
origin and are purely outgoing for positive energies
E. The 1's are V orthogonal, i.e., &I', VI; &=Oif-
sQs', and their normalization will be chosen such
that

&I;VI; &=6„. (6.3)

and the quantity &P~ Vfz, sr & which arises fmm the
second term can be obtained from the solution of an
algebraic equation with inhomogeneous terms
&P~Vfr'. '& and coefficients &$&VGL 'VPJ'&. Simi-

larly for the Green's function GL sr.

f=fp+(I J:) '&fp. —

The iterative form of this solution,

(6.4)

The solution to Eq. (4.1) can be written in terms of
the operator X as follows



POSITIVE ENERGY WEINBERG STATES FOR THE SOLUTION. . .

f=fo+&fo+&'fo+ (6.5)

will not converge if any of the eigenvalues of K lie
outside of the unit circle. There are only a finite
number of such eigenvalues and they can be moved
inside the unit circle by subtracting from V the
separable potential VM.

In order to obtain approximations to the I"s and
k's, expansions of the I"s in terms of the auxiliary
Weinberg states P will now be performed. The ex-

pansions are

dent from each other, the determinant of EM is dif-
ferent from zero, and the inverse of E~ exists. The
normalization of the eigenvectors will be chosen as

M~ e(M)e(M) $ /k(M)
JS JS $$ / S (6.8a)

and as a result the normalization of the I"s is

(6.3')

and the inverse of E is given in terms of the tran-
sposed matrix k ~ as

1(M)( ) yy („) (M) (6.6)

The P's form a complete set in the region where V
i.s nonzero, and hence the larger the value of M in
the above sum, the closer I ' should be to I,.
However, since the error in I,' ' is corrected itera-
tively by the quasiparticle procedure described
below, completeness of the P's is not a necessary re-
quirement in the present context. Since the I"s and
the P's have the same boundary conditions at the
origin and at infinity, these expansions should be
well behaved. In view of Eqs. (2.8) and (2.4), one
obtains, upon inserting the expansion (6.6) into Eq.
(6.2b), replacing k, by k,' ', and integrating both

sides over PJ(r)dr, the equations for the expansion
coefficients ej,

'

M

VJJ'ez, ej', k——,' ',j and s =1,2. . .M . (6.7a)
~ g j

The above equation shows that the e'+'s constitute
eigenvectors of the matrix V. Since only a finite
number ofj values are used, the I ' are not eigen-
vectors of Eq. (6.2), but correspond to a variational
approximation to the I,. In matrix notation, M

(t;(r)= g (E k )„I," '(r) (6.9)

If none of the eigenvalues k,' ' are equal to unity
then the inverse of the matrix 1 —V also exists, and
ls given by

(1—V) ' =E~(1—kM ) '(E~ )

~ether the conditions assumed above are valid,
namely, that the eigenvalues k,' ' are all different
from each other and different from unity, as well as
the nonvanishing of the norm of the eigenvectors,
can be verified during the performance of the nu-

merical calculations. As is mentioned after Eq.
(4.8), the matrix V may not be always diagonaliz-
able. In Appendix 8 it is shown that it is unhkely
that diagonalization problems will be encountered.
The arguments are based on the fact that the I'I's
approach the I"s as M~ ca. The latter exist and
the former are obtained by the diagonalization of V.
No problems were encountered in the calculations
described in Sec. VII. In this notation the matrix V
can be expressed in terms of E)(r and k, the Wein-

berg states P can be given in terms of the I 's,

V EM =EMkM (6.7b)

where k))( is the diagonal matrix of the eigenvalues
and (~E)p =ep~ '. The eigenvectors e', ' are mutu-

ally orthogonal if the corresponding eigenvalues

k,' ' are different from each other, i.e.,

and fM, given by Eq. (4.7), can be rewritten as

f («)=fo( )+ Q I,' '( )8,' '(1™Vf,) (6.1O)
$=1

M
(M) (M)

O 'f k(M)~k(M)
JS JS S S

j=1

This follows from Eq. (6.7a) in view of the fact that
the matrix V is symmetric. If in addition, all eigen-
vectors have nonvanishing norm, i.e., if

g(M) k(M)g(1 k(M))

Similarly, the potential V~, defined in Eq. (5.3) can
be expressed as

g (~) (~)~o
j=l

then the eigenvectors e', ' are all linearly indepen-

V (, ')= g V(r)l',( '(r)k( 'I,' '(r')V(r'),
$=1

(6.12)
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where

M
I", (r)= g P (r)a .e', ' .

j=1
(6.13)

The I™sare exact eigenvectors of the operator
E~ ——Go V~, i.e.,

(6.14)

but of course the l™sare only approxiinate eigen-
vectors of E. When GOV operates on the I"s one
exactly regains the I"s

&G,VI," '&„=I;™(r). (6.15)

The Green's function GM(r, r'), which inverts

(Ho E+—VM), and which is given by Eq. (5.8), can
be rewritten as

GM(r, r')=Go(r, r')+ g I", '(r)[k,' '/(1 —k,' ')](I,' 'VGo}, (6.16)

This expression is exact, and is valid no matter how

poorly the I' 's approximate the true I"s. How-

ever, use of Eq. (6.14} is implicit in Eq. (6.16). If
instead of the choice I™,as given by Eqs.
(6.6}—(6.8}, other arbitrary forms of I"s, call them
I' 's, had been used —as was the case in the origi-

nal quasiparticle method —then an exact separable
form for the corresponding Green's function could

also have been obtained. However, in this case a
double sum over s and s' would have appeared in

the equations which replace Eqs. (6.10)
and (6.16), and another matrix, of the form
(I", 'VGo VI,' '},would have to be evaluated and

diagonalized. Further the potential V~ would be

replaced by

V@.(r, r ') —= g ( VI ')„(I 'V)„
s=1

proach the origin as s increases. This is illustrated
in Fig. 6. One sees that only two eigenvalues k, lie
near or outside the unit circle.

In the next section the first term GM(V —VM}fM
is evaluated numerically for the example of Sec. IV.

VII. NUMERICAL EVALUATION
OF GM ( V —VM )fM

As is shown in Sec. V, the error ASM' in the
scattering matrix S~ decreases only slowly with M,
and thus inclusion of one or more iterations in

2.0—

im (a)
1

Since the convergence of the iteration in

Gu (V —Vg ) depends on the smallness of the differ-
ence between the true eigenvalues k of K and the
guessed eigenvalue k' ', the M method described
above which makes use of the expansion in terms of
the states PJ seems to be more systematic, and
hence preferable. The present quasiparticle method
now consists in writing Eq. (4.1) in the form - t.5

x V. =-50
o-Vo = —25

1.5
Re(k)

(Ho+VM E)f=—(V —VM—)f
and obtaining the exact solution iteratively

f=fM+GM(V VM }fM—
(6.17)

+ (GM( V VM )]'fM+— (6.18)

The smallness of the terms in this series depends
on how closely the I' 's approximate the true
eigenvectors I of the operator E, as discussed in

Appendix B. For the two numerical examples dis-

cussed in Sec. IV, the eigenvalues k,' ' rapidly ap-

FIG. 6. Argand plot of the eigenvalues k, of Go V, ob-
tained by solving Eq. (6.7). The open circles and crosses
correspond to cases 1 and 2 of the numerical example
described in Table III. The value of M was taken equal
to 14; the difference between the exact eigenvalues and
k,' should be very small. The numbers next to each set
of points denote the value of s.
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GM(V —VM), Eq. (6.18), becomes desirable. The
first such iteration is described in the present sec-
tion. Depending on the size of V, reduction of the
error by factors of 20 or more are achieved, as will

be seen.
By using for GM the expression (6.16},for fM Eq.

(6.10), for VM Eqs. (6.12) and (6.13), and by using
Eqs. (6.14)—(6.16) one obtains

G„(v v„)f„—=(G,vf, ), gr—™(r)k( )(r( 'vf, )
s=l

g k (M)R ( )
I

[@(M)( ) P(M)( )]( P(M)( ) Vf )
s=l

(r)((@' ' —I'M') Vfo) J

M
I ( )(p)R( )[(I ( )Vq ( )) g ]k( )R( (I ( )Vf )

s,s'=1

@(M)( ) (G Vl (M) ) gk(M)

(7.1}

(7.2)

The quantities in each of the lines above tend to cancel each other the more so the larger the value of M,
and since k,R, =k, , the three last lines should be small for s large.

To first order in GM( V —VM ), one obtains for fM the result

fM"(r)=f()(r)+(t)M(r)+ g I", 'R,' '[(I'™V(tt)M) R,' '(I —'Vfo)], (7 3)
s=l

where

(7 4)

This result is more suitable for numerical calculations than Eq. (7.1}but it does not exhibit the decrease with
M. However, in the limit of large M, the square bracket in the sum in the second line in Eq. (7.3) goes to zero.

Taking asymptotic values in Eq. (7.3},and defining the asymptotic value of I ' as

=[I '(r)/H(+)(r)]„
M

(M)
jS j'

j=1

one obtains for the S matrix element the result

SM' So 2i(fi 12—mk)—I foVfMdr++2iy, ' R,' '[(1,' 'V/M) —R™(I,' 'Vfo)) .
0

(7.5)

(7.6)

In the above, k is the wave number. By compar-
ison, for the zero'th order expression for SM, which
results from Eq. (6.10), one obtains

(7.7)
M

S(0) S +2 ~ y (M)R(M)(l (M)Vf )
s=l

which is the same as Eq. (4.8) or (4.11).
For the numerical examples described in Sec. IV,

the values of the first order s-matrix elements SM"
have been calculated. The results are shown by
means of Argand diagrams in Figs. 7 and 8, for

cases 1 and 2, respectively. The parameters for the
potentials Vo, V, and V are given in Table III for
the two cases. One sees from Fig. 7 that the values
of SM approach the exact value of S much more

(1)

rapidly than SM, as a function of M. The absolute
value of the error BSM"—SM' —S is compared with
MM' in Fig. 4. One sees that already for five auxi-
liary Weinberg states Pz, the error in S"' is =0.02
which, compared to the error of =0.4 in SM'
represents an improvement by a factor of =18. For
M =8, the improvement is by a factor -48.
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Ims I
Vp =25 MeV
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/
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/

(0) ~y
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FIG. 7. Argand diagram of the S matrix elements for
the numerical examples of case 1. The result correspond-
ing to scattering from potential Vo is denoted as So, the
exact result S obtained in the presence of Vo+ V is denot-
ed by *, the M approximant S~' to S is shown by the
open circles, with the number M of Weinberg states writ-
ten next to each point. The value of S~' corrected by the
first order iteration G~(V —V~)f~ is denoted by S~'
and is represented by crosses. Expressions for S~' and
S~' are given by Eqs. (4.11) or (7.7) and (7.6), respective-
ly.

V= 50Me I.O—
Im

-2,0

M=2

M=2 x

5

/
/ so

I I I I I I I I I I II I I~ I I
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l

l
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M

0.5

x g~S
I I I/I I I I I I I II I

x 05 lORe

-0.5—
M=3

- l.O—

M=3

2.
FIG. 8. Same as Fig. 7, but with the potential of case

For the second case (V-50 MeV), the conver-

gence with M of the Ssr' values toward S is not as
good as for the first case. The corresponding eigen-
values of Gp V, illustrated in Fig. 6, are much larger
than for case 1, one of than lying substantially out-
side the unit circle. As a result, the straightforward
iteration in GoV should not converge at all. For
M =5 the value of Mgg' is now smaller than AS~'
by only a factor of 9, and for M = 8 the reduction is

only a factor of 17. Here a second iteration in

GM( V —VM ) may probably be preferable to increas-

ing M.
In spite of the fact that some of the eigenvalues

of GOV are so large, the values of the terms in the
second line of Eq. (7.6) are quite small. These
values, scaled by 10, are displayed in Table IV.

The contributions to S~' from the individual
"channels" I; comes mainly from the first few s
values. This is shown in Table V, which lists the
absolute value of the terms in the sum over s in Eq.
(7.7).

One sees from Table V that the first five s values

provide most of the contribution. The conclusion is
that even for this unusually large value of the po-
tential V, five Weinberg states (It should suffice to
construct five s channels I;. Two iterations involv-

ing Gsi( V —Vsl) should then suffice to obtain a re-
liable value of the S matrix element.

VIII. SUMMARY AND CONCI. USIONS

The present paper gives a numerical method of
calculating positive energy %einberg states in the
presence of local diagonal potentials, and provides
an example for a simple Woods-Saxon case. Such
%einberg states are then used as a basis set for ob-
taining the scattering solution in the presence of a
complicated potential V, which, either because it is
nonlocal or because it provides coupling between a
large number of channels, is difficult to treat by the
usual techniques. Also approximations to the
eigenvectors and eigenvalues of the operator GpV
are obtained by the present method in a systematic
way. Knowledge of the latter is important in order
to assess' the convergence of the distorted wave
Born series in Go V and to construct a separable ap-
proximation of finite rank of the potential V in the
quasiparticle (QP) method. '

The present method is somewhat different from
the QP method. It leads to algebraic matrix equa-
tions which can be manipulated formally, thus giv-
ing new insights into the scattering formalism, espe-
cially in connection to the reduction of the number
of channels for a large system of coupled equa-
tions. ' lt is thus quite possible that the Weinberg
formalism is akin to a Feshbach projection formal-
ism, in that it should enable one to represent a large
number of physical channels by means of a small
number of separable terms. This question needs to
be examined in further detail.

From the numerical point of view the present
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TABLE IV. Value' of the terms in the second line of Eq. (7.6)

(~)g{N)[(Z (M)Vy ) g(M)(Z (M)Vf )]
~

X i03

M/s

2
3
4
5
6
7
8
9

10

16.65
2.48

38.78
13.70
4.98
1.62
0.52
0.58
0.61

281.68
118.47

0.64
0.15
0.05
0.03
0.03
0.03
0.03

152.53
112.73
78.30
15.40
4.99
1.12
0.16
0.25

18.04
48.72
24.57
4.99
1.34
0.48
0.28

3.42
4.42
4.96
3.44
0.18
0.19

0.84
13.05
0.59
1.04
0.06

0.85
0.17
0.09
6.47

0.22
0.66
0.03
0.03

0.01
0.01

'The numerical example corresponds to case 2, described in Table III and in the text. A
scaling factor of 103 has been introduced for the purposes of this table.

method, as it now stands, is expected to be advanta-
geous over the conventional method of solving N
coupled equations N times, when the number of
channels N is larger than 30 or 40. The computing
time for the conventional method increases as N,
while most of the computing time of the present
method is spent in obtaining N &(M matrix ele-

ments, where M, the number of auxiliary Weinberg
states in each channel, is expected to be of order S
or 6, according to the simple examples given in
Secs. IV and VII. Whether the present method is
numerically advantageous over other methods

which also involve expansions over sets of basis
functions ' or which proceed iteratively' "*' will
not be clear until further work is done.

In summary the positive energy Weinberg basis
enables one to reformulate scattering theory in
terms of channels I', which are similar to the nor-
mal modes in a system of coupled oscillators. It is
shown here that this formulation, although known
for many years, ' can actually be used for numeri-
cal applications without much difficulty and may
be more economical than the conventional method
for solving a large system of coupled equations.

TABLE V.
~ y, '~'8, 'I'(I', ™Vfo)

~

for the numerical case 2.'

M=2
3
4
5
6
7
8
9

10
14

0.020
0.605
0.773
0.832
0.861
0.865
0.862
0.859
0.858
0.859
0.634

1.204
6.895
0.006
O.OOS

0.005
0.005
0.005
0.005
0.005
0.065
6.011

0.334
0.821
0.790
0.371
0.420
0.454
0.464
0.465
0.460
0.215

0.627
0.192
0.359
0.035
0.070
6.109
0.122
0.122
0.02S

0.007
0.012
0.329
0.198
0.004
0.026
0.053
0.015

0.003
0.004
0.004
0.150
0.001
0.019
0.002

0.001
0.002
0.002
0.112
0.024
0.012

0.0006
0.001
0.001
0.001
0.000

0.0004
0.0005
0.04S
0.022

'These are the contributions to S~' from each channel s, according to Eq. (7.7).
These results correspond to case 1, i.e., V =2S MeV.
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APPENDIX A

The conditions under which the operator

K~i(2r, r')=[V(r)]'~ Gp(r, r')[V(r') j'~

Gp(r, r') = Mfp(r ( )h p—(r ) ), (A4)

where fp and hp are the regular and (outgoing) ir-
regular solutions of Eq. (2.2), in which Vp, in addi-
tion to the L(L+1)/r term, also may contain
complex optical potentials as well as a Coulomb po-
tential. In Eq. (A4) as well as in subsequent equa-
tions the angular momentum number J will not be
explicitly indicated. M is the constant (2m/A'2k)

and the functions fp and hp are normalized such
that asymptotically they approach

dr J IKl/2(r r') I'dr'

However, the function Go used by these authors is
the free Green's function n expikp/p, where
p=

I
r —r '

I

and k is the asymptotic wave number.
For spherically symmetric potentials V (r) the
boundedness of the trace implies that

r V r r(00, (A3)

which does rule out the presence of Coulomb poten-
tials.

The present argument also consists in showing
that the trace of Kir2 is finite, but Gp in this case is
a partial wave distorted Green's function

fp —+sing,

h p ~exp(ig)
(A5)

is completely continuous will be discussed below.
From the complete continuity it will follow that the
spectrum of eigenvalues of Ki&2 is discrete, with an
accumulation point at zero, and that X~~2 can be
approximated uniformly by a sequence of operators
of finite rank. Furthermore, the eigenvectors of
Ki&2 form a complete set in the region of space
where VQO. The properties of completely continu-
ous operators are reviewed in the articles by Coes-
ter, Meetz, and Tani and a mathematical discus-
sion can be found in the book by Ringrose. '

The proof of complete continuity of E1,~2, given
by Coester and Meetz, consists in showing that the
trace of K~~2 is finite

P =kr riln(2kr) Lm /—2+o'L, +KL—, ,

Tr= J I(r) dr (A6)

where crL, and Kr. are the Coulomb and the (com-
plex) nuclear phase shifts, respectively, and i) is the
usual Coulomb parameter.

The trace of K i ~2 can be written as

I(r) =J I K«2(r, r')
I

dr'

(M'I v«)
I Ihp«) I' J Ifp«') I'I v«')

I

«'+ Ifp«) I' J Iho«') I'I &«')
I

«'
~

(A7)
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The turning point r, is now defined such that
I
V(r)

I
&8p. (A9}

I fp I

2&cfr~~+2

I

2& 2L—

where cf and c~ are positive constants. It is further
assumed that V(r) is not singular, such that an

upper bound 80 exists, i.e.,

It will further be assumed that the integral 8i

8i ——f I
V(r')

I

dr' (A10)

exists and is finite. Under these conditions the trace
of lt. i&2 will now be shown to be finite. From Eqs.
(A7) —(A10) one can show that for r & r,

I(r) &~'
I

V(r)
I {r'ci, cf8p(4L +»~(2L +3)(2L —1)+cfr"+'[car~ "+'~(1—2L )+&~] J (All)

where

H, =f Ih, (r') I'I V(r')
I
dr'. (A12)

Since Ihp I
is of order unity for r&r„ the above

integral is finite if 8i is finite, and I(r) is a bounded

nonsingular function of r for r & r, .
For r &r„one can obtain an upper bound for

I(r) by noting that for all values of r the absolute
value of fp is of the same order of magnitude or
less than the magnitude of its asymptotic value, and
that for r & r, the asymptotic value of the product

I hpfp I
is of order unity. Hence for r & r,

Ihp(r)
I f I fp I I

V
I

dr'& f I
V Idr'=8,

Ifp«) I' f I'I v I«'= f I
v I«'&8i

and hence

I(r) &M
I
V(r)

I 8i, r &r, . (A13)

fGp(r, r') V(r')I;(r')dr =k,I,(r) (A14)

then it also follows that

From Eqs. (All) and (A13) one can see that if
I

V(r)
I

is bounded, and if the integral 8i [Eq.
(A10)] exists and is finite, then the trace of Xi&2 is
bounded and X~~2 is in the Hilbert-Schmidt class.

The eigenvalues of the operator /~~2 are the same
as those of the operator K. If I', is an eigenvector
of%

V'~ (r) f Gp(r, r')V'~ (r') V'~ (r')I;(r') dr'=k, V'~ (r)I', (r) (A15)

provided that the branch for the square root of V is
chosen such that V' )& V' = V.

The eigenvector of Xi&2 which corresponds to the
same eigenvalue is

g, (r)= V'~ (r)I', (r) . (A16)

since

II;(r)I &y (A17)

f I

V' (r)I;(r)
I

dr &y f I
V(r)

I
dr .

Asymptotically, the I"s are proportional to ho,
which is bounded, and at small distances the I"s are
regular, and thus are also bounded. However, the
integral

f"r, (r) V(r)I;(r)dr

The functions g, are L integrable if 8i & 00 and if
I;(r) is bounded,

gj(r) =[ajV(r)]'~~PJ(r) . (A18}

Hence (V)'~ times the eigenfunctions I, of the
operator E can be expanded in the complete set of
'g s

can accidentally vanish and hence, the normaliza-
tion condition of Eq. (6.3) cannot be satisfied. In
this case I', may not be bounded.

The arguments made above for Xi~2 also hold for
the operator X~~2

E,q (r, r')=V' G V'~,

where V(r) is the auxiliary potential in terms of
which the auxiliary Weinberg states PJ. are defined
[Eq. (2.1)], provided that f I

V
I
dr exists and is

finite, and that V has no singularities. In this case
the eigenvectors gj. of X~~2 form a complete set,
and they are given in terms of the PJ according to
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V' (r)I;(r)= g rij(r)ez, aj
j=1

(A19)
y1/2I (M) k(M) y1/2I (M)

What will be shown next is that

(85)

If the sum is truncated at j&M and if ej, is re-
placed by ej, ', then after replacing the g's by the

PJ s according to Eq. (A18), and dividing both sides

by V', one obtains the M-approximant I ' to I „
given by Eq. (6.6). In Appendix 8 it will be shown
that the I' 's should converge to the I"s as
M—+ (x).

APPENDIX 8

The diagonalizability of the matrix V, whose ele-
ments are defined in Eq. (4.6), as weil as the conver-
gence of I,' ' to I; as M~oo, will be discussed
below.

Since the operator K1/2 is assumed to be com-
pletely continuous there exists a sequence of finite
rank operators KM which converge to K»2 as
M—+ao. The operators KM will be constructed and
it will be shown that their eigenvectors are
V' I ', and the eigenvalues are k,'

s=1,2. . .M. Since the KM's approach K1/2 as
M~ao, the I ' must converge to the I, as
M~ oo, which completes the proof. The operators
are defined as

KM(r, r') = [V(r)]' Go(r, r")VM(r", r')dr"
0

(81)

with

M
VM(r", r') = V(r") g P~(r")a&PI(r')[ V(r')]'~

(82)

In view of Eq, (2.8), KM can also be written as

M

KM(r, r')= g [V(r)]' p;(r)pj(r')[V(r')]'~',

(83)

which shows that KM is symmetric in r and r', and
is of rank M. It can be shown that the trace of KM
remains finite as M~ ao, provided that the integral
in Eq. {A10)is finite. Since

VM(r, r') V'~'(r') = VM(r, r') (84)

as can be seen from the definition of VM, Eq. (5.3),
it follows from Eq. (6.14) that V'~ I,' ' is an eigen-
vector of KM

(86)

The proof consists in showing that

lim VM(r", r') =5(r" r')[—V(r')]'~
m~co

(87)

This property follows from the completeness of the
P's, which gives

5(r' r")=—$ PJ(r')are(r") V(r") .
j=1

(88)

One can see Eq. (88) by expanding a function f(r)
in terms of the P's

P(r) = g cj'ag P; (r) .
j'=1

(89)

from which Eq. (88) follows. In Eq. (81) the vari-
able of integration is r", and hence Eq. (86) follows
from Eq. (Bl) and (87).

The eigenfunctions of the operators KM are given
in terms of the rij. 's by

V' I", '=g(V/a V)' gje', ', (811)
j=1

where, according to Eq. (6.7), the ej, 's are the
eigenvectors of the matrix V, defined by Eq. (4.6).
If V could not be diagonalized, then the eigenfunc-
tions of KM, V' I;, would not all exist. This is
unlikely since in the limit M~00 the eigenfunc-
tions V'~ I', of Ki~2 do exist. It will now be shown
that iterations in the operator GM( V —VM) should
converge faster the larger the value of M. Here GM
is defined in Eq. (6.16), and the iterations occur in
Eq. (6.18).

One can consider GM( V —VM ) acting on a func-
tion f, and expand the result in the complete set of
eigenstates of K [similar to the expansion (810)]

(GM( V —VM)y)r =y(GM(V VM)~l)r—
x (I,.vy

By making use of Eqs. (6.11),{6.16},(6.15), and (6.2)
one obtains for each coefficient of (I'; Vg) the re-
sult

Upon multiplying both sides of Eq. (89) with

Pz(r)v(r} integrating over r, and using the ortho-
normality between the P's, Eq. (2.4), one obtains

(810)
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(Gst(V —Vst)I';), =I;(r)k; —g I '(r)k,' '(I", 'Vl;)
s=1

I (M)( )k(M)(k k(M))(l (M) Vl )y(1 k(M)) (813)
s=1

As M increases, I ' and k,' ' should approach I; and k„respectively. Hence, the terms in the first line on
the right hand side of Eq. (813) should nearly cancel, and so should the terms in the second line, in view of
the fact that

lim (Is 'VI'J)=5sj .
M-+ oo

It can also be shown that'

&G (V—V )1(&„=&G,Vy&„+ gZ, ( )r(")(r)t &I( )VG, Vy& —&r( )Vy& I .
s=l

(814)

Although the above expression is useful for numeri-

cal evaluations, it does not show the various cancel-

lations explicitly. However, if P is replaced by fM,
then Eq. (7.1) follows. In view of the fact that @™,
defined in Eq. (7.2), should approach I, as M in-

creases, inspection of Eq. (7.1) shows that the terms
in each line should nearly cancel each other. In or-
der for the quasiparticle method of Weinberg to be
useful, it is sufficient that all the eigenvalues of the
operator GM( V —Vse) lie inside the unit circle.
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