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A multi-quark theoretical approach to 'He and He form factors based on the relativistic
harmonic oscillator quark model is presented to reproduce those experimental data at large
momentum transfers, which have not so far been explained in terms of ordinary nuclear

physics.

NUCLEAR REACTIONS Calculated elastic electromagnetic form fac-
tors of 3He, He, Q up to 3.5 and 2.5 (GeV/c)t, respectively. Multi-

quark cluster effect.

It is widely known that ordinary nuclear theoreti-
cal approaches to the structure functions of elastic
electron- He and - He scatterings could not so far
reproduce those experimental data' in the region of
large momentum transfers. In Fig. 1 we can easily
observe two characteristic discrepancies between the
nuclear theoretical He form factors and experimen-
tal data. The first is that the theoretical curve is
about three times smaller than the experimental plot
for 0.8(Q &2 (GeV/c), Q being momentum
transfer squared, and the second is that the theoreti-
cal dip a little above Q =2.5 (GeV/c) does not
clearly appear in the experimental plot. Here the
theoretical form factors mean those which were ob-
tained by the Faddeev method within the frame-
work of ordinary nuclear physics. We can also ob-
serve quite similar situations in the "He case, as will

be seen later. Such situations would suggest to us
that the ordinary nuclear physics should be supple-
mented by possible quark configurations. In this
paper, therefore, expecting that the discrepancies
can be removed by taking the possible existence of
inulti-quark clusters in nuclei. into account, we pro-.

pose a semiphenomenological model of the He and
He form factors based on the relativistic harmonic

oscillator quark model (RHOM).
In previous papers ' we have reproduced fairly

well the deuteron form factor assuming

FD(Q ) = cos 8Ftqp(Q )+sin 8F6q(Q )

for it, where Fzp(Q ) and F&(Q ) are, respectively,

n —1 Qg exp
4a„ 1+(Q'/2M„')

(2)

for an n-quark bound system, where a„=tl K K

being the universal coupling constant in the RHOM
to be so determined as to give the Regge slope
2a3 ——1, i.e., a.=0.096 (GeV/c) . M„ is not neces-

sarily equal to the physical mass of the n-quark
bound state but the symmetric mass of the corre-
sponding multiplet. However, sin 8 and M„are to
be adjusted here as free phenomenological parame-
ters in order to fit our theoretical form factor to the
experimental data. In the deuteron case we have ac-
tually obtained a nice fit with sin28=0. 07 and
Ms ——1.2 (GeV/c ) as is seen in Fig. 3, and with
sin 8=0.05 and M6 ——1.3 (GeV/c ) for Fa(Q )

modified by taking the spin-isospin dependence into
account. It was also shown that the theoretical
value of the deuteron magnetic moment4 is much

the ordinary proton-neutron bound state part and
the six-quark bound state part, both being normal-
ized by Fzp(0)=F6q(0)=1. Equation (1) may be
schematized as in Fig. 2(a). The parameter sin 8
represents the probability of finding the six-quark
configuration in the deuteron state. The ordinary
nuclear physics component Ftqp(Q ) dominates in
the region of lower Q 's but rapidly decreases with
increasing Q, while the six-quark component
F6q(Q ) becomes dominant at higher Q 's. The
RHOM gives us the formula

F (Q )= [1+(Q /2M )] "+'
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improved with sin 8=0.05-0.07, and that the
presence of dibaryon resonances recently reported
is consistent with the above six quark configuration
in the deuteron. Finally it should be remarked that
the asymptotic behavior of (2), F~(Q )

=(Q )
~" 'i, contains the formulas given by the

dimensional scaling quark model, and that the for-
mula (2) itself can reproduce experimental pion

and nucleon elastic form factors very well over all

the Q range including the preasymptotic region.
Let us analyze here the He form factor using a

natural extension of ( l) in the deuteron case.
Along the same line of thought as in (l), we can

put

F(Q ) = cos 8]F~p(Q ) +sin 8~EMg(Q ), (3a)

where FM~(Q ) stands for the contribution from
multi-quark configurations which is decomposed as

Est&(Q') = cos'0,E6, 3q(Q')+sin'&2Eqq(Q') . (3b)

I3He) =

)4He) =
el ~ ~

FIG. 2. Diagrams of (a) the deuteron state, (b) the 3He
state, and {c)the He state.

Each term may be illustrated by the corresponding
diagram in Fig. 2(b), and E6q 3q(Q ) can be written

0 L(( ~V Ic)'3
FIG. 1. Theoretical and experimental 'He form fac-

tors. All curves represent theoretical form factors. The
solid line stands for our final result and the dotted line
for the ordinary nuclear theoretical form factor Ezp(Q2)
given by &ef. 9.

F6q 3q(Q ) = 3 [ 2F6q(Q )G3q(Q )

+ F„(Q')G&(Q') j E„(Q'),

(3c)

in which the form factor F„q(Q ) is given by (2) and
the overlapping integral G (Q2) by
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TABLE I. Mass and mixing parameters.

1Q

1Q

Mixing parameters

4He

Mass
parameters

(GeV/c)

10

10

'e

1Q — a

sin Ol

sin 02

0.04
0.04

sin 0~

sin 02
sm 83
sin P

0.12
0.04
0.03
0.5

M3
M6
M9
M)2

1.097
1.2
1.5
2.0

-6
10

10

10
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FIG. 3. The theoretical curve of the deuteron form

factor is drawn here only for sin'F6 (Q } to be dominant
at higher momentum transfers. The form factor at lower
momentum transfers is dominated by the nuclear physics
component cos F//p(Q ) which is not shown here.

theoretical reason —the same assumption has also
been used in Ref. 10. Since parameters M3 and M
have already been fixed in the analysis of nucleon

and deuteron form factors, ' our free parameters
are only M9 and the mixing parameters (sin 8& and
sin Oz). We can easily guess that sin 8~
—=sin 82=sin 8 hold in the sense of the order of
magnitude, because sin 0~ and sin 02 are considered
to be probabilities of forming the multi-quark clus-

ters to play the same role as sin 0 in the deuteron
case mentioned above. Within the accuracy of this

equality, these parameters can be so adjusted as to
fit the theoretical form factor (3} to the experimen-

tal data. Final choice of the parameters listed in

Table I gives us the theoretical He form factor

(4)

See the Appendix for derivation of (3c) with (2) and
(4). The parameters cos 8&, sin 8&cos Oz, and
sin 8~sin 82 in (3a) and (3b) are, respectively, proba-
bilities of finding ordinary nuclear-theoretical,
(6q) —(3q), and (9q) configurations in 3He.

F/vt (Q ) is to be identified with the He form factor
obtained by ordinary nuclear physics —practically,
the Faddeev calculation given by Brandenberg and
Sick which is plotted by the dotted line in Fig. 1.
As for F2c(Q ) we can assume the one-boson ex-
change mechanism between (6q} and (3q} clusters,
that is,

10

C5

U
-4

10

F2C(Q ) =(1+Q /m ) (5)

with m being a boson mass of the order of 1

(GeV/c ). Instead of (5), we may put F2c(Q )

=exp( —Q /m ) on the basis of the Reggeon ex-
change mechanism. Both are not so different from
each other in the present Q region, so that we ex-
clusively used (5) with m=1.0 (GeV/c ) as a natu-
ral choice in hadron physics. All the form factor
functions and the overlapping integrals are normal-
ized to unity at Q =0. We further assume that the
relative sign of I'~p to F~g is negative for some

10

Q P(GeV/c}'3
FIG. 4. Theoretical and experimental He form fac-

tors. All curves represent theoretical form factors. The
solid line stands for our final result and the dotted line
for ordinary nuclear theoretical form factor F~~(Q }
given by Ref. 11.
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shown by the solid line in Fig. 1, which is really a
very nice fit to the experimental plot. From this we
can see the important role of our multi-quark part
in the region of large Q . It is also worth mention-
ing that the position of diffraction dip shifts down
to Q =0.39 (GeV/c) from the original position

Q —=0.54 (GeV/c) predicted by Brandenberg, ow-

ing to the negative contribution of FM~(Q ) to
F~p(Q ). This tendency is consistent with the ex-
periment. We must also remark that, in the Q re-

gion below the first diffraction dip, our results have
improved the theoretical fit given in Ref. 9, but are
still slightly smaller than the experimental plot.
The small gap can be removed by taking a contribu-
tion from the magnetic form factor or a possible
rather hard two- or three-body nuclear force into
account.

Finally we analyze the He form factor on the
same theoretical basis as in the He and deuteron
cases, by putting

F(Q )=cos OIF~p(Q )+.sin O', FMg(Q ),
FM&(Q') = cos'O', F«,q 3,(Q')+sin'O', cos'O3

X [cos fF9q 3q(Q )+sin PF«6q(Q )]+s111Opsln O3F&2q(Q ),
F6q —3q —3q(Q') = —,IF«(Q')[G3q(Q )] +F3q(Q')G6, (Q')G3q(Q ) IF3c(Q

Fqq 3q(Q )= —,[3F9q(Q )G3q(Q )+F3q(Q )G9q(Q )]F2c(Q ),
F6q —6q(Q') =F«(Q')G«(Q')Fzc(Q'),

(6a)

(6c)

(6d)

where we have used the similar notations as in (3).
Each term in (6b) can be represented by the
corresponding diagrams in Fig. 2(c). F~p(Q )

should be identified with the He form factor ob-
tained by ordinary nuclear physics, for which we
tentatively use the theoretical calculations given by
Katayama and Tanaka" on the basis of the
Hamada-Johnston potential and a special three-
body interaction potential. Similarily as in the He
case, we use (2) for F„q and (4) for G„q and put

(Q')=[F (Q')]'~'=(I+Q'/m')

with m =1 (GeV/c ). With the same choice of
parameters listed in Table I, we can get our final re-
sult as shown by the solid line in Fig. 4, where we
have also assumed that the relative sign of F~&(Q2)
to F~p(Q ) is negative as in the He case. Figure 4
shows us that we have obtained a much better
theoretical fit to the experimental plot than in the
ordinary nuclear theory.

From the above analyses, it is concluded that the
small mixture of multi-quark configurations in nu-
clear structure enables us to very much improve the
ordinary nuclear physics results of H, He, and He
form factors.

%e would like to express our sincere gratitude to
Professor I. Sick and Dr. T. Katayama for kindly
sending us the numerical tables of their nuclear
theoretical He and He form factors. %e are also

indebted to Professor I. Ohba, Mr. T. Fukai, and
Mr. M. Kato for valuable discussions.

APPENDIX: DERIVATION GF THE
FORM FACTOR GF THE

TYCHO

CLUSTER COMPONENT

First of all, we have to remark that the inner or-
bital wave function of a relativistic bound system,
governed by the Bethe-Salpeter equation or the
RHOM equation, should depend on the center-of-
mass momentum —see Ref. 2. Owing to the depen-
dence, the final inner wave function is different
from the initial one. Therefore, we can define the
form factor by

F(Q )=Jf (P;r)e q'"p(P;r)d r

and the overlapping integral by

G(Q2)= JP*(Pp, r)$(PI;r)d r,
where r stands for the four-dimensional relative
coordinate, and PF and PI for the final and initial
center-of-mass four mom enta, respectively.
Q = —q

2 represents the invariant momentum
transfer squared. The RHOM wave function gives
us the formulas (2) for F(Q ) and (4) for G(Q ).
Note that G(Q ) is never equal to unity unless

Here we derive the form factor of a two cluster
component F2q 2q(Q ), each cluster being com-
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2q(P;X,R, r, ,r2) =E4(p;R)gi(p;r, )

(p .
)

—P'I' (A3)

posed of two particles with unit charge, for simpli-

city, instead of Fsq 3q(Q ), etc.
The (2q —2q) system can be represented by the

wave function

where P and X stand for, respectively, the center-

of-mass momentum and coordinate, R for the rela-

tive coordinate between the two clusters, and r& and

r2 for the relative coordinates inside each cluster. X
is the normalization constant. Using (A3) we can
define the form factor of the two cluster component

by

54(p. Pl -q)F~-~(Q')
=—,

' fd Xfd R fd ri f d r2%2 2 (P+,X,R,r„r2)
—iq (X—R+rI ) —iq.(X—R —r&) —iq.(X+R+r2) —iq (X+R —r2)X[e +e +e 2 ]

X%'2 2 (PI,X,R,ri, r2), (A4)

which yields

F2q -2q(Q') =F2q(Q')G2, (Q')F2C(Q'), (A5)

F2C(Q )=fd R4~(p+,'R)e 'q 4(pl,'R) . (A6)

where F2q(Q ) and G2q(Q ) are given by (2) and (4),
respectively, and

Note that 4(P;R) is not a tightly bound state as

described by the RHQM but a loosely bound state
as governed by the ordinary hadron dynamics, then

we have put (7) for Fzc(Q ).
Generalizing the above procedure, we can easily

derive (3c) for Fs 3q(Q ) corresponding to (A5) in

the case of the (2q —2q) system. It is noted that

G„q(Q ) has the same Q dependence as F„q(Q )

does in the region of higher momentum transfers.
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