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We propose a new technique allowing the decomposition of the light- and heavy-ion
elastic scattering amplitude into its barrier and internal wave components as defined by
Brink and Takigawa. The method requires only minimum programming as it makes use
of the reflection coefficients generated by any optical model code. Also, it can be applied
to a wide range of potentials including folding model and model-independent potentials.
The use and physical interest of the method are illustrated by applying it to a few
representative examples ranging from a to heavy-ion scattering.

NUCLEAR REACTIONS Calculation of barrier and internal wave
components of elastic scattering amplitude; application to light- and
heavy-ion scattering.

I. INTRODUCTION

Semiclassical methods have often played a key
role in elucidating the mechanism of light- and
heavy-ion scattering (see, e.g., Ref. 1 and references
therein). In particular, they help to disentangle the
various ingredients of the scattering amplitude in
an intuitively appealing way. Recently Brink and
Takigawa have extended the semiclassical solution
of the three turning point scattering problem to the
case of complex potentials.> Their method not
only leads to a good agreement with full quantum
calculations, but also allows them to separate the
elastic scattering amplitude into two parts; the
“barrier contribution” corresponding to the wave
reflected at the barrier of the effective potential,

_and the “internal contribution” originating from
the wave passing the barrier and reflected at the
most internal turning point.

Although their method provides valuable infor-
mation on the physics underlying the optical model
description of the scattering, it has up to now been
applied to a rather limited number of cases, prob-
ably because of the difficulties inherent to its pro-
gramming. Moreover, the method requires the po-
tential to be supplied as a single analytical expres-
sion, which makes it inapplicable to a wide range
of currently used interactions (e.g., folding model
and most of the so-called “model-independent” po-
tentials). This prompted us to investigate the pos-
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sibility of gaining the same physical information
without resorting to a full semiclassical calculation.
In this spirit we have developed an algorithm re-
quiring simple modifications of any conventional
optical model code and leading to a very good
agreement with the semiclassical method.

In Sec. II we recall briefly the assumptions and
main formulas of Brink and Takigawa’s model and
we present the principles of our approach. Section
III is devoted to a discussion of its practical as-
pects, while Sec. IV deals with its application to a
few illustrative examples ranging from alpha- to
heavy-ion scattering. A brief summary and our
conclusions are presented in Sec. V.

II. DECOMPOSITION OF THE ELASTIC
SCATTERING AMPLITUDE INTO ITS BARRIER
AND INTERNAL WAVE CONTRIBUTIONS

Given an optical potential

Urn)=v(r+iw(r) (1)

we define the effective potential Uy corresponding
to angular momentum / by

Uete(r)=Vge(r) +iW (1) , 2)
where
2
Ve r) =V (r)+ Ve(r)+ ﬁ_l(l_tl)_ ’ a
2u
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V¢ denotes the Coulomb potential, and p is the re-
duced mass of the system (here and in the follow-
ing, the angular momentum index will be con-
sistently dropped if not needed). If the real part of
the nuclear interaction is deep enough, then Vg
displays a “pocket” (cf. Fig.1). When W =0 and
E_ . is less than the barrier height ¥ there are
three real semiclassical turning points, correspond-
ing to Vg —E_. , =0. These move into the com-
plex plane when W=£0 and/or E_, >Vp. A con-
figuration of the turning points corresponding to
W <0 is displayed schematically in Fig. 2.
Provided that the two outer turning points 1 and
2 are well separated from the inner one (i.e., that
Ve has a well marked pocket), the reflection coef-
ficient 1 can be written as®
_, 20 . 28
! N NWN+e

5 )

8, is the WKB phase shift corresponding to the
external turning point 1. The phase shift 53

m
g = Vo f¢larb. units)

FIG. 1. Schematic representation of the effective po-
tential for a particular / value in the case of a deep real
potential.

corresponding to the internal turning point 3 can

be written as
8;=S3+521+6; . (5)

N is connected to the barrier penetrability, and the
Sj; are semiclassical action integrals evaluated in
the complex plane

r.
J
Sij:fri

2 1/2
jﬁmm—mmm} : (6)

In most cases absorption is strong enough to make
the imaginary part of S3, large and to allow (4) to
be approximated as’

2id 28
1 e 3

(e

S ™

np and 717; can be interpreted as corresponding to
the wave reflected at the barrier (i.e., turning point
1) and to that reflected once at the most internal
turning point 3. Approximation (7) amounts to a
complete neglect of multiple reflection between
points 2 and 3. The corresponding scattering am-
plitudes fp and f; are defined in terms of nz(/)
and (1) as

- 2io; _
fB(G)—zik;(Zl—i-l)e [9s(D—1]

X Pj(cos@)+£.(6) , 8)

Imr

Re r

FIG. 2. Location of the turning points in the com-
plex plane for a particular / value for W <0 and
E. .. > Vg (schematic) (cf. Ref. 2).
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2io,

1
J1(6)= ik ; 2L +1)e™ 'ny(])

X Py(cosf) , 9)

in the usual notation. The total elastic scattering
amplitude f reads in approximation (7)

[(@)=fp(0)+f1(6) . (10)

Brink and Takigawa were able within their semi-
classical approach to obtain a good agreement with
full quantum calculations. However, their method
requires the localization of the complex turning
points and the evaluation of several action integrals
in the complex plane, making its practical use
rather difficult. Also, it is restricted to analytical
potentials and thus does not allow for direct inves-
tigation of the interesting cases of folding model,
spline, and Fourier-Bessel, and in general,
numerically-supplied potentials.

We therefore tried to develop a more flexible
method, based on simple modifications of any opti-
cal model code. In order to test our method we
compared our calculations of reflection coefficients
and scattering amplitudes for several representative
examples with those generated by a WKB code®
written within the frame of Brink and Takigawa’s
approach.

First, we attempted to eliminate the internal
wave contribution by artifically enhancing the ab-
sorption inside the potential pocket, so that only
the barrier wave contribution survives. The inter-
nal part can be calculated thereafter by substract-
ing the barrier part from the full scattering ampli-
tude. A similar approach has been used indepen-
dently by Rowley ez al.* in the case of >)C+'2C
scattering. Although it gives a good agreement
with WKB in most cases, sometimes it was found
to lead to serious discrepancy with the semiclassi-
cal calculation. The essential reason of the failure
seems to be that the extra absorptive potential
must be very strong to completely suppress the
internal wave, yet its contribution at the barrier
must be negligible not to affect the barrier part of
the scattered wave. This forces the use of a very
abrupt modification of the imaginary potential,
which in some cases introduces an additional turn-
ing point, i.e., causes unwanted extra reflection.

In order to avoid these difficulties we searched
for an alternative method requiring less drastic
modifications of the interaction potential and based
on a better understanding of their influence on the
scattering reflection coefficients. Brink and Taki-
gawa’® pointed out that the modulus of the s-wave

internal reflection coefficient for “Ca(a,a) scatter-
ing at 29 MeV incident energy behave exponential-
ly as a function of absorption. In fact it can be
shown on general grounds that a complex pertur-
bation of the interaction potential

Uese(r)— Uege(r) +xg(r) , (11

[where k is a complex factor and g(r) some analyti-
cal complex function] causes a modification of the
action integrals (taken between turning points r;
and ;) linear to first order in «

S—S+akx, (12)

where a is a complex constant given by

172
2 r,
= _ﬁ% frij [Ecm. — Ue(n]'?
Ue(r)g (r)—Ulge(r)g'(r)
’ 2 dr .
[Uese(r)]
(13)

We have checked numerically on a particular ex-
ample that (12) holds with very good accuracy for
reasonable modifications of the original optical po-
tential (i.e., changes of the order of a few MeV).

If we restrict to short-ranged perturbations g (r)
affecting only the internal action integral Ss,, these
will induce the following changes of the internal
reflection coefficient n; [cf. Eq. (7)]:

nr—mnre?, (14)

and the barrier wave reflection coefficient np will
remain unaffected. Performing two modifications
of this type will thus make it possible to separate

the barrier and internal components 1 and 7; of
the total reflection coefficient . For example, if

we perform three successive optical model calcula-
tions with the following potentials

Vop(r) , (15a)
Vopt(F)+Kog (1) , (15b)
Vopt(r)‘"Kog(r) s (15¢)

(where V., is the optical potential whose proper-
ties we want to investigate), the corresponding re-
flection coefficients will read

7=ng+nr, (16a)
NP =np e, (16b)
n(_)an—f—me_ZiaKO. (16¢c)
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Eliminating the complex constant a from this sys-
tem and solving for 7z and 7; gives
(=) _ (002

n-m Ui (0)
_ s MI=mn"—"g - (17)
7' =) —29©

(+)

Np=

This can be written in terms of the differences
A(i)E(n(i)__n(O)) as

A(+)A(——)

AP T

AH—)A(—)
A(+)+A(—) :
(18)

ns=n""+

III. NUMERICAL EVALUATION OF THE
BARRIER AND INTERNAL WAVE AMPLITUDES

We now turn to the practical use of the ap-
proach presented in the preceding section. It
should be recalled that our method, which is based
on the semiclassical decomposition of Eq. (7),
makes sense only if the real part of the effective
potential U,y has a well marked pocket for all the
active partial waves (i.e., those for which
E_ . >V3g), as is the case in the semiclassical ap-
proach. Moreover, the absorptive part W of the
potential investigated must be strong enough to
guarantee the absence of shape resonances, so that
(7) is a good approximation to (4). Finally, there
should not be more than three active turning
points in the problem studied. Additional turning
points® can be expected to appear for imaginary
potentials with a very small diffuseness (that is, for
aw <0.3 fm) or in the case of nonmonotonic, rap-
idly varying real potentials.

Although the method could be worked out with
modifications of a different type, we decided to re-
strict to imaginary perturbations, i.e.,

kg(r)=+iW h(r), (19)

where W, is a real constant. The real perturbing
form factor A (r) should display two essential
features: (i) it has to decrease fast enough at large
r not to modify the barrier wave, and (ii) this de-
crease must be reasonably smooth so that it does
not cause unwanted additional reflection inside the
potential pocket. It was found that these conflict-
ing constraints can be met with the following
choice:

h(r)=exp[—(r/p)*] . (20)
Numerical tests indicated that in order to satisfy

condition (i) above the range p of the perturbation
should be chosen as

p~Rp/2, 1)

where R denotes the barrier radius (cf. Fig.1) for
the grazing angular momentum. The amplitude
W, of the perturbation should be reasonably small
so that 77; behaves as indicated in (14). In practi-
cal calculations W, was chosen as

W, ~0.1W, , (22)

where W, is the strength of the original imaginary
potential. It must be stressed that the results gen-
erated by the proposed method can be considered
meaningful only if they do not depend critically on
the parameters of the perturbation p and Wj.

In Fig. 3, we present a detailed comparison of
the barrier and internal components of the reflec-

Vgt (MeV)

“calaal 29.0 MeV

0/0R

107¢

1

Oy mldeg)

ol 1
60 120

FIG. 3. “Ca(a,a) at 29.0 MeV laboratory energy (a)
real part of the effective potential for angular momenta
near the grazing; the horizontal line corresponds to the
center of mass energy; (b) barrier and internal wave con-
tributions to the scattering reflection coefficients (our
method), full lines; WKB (barrier), dots; WKB (inter-
nal), squares; (c) same as (b) for the barrier and internal
wave cross sections. The parameters of the modification
used and those of the original potential can be found in
Tables I and II.
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tion coefficients and scattering cross sections gen-
erated by our method and by the semiclassical
code® for “Ca(a,a) scattering at 29 MeV incident
energy. The potential used in these calculations is
that of Delbar et al.° The parameters of the
modification and those of the investigated optical
potential can be found in Tables I and II. Exami-
nation of Fig. 3 reveals a very good agreement be-
tween both methods, particularly for the internal
wave contribution. For low angular momentum,
however, there is a systematic discrepancy for the
barrier wave reflection coefficients. Owing to the
smallness of the latter, this is seen to have only
limited impact on the corresponding cross section
(cf. Fig. 3). We would like to point out in this
respect that such a kind of decomposition is not
intended to provide us with high accuracy results
but rather with a semiquantitative understanding
of the processes underlying the scattering. The ori-
gin of these small discrepancies is not fully under-
stood. They seem to occur mainly when the inter-
nal wave contribution is large, i.e., for weak ab-
sorption. This makes us suspect that they are due
to a very small residual resonant contribution to
which our method, being based on the calculation
of delicate differences, is expected to be particular-
ly sensitive. This interpretation is substantiated by
the success of the following variant of the method.
We replace the perturbation of Eq. (19) with

kg () =i(+ W, —W,)h(r), (23)

where W, and A (r) remain as defined above and
W, is an extra positive constant which has to be
chosen large enough to damp out the remaining
resonant contribution. The magnitude of W,
must, of course, remain reasonable to avoid pro-
ducing the kind of spurious reflection we discussed
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in Sec. II. In practice, it can be chosen so that the
modified internal wave reflection coefficients be-
come comparable to the barrier ones for low angu-
lar momenta. Numerical tests indicated that the
detailed choice of W, is still less stringent than
that of the other parameters of the perturbation.
Used with the modification (23) the method
described at the end of Sec. II will now predict
correctly only the barrier contribution 75. The
correct internal contribution 1; can be recovered
by substracting these 17 from the reflection coeffi-
cients generated with the original potential without
any modification. To summarize, using modifica-
tion (23) thus requires four optical model evalua-
tions corresponding to the following potentials [cf
Eq. (19)]:

Vopt(r)—iWyh (r) , (24a)
Vopt (P)+i(W —W)h(r), (24b)
Vopt(r)+i( =W —W,)h(r), (24c¢)
V(1) . (24d)

This new prescription leads to a much better
agreement with the semiclassical approach, as can
be seen in Fig. 4, where calculations were repeated
for the same system as that studied in Fig. 3.
Prescription (24) has been used for all the examples
presented in the next section, although the simpler
prescription (15) was found to provide reasonable
results for all the investigated cases.

IV. APPLICATION OF THE METHOD
TO LIGHT- AND HEAVY-ION SCATTERING

In this section we test our method against the
semiclassical results for a few selected examples

TABLE 1. Parameters of the modifications [Egs. (19) — (23)] used to separate the various
optical model scattering amplitudes into their barrier and internal components.

Case No. System E, (MeV) p (fm) W, (MeV) W, (MeV) Fig. No.
1 a+%Ca 29.0 3.25 1.0 0.0 3
2 a+%Ca 29.0 3.25 1.0 50.0 4
3 a+*Ca 29.0 3.40 2.0 20.0 5
4 a+%Zr 23.4 4.10 2.5 0.0 6
5 Li+ 150 29.8 2.70 0.7 30.0 7
6 160 +%Ca 54.0 4.50 1.0 20.0 8
7 2C+%Ca 51.0 4.10 1.0 20.0 11
8 2C4+%8Ca 47.2 4.00 1.0 15.0 12
9 160 4-28si 55.0 4.15 1.0 30.0 13
10 160 -+ 28 55.0 4.20 1.0 20.0 14
11 160 +4Ca 50.0 4.50 1.0 10.0 15
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TABLE II. Parameters of the investigated potentials [Eq. (25)] (refer also to Table I). Energies are expressed in
MeV, lengths in fm.
Case No. V() R v ay Yy W() R w Ay Yw RC Ref.
1.2 188.92 4.685 0.645 2.0 11.342 6.0 0.5 2.0 4.446 6
3 162.63 5.013 0.625 2.0 28.10 5.475 0.5 20  4.589 6
4 230.5 5.647 0.554 1.0 23.5 5.647 0.554 1.0 5.647 7
5 187.0 2.646 0.890 1.0 6.6 6.073 0.54 1.0 6.300 8
6 111.87 - 7.25 0.478 1.0 9.89 7.08 0.56 1.0 7.25 10
7 60.5 6.91 0.518 1.0 8.87 7.09 0.707 1.0 6.91 12
8 58.8 6.74 - 0.574 1.0 10.0 7.22 0.817 1.0 6.74 12
9 160.0 6.566 0.490 1.0 10.0 6.847 0.490 1.0 7.223 18
10 75.21 6.865 0.493 1.0 8.5 6.704 0.1844 1.0 7.892 19
11 50.0 7.894 0.42 1.0 7.6 5.94 0.30 1.0 5.94 9
*Some of the parameters of this potential have been refitted to experiment.
and we discuss briefly the physics involved. For tials we use have the form
each case presented the parameters of the modifi- -,
cation (23) and those of the investigated potentials Vir)=—Vo{ 1+exp[(r —Ry)/(vyay)]} ",
are collected in Tables I and II. The optical poten- (25)

Vogs (MeV)

“calaal 29.0 MeV

10 2 " 1 N n Il

" 1 L " 1 n 1
120 Bcmdeg)

FIG. 4. Same as Fig. 3 for other parameters of the
modification (see text and Table I).

W (r)=—Wy{ 14+expl(r —Ryp)/(vyay)]} ",

and the Coulomb potential V(#) corresponds to a
uniformly charged sphere of radius R¢.

A. ©*“Ca(a,a) 29.0 MeV

Elastic a-particle scattering from the calcium
isotopes has been thoroughly investigated because
of the large backward enhancement seen in some
experimental angular distributions (see, e.g., Ref. 6
and references quoted therein). The case of
“OCa(a,a) at 29 MeV has been investigated in the
preceding section. It can be seen in Fig. 4 that
the internal wave contribution dominates at large
angles and is responsible for the anomalous large
angle scattering (“ALAS”) observed for that sys-
tem. We performed a similar decomposition for
#Ca(a,a) at the same energy (see Fig. 5). Here
the internal contribution is an order of magnitude
smaller because of the stronger absorption, making
the full scattering cross section look “normal.” A
detailed discussion of the semiclassical decomposi-
tion for these two systems can be found in Ref. 6.

B. *Zr(a,a) 23.4 MeV

This case has been selected because the excita-
tion function around 175° displays a spectacular
“dip,” about 1 MeV wide, at about 23 MeV in-
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cident energy.” Although these data (including the
dip) could be fitted using a standard Woods-Saxon
optical potential,” the particular features of the
optical potential causing this dip were not under-
stood. After carrying out the decomposition into
barrier and internal components, it becomes clear
that there is an accidental destructive interference
between both components of the scattering ampli-
tude which turn out to be of comparable magni-
tude for 6~180° around this incident energy (cf.
Fig. 6). A detailed calculation shows that they are,
moreover, in phase opposition at the same energy.
Our analysis thus reveals the purely accidental na-
ture of the phenomenon; its occurrence is linked to
a very unlikely coincidence between the detailed
properties of the real and imaginary parts of the
potential. Before we leave this case we would like
to point to the very good agreement of the results
of our method with those of the semiclassical ap-
proach.

C. '%O(°Li,°Li) 29.8 MeV

The results obtained with the potential of Bas-
sani et al.? are presented in Fig. 7. We observe an

Vet (MeV)

-101

219

excellent agreement of the internal wave contribu-
tions generated by both decomposition methods.
The agreement for the barrier wave contributions is
not so good, although quite sufficient for our pur-
pose.

The scattering is seen to be already dominated
by the internal contribution at moderate angles as a
result of the large values assumed by the corre-
sponding reflection coefficients. The internal wave
contribution is felt at angles as small as 50°. Our
interpretation contrasts with that given in Ref. 8,
where it was concluded that °Li behaves as a
strongly absorbed projectile at low energy. The
confusion seems to have originated from the pres-
ence of discrete ambiguities in the original optical
model analysis. In fact, the discrete ambiguities
evidenced in optical model analyses of elastic
scattering data are in no way connected to the
strong absorption properties of the interaction but
can even appear for very weakly absorbing poten-
tials, provided that the real part of the effective
potential displays a pocket. Such potentials have

ngf(MeV)

o

720

-20

“cala,a)

20

29.0 MeVv

Ll

e

\"‘M/
\f

10

'60

20 c.m.(deg)

FIG. 5. Same as Fig. 3 for “Ca(a,a) at 29.0 MeV.

07r (a,a) 23.4 MeV

é\\ T T T T -

.

o //././"*/'_‘
10 —
120

FIG. 6. Same as Fig. 3 for **Zr(a,a) at 23.4 MeV.

ec m(deg)
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only to be connected by some set of conditions?® to
lead to the same scattering cross sections.

D. “Ca(!0,0) 54.0 MeV

This system has been studied recently by
Brookhaven® and Saclay'® groups. An attractive
feature of the measured cross sections is the oc-
currence of ALAS together with that of pro-
nounced oscillations in the excitation function
measured at 180°.° We compare the result of our
decomposition against WKB for. the potential of
Ref. 10 in Fig. 8.

Here the internal contribution becomes impor-
tant for angles larger than about 120°% both
methods are in perfect agreement. The barrier
contributions agree reasonably well up to about the
same angle. For larger angles high frequency os-
cillations set in, in the WKB cross sections. These
seem to originate from the bad convergence pro-
perties of the WKB reflection coefficients at large
angular momenta. This phenomenon, which is not
apparent in Fig. 8, is displayed in Fig. 9 on an ex-

Veff (MeV)

Bo(°LiSLI)  29.8 MeV

0/ 0g

iy

60 ’ 120 Ocmldeg)
FIG. 7. Same as Fig. 3 for '%O(°Li,Li) at 29.8 MeV.
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panded scale for large / values, where the internal
contribution has become completely negligible.

The WKB total reflection coefficients are seen to
be systematically smaller than their quantum coun-
terparts. This behavior introduces small spurious
high / components in the scattering amplitude.
This is expected to cause unphysical oscillations in
the cases where the barrier cross section becomes
very small (i.e., mainly for heavy-ion scattering
where its ratio to Rutherford scattering falls to
10~5—107° at large angles). An additional indica-
tion of the failure of WKB in this case is that the
total WKB cross section is in bad disagreement
with the quantum result at large angles (cf. Fig.
10). The sum of our barrier and internal wave am-
plitudes equals by definition the full quantum re-
sult; moreover our internal wave contribution is
nearly identical to that generated by WKB and
both internal and barrier contributions are of com-
parable magnitude at large angles in the present
case. We thus have strong support to conclude
that the barrier wave contribution given by our
method is the correct one. In Fig. 8 and the fol-

N Veff (MeV)

(=]

-20

“ca(®0®0) 540 Mev
10° ¢ ; . .
e 4
lo)
~ E
o
102
10‘[..1..:.,1.,1,.

FIG. 8. Same as Fig. 3 for “Ca('°0,'%0) at 54.0
MeV.
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FIG. 9. Comparison of the modulus of the quantum
and WKB reflection coefficients at large / for case No.
6.

lowing figures, the WKB barrier cross section has
therefore only been displayed for angles where it is
thought to be meaningful.

As in the present case the barrier and internal
contributions are of comparable size at large angles
they strongly interfere making the total scattering
cross section very sensititve to small changes in
both incident energy and optical potential parame-
ters. This interference between both components
of the scattering amplitude could account for the
broad oscillatory structure seen in the experimental
excitation function at 180°° as proved to be the
case for low-energy a-particle scattering from
40, 11

10°

LUCG(‘ISO"IGO)

54 MeV n

102

0 /0Rr

10

LELRLALLL R AL B LU B AR AR |

10_ ' ! | ! PR | 1 1
Ocmldeg)

Lo
60 120

FIG. 10. Comparison of the full quantum (full line)
and WKB (dotted line) cross sections for case No. 6.

E. *Ca('?C,'2C) 51 MeV
and **Ca(12C,'2C) 47.2 MeV

A clear-cut isotopic effect has recently been ob-
served for these two systems by Renner!? at for-
ward angles (6, ,, < 105°). The elastic scattering
angular distribution displays well marked oscilla-
tions in the case of “°Ca, while it shows a nearly
exponential falloff for *Ca. Both angular distribu-
tions could be fitted with conventional Woods-
Saxon potentials.'? In Figs. 11 and 12 are present-
ed the decompositions we carried out for both sys-
tems.

In the case of *’Ca(!2C,'>C) we observe the pres-
ence of oscillations in the barrier cross section al-
ready at forward angles. The internal wave contri-
bution dominates the scattering for angles exceed-
ing about 110°. For smaller angles its influence
can be felt in the total cross section in that it
enhances the amplitude of the oscillations seen in
the barrier part. Both contributions are thus ma-
terial in reproducing the oscillatory structure of the
data.

Vet (MeV)

8
r(fm)

LOCG (12C.12C)

10 " L ] " I " L 1
60 90 ec.m(deg )

FIG. 11. Same as Fig. 3 for “Ca('2C,'?C) at 51.0
MeV.
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ohe— : !
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FIG. 12. Same as Fig. 3 for ¥Ca('2C,'?C) at 47.2
MeV.

On the other hand, the barrier part of
“8Ca(12C,'2C) scattering is much smoother than its
“0Ca counterpart. Moreover, the internal contribu-
tion for “*Ca is very similar in shape to that ob-
served for “°Ca but an order of magnitude smaller.
In the experimentally investigated angular range it
is negligible and the total elastic scattering cross
section remains smooth.

In order to ascertain the origin of the oscilla-
tions seen in the barrier part of “°Ca('?C,'?C)
scattering, we repeated the calculations for *®Ca us-
ing the **Ca absorption. Oscillations appeared in
the resulting barrier contribution, although of
much smaller amplitude than those evidenced in
the former case. The difference of behavior seen
in elastic scattering from “°Ca and “®Ca is thus due
not only to a difference in absorption but also to
some extent to a difference in the real parts of the
effective potentials in their surface region.

The *Ca('2C,'2C) excitation function measured
at back angles'’ displays broad oscillations, a few
MeV wide. Oscillations of comparable width are
automatically generated by the optical potential ad-
justed to the forward angle data. A semiclassical

estimate of multiple reflection rules out an inter-
pretation of these structures in terms of shape reso-
nances, as absorption turns out to be too strong.
They rather can be viewed as due to the variation
with energy of the state of interference of the bar-
rier and internal wave contributions, as discussed
in the preceding subsection for the *’Ca('°0,'%0)
case.

F. 2si(1%0,'%0) 55 MeV

This is the first heavy-ion system for which
ALAS was observed experimentally.'*!> The data
have been fitted to various degrees of accuracy us-
ing several optical model potentials.'®~!° Some of
these potentials have been investigated within the
semiclassical approach be Lee.! In Fig. 13 we
present the results of our method for the potential
proposed by Terenetski and Garrett'® which fulfills
all the requirements discussed in Sec. III. As dis-
cussed in Ref. 18, the backward angle scattering is
dominated by the internal wave contribution which
exceeds the barrier one by up to two orders of
magnitude, and is entirely responsible for ALAS.
The other potentials investigated by Lee were
shown to contain essentially the same physical pic-
ture. Also it was shown in that paper'® that the
oscillatory structure of the experimental backward
angle excitation function could be understood as
the result of the interference between both com-
ponents of the scattering amplitude.

G. Borderline cases

In this final subsection, we investigate two cases
for which some of the conditions of applicability
of our method, which were enumerated in Sec. III,
are not met.

The first example we present is again that of
283i(160,1%0) scattering at 55 MeV incident energy
but we now consider the optical potential proposed
by Golin and Kahana.!® This potential satisfies all
the requirements expressed in Sec. III, except that
it has a very small imaginary diffuseness
ay =0.1844 fm. Therefore the semiclassical
description of the problem involves four active
turning points'® due to the reflection now taking
place at the sharp imaginary potential surface.
The imaginary radius (R, =6.704 fm) is somewhat
smaller than the barrier radius (Rg ~8.4 fm) mak-
ing this potential slightly surface transparent.
Comparison of our decomposition with that
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FIG. 13. Same as Fig. 3 for 2Si('°0, '%0) at 55.0
MeV [Terenetski and Garrett potential (Ref. 18)].

predicted by the three-turning point semiclassical
code’ is displayed in Fig. 14. Both methods are
seen to be in very good agreement for the internal
wave reflection coefficients and scattering cross
sections, but the barrier wave reflection coefficients
disagree badly for low angular momentum. How-
ever, the barrier wave angular distributions are in
reasonable agreement in the angular range where
they are physically important (i.e., not dominated
by the internal wave contribution). This result is
consistent with the conclusion of Lee!® that reflec-
tion at the imaginary barrier is of minor impor-
tance to the present scattering process. Returning
to the detailed derivation of our approach (Sec.
III), one sees that our calculations are expected to
give a correct internal wave contribution and pro-
vide us, in lieu of the correct barrier wave contri-
bution, with the sum of the barrier contribution
and that corresponding to reflection at the ima-
ginary surface, because the range (21) of our modi-
fication is less than the imaginary radius. On the
other hand, the three-turning point semiclassical
approach is expected to give a less precise descrip-
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FIG. 14. Same as Fig. 3 for 2Si('°0,'°0) at 55.0
MeV [Golin and Kahana potential (Ref. 19)].

tion of the physics involved since it completely
neglects the reflectivity of the imaginary potential;
this defect can only be remedied by having
recourse to a more elaborate multiturning point ap-
proach.>!° To summarize we can conclude that our
method can still give useful information about the
scattering mechanism even in the case of ima-
ginary potentials with very small diffusenesses pro-
vided the imaginary radius is not too small (which
may lead to high surface transparency, see below)
and at the expense of a reinterpretation of the bar-
rier wave contribution supplied by the method.
The second example we choose to illustrate the
pitfalls associated with the use of our method for
potentials not satisfying the criteria of Sec. III, is
that of “*Ca('%0,'%0) scattering at 50 MeV in-
cident energy. The optical potential we investigate
is that of Kubono et al.® (ST2). This interaction
has a small imaginary diffuseness (ap =0.3 fm),
but also an imaginary radius (Ry =5.94 fm) much
smaller than the barrier radius (Rz ~9 fm). These
two properties make this potential very weakly ab-
sorbing near the grazing angular momentum (cf.
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FIG. 15. Same as Fig. 3 for **Ca('°0,0) at 50.0
Mev [Kubono et al. ST2 potential (Ref. 9), effective po-
tential and reflection coefficients only].

Fig 15), i.e., it is highly surface transparent (hence
its name). In this case we can expect the oc-
currence of resonances (i.e., multiple reflection) at
high angular momentum, which we neglected com-
pletely in the derivation of our method. Comparis-
on of the reflection coefficients calculated by
means of the semiclassical code according to for-
mula (4) and its approximation (7) confirms the ex-
istence of important resonant contributions for
[>20. The internal reflection coefficients generat-
ed by both methods can be seen to disagree sys-
tematically in this domain of angular momenta
(Fig. 15). This discrepancy has a dramatic impact
on the corresponding cross sections which are in
complete disagreement at back angles (our method
predicts large spurious oscillations in the internal
wave cross section). Although a careful inspection
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of the potential parameters could have revealed its
inadequacy for the application of our decomposi-
tion method, it is a simple matter to detect the
type of spurious results discussed here. We
stressed in Sec. III that the result should not
depend critically on the parameters of the pertur-
bation used (except perhaps for the smaller of the
two components when it is much smaller than the
other). This consistency condition turns out to be
violated in the present case, as calculations repeat-
ed with different values of, e.g., W, lead to quite
different results for the internal wave cross section
(Fig. 16). This type of instability was never ob-
served for any of the cases presented in the preced-
ing subsections, nor for the first example of the
present one. For example, calculations similar to
those presented in Fig. 16, repeated for the case of
subsection D, i.e., “Ca('%0,%0) at 54.0 MeV, lead
to curves which are indistinguishable at the scale
of the figure — and in very good agreement with
WKB as was shown in Fig. 8.

V. SUMMARY AND CONCLUSIONS

In this paper we have presented a new technique
for decomposing the light- and heavy-ion elastic
scattering amplitude into its barrier and internal
wave components. Contrary to the original semi-
classical approach developed by Brink and Taki-
gawa? for that purpose, our method requires only
minimum programming as it makes use of the re-

10

=T TTTTm

T TV

S 107

s F W= 0
C W, = 10
i . W,=20

T T

10"6 L L |

LOCO (160 16 0)

50 MeV

. i
120 Ocm. (deg)

FIG. 16. Behavior of the internal wave contribution generated by our method for different values of the parameter

W, [cf.Eq. (23)] (case No. 11).
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flection coefficients generated by any standard op-
tical model code. The very good agreement ob-
served between our method.and the semiclassical
results also makes it a promising tool for investi-
gating cases which are out of reach of the semi-
classical approach, e.g., folding model, “model in-
dependent,” and numerically-supplied potentials.
The physical interest of this type of decomposi-
tion has been illustrated by applying our method to
a few selected examples — most of which were not
investigated previously from the present point of
view — ranging from a- to heavy-ion scattering.
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