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Quantum calculation of the barrier and internal wave contributions
to light- and heavy-ion elastic scattering
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We propose a new technique allowing the decomposition of the light- and heavy-ion
elastic scattering amplitude into its barrier arid internal wave components as defined by
Brink and Takigawa. The method requires only minimum programming as it makes use
of the reflection coefficients generated by any optical model code. Also, it can be applied
to a wide range of potentials including folding model and model-independent potentials.
The use and physical interest of the method are illustrated by applying it to a few
representative examples ranging from a to heavy-ion scattering.

NUCLEAR REACTIONS Calculation of barrier and internal wave
components of elastic scattering amplitude; application to light- and

heavy-ion scattering.

I. INTRODUCTION

Semiclassical methods have often played a key
role in elucidating the mechanism of light- and
heavy-ion scattering (see, e.g., Ref. 1 and references
therein). In particular, they help to disentangle the
various ingredients of the scattering amplitude in
an intuitively appealing way. Recently Brink and
Takigawa have extended the semiclassical solution
of the three turning point scattering problem to the
case of complex potentials. Their method not
only leads to a good agreement with full quantum
calculations, but also allows them to separate the
elastic scattering amplitude into two parts; the
"barrier contribution" corresponding to the wave
reflected at the barrier of the effective potential,
and the "internal contribution" originating from
the wave passing the barrier and reflected at the
most internal turning point.

Although their method provides valuable infor-
mation on the physics underlying the optical model
description of the scattering, it has up to now been
applied to a rather limited number of cases, prob-
ably because of the difficulties inherent to its pro-
gramming. Moreover, the method requires the po-
tential to be supplied as a single analytical expres-
sion, which makes it inapplicable to a wide range
of currently used interactions (e.g., folding model
and most of the so-called "model-independent" po-
tentials). This prompted us to investigate the pos-

II. DECOMPOSITION OF THE ELASTIC
SCATTERING AMPLITUDE INTO ITS BARRIER

AND INTERNAL WAVE CONTRIBUTIONS

Given an optical potential

U(r) = V(r)+i W'(r)

we define the effective potential U,~~ corresponding
to angular momentum l by

U,rr(r) = V,rf(r)+iW(r),

where

V.rr(r) = V(r)+ Vc(r)+
A' l(1+1)
2p p

(3)

sibility of gaining the same physical information
without resorting to a full semiclassical calculation.
In this spirit we have developed an algorithm re-
quiring simple modifications of any conventional
optical model code and leading to a very good
agreement with the semiclassical method.

In Sec. II we recall briefly the assumptions and
main formulas of Brink and Takigawa's model and
we present the principles of our approach. Section
III is devoted to a discussion of its practical as-

pects, while Sec. IV deals with its application to a
few illustrative examples ranging from alpha- to
heavy-ion scattering. A brief summary and our
conclusions are presented in Sec. V.
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(4)
E(E+e ")

Vz denotes the Coulomb potential, and p is the re-

duced mass of the system (here and in the follow-

ing, the angular momentum index will be con-
sistently dropped if not needed). If the real part of
the nuclear interaction is deep enough, then Vd~
displays a "pocket" (cf. Fig. l). When 8'=0 and

E, is less than the barrier height Vz there are
three real semiclassical turning points, correspond-
ing to V,~~

—E, =0; These move into the com-
plex plane when 8'+0 and/or E, p Vs. A con-
figuration of the turning points corresponding to
8'&0 is displayed schematically in Fig. 2.

Provided that the two outer turning points 1 and
2 are well separated from the inner one (i.e., that

Vlf has a well marked pocket), the reflection coef-
ficient rl can be written as

2iS) 2iS3
2iS

lV

r

SJ ——
2 E, —Ug r

I

' 1/2

In most cases absorption is strong enough to make
the imaginary part of S32 large and to allow (4) to
be approximated as

2iS3
e e+ ~2

corresponding to the internal turning point 3 can
be written as

63 —S32+S2I +BI ~ (5)

N is connected to the barrier penetrability, and the
S,J are semiclassical action integrals evaluated in
the complex plane

5I is the WKB phase shift corresponding to the

external turning point 1. The phase shift 53
qz and gI can be interpreted as corresponding to
the wave reflected at the barrier (i.e., turning point
1) and to that reflected once at the most internal
turning point 3. Approximation (7) amounts to a
complete neglect of multiple reflection between
points 2 and 3. The corresponding scattering am-
plitudes f~ and fq are defined in terms of re(l)
and rlr(l) as

fs(8) = . g (2l +1)e '[qz(l) I]—
2ik

VB

Ec.m.
~F N XP&(cos8)+f, (8),

I

RB

Re r

FIG. 1. Schematic representation of the effective po-
tential for a particular l value in the case of a deep real
potential.

FIG. 2. Location of the turning points in the com-
plex plane for a particular I value for W & 0 and

E, & Vq (schematic) (cf. Ref. 2).



25 QUANTUM CALCULATION OF THE BARRIER AND INTERNAL. . . 215

fr(8)= . Q(2l+1)e 'rlr(l)
2ik

&& Pi (cos8), (9)

in the usual notation. The total elastic scattering
amplitude f reads in approximation (7)

f(8)=fg(8)+fy(8) .

Brink and Takigawa were able within their semi-
classical approach to obtain a good agreement with
full quantum calculations. However, their method
requires the localization of the complex turning
points and the evaluation of several action integrals
in the complex plane, making its practical use
rather difficult. Also, it is restricted to analytical
potentials and thus does not allow for direct inves-

tigation of the interesting cases of folding model,
spline, and Fourier-Bessel, and in general,
numerically-supplied potentials.

We therefore tried to develop a more flexible
method, based on simple modifications of any opti-
cal model code. In order to test our method we

compared our calculations of reflection coefficients
and scattering amplitudes for several representative
examples with those generated by a WKB code
written within the frame of Brink and Takigawa's
approach.

First, we attempted to eliminate the internal
wave contribution by artifically enhancing the ab-

sorption inside the potential pocket, so that only
the barrier wave contribution survives. The inter-
nal part can be calculated thereafter by substract-

ing the barrier part from the full scattering ampli-
tude. A similar approach has been used indepen-
dently by Rowley et al. in the case of ' C+' C
scattering. Although it gives a good agreement
with WKB in most cases, sometimes it was found
to lead to serious discrepancy with the semiclassi-
cal calculation. The essential reason of the failure
seems to be that the extra absorptive potential
must be very strong to completely suppress the
internal wave, yet its contribution at the barrier
must be negligible not to affect the barrier part of
the scattered wave. This forces the use of a very

abrupt modification of the imaginary potential,
which in some cases introduces an additional turn-

ing point, i.e., causes unwanted extra reflection.
In order to avoid these difficulties we searched

for an alternative method requiring less drastic
modifications of the interaction potential and based
on a better understanding of their influence on the
scattering reflection coefficients. Brink and Taki-
gawa pointed out that the modulus of the s-wave

internal reflection coefficient for Ca(a, u) scatter-
ing at 29 MeV incident energy behave exponential-
ly as a function of absorption. In fact it can be
shown on general grounds that a complex pertur-
bation of the interaction potential

S~S+ax,
where a is a complex constant given by

' 1/2
2p

(12)

X
U,rr(r)g (r) U,'rr(r)g—'(r)

-dr .
[U,'rr(r)]

(13)

We have checked numerically on a particular ex-

ample that (12) holds with very good accuracy for
reasonable modifications of the original optical po-
tential (i.e., changes of the order of a few MeV).

If we restrict to short-ranged perturbations g (r)
affecting only the internal action integral S3z, these
will induce the following changes of the internal
reflection coefficient gi [cf. Eq. (7)]:

e 2lQK

and the barrier. wave reflection coefficient qz will

remain unaffected. Performing two modifications
of this type mill thus make it possible to separate
the barrier and internal components g~ and ql of
the total reflection coefficient g. For example, if
we perform three successive optical model calcula-
tions with the following potentials

V,p, (r),

V,p, (r)+a.og (r),

V,„,(r) vog (r), —

(15a)

(15b)

(15c)

(where V,~, is the optical potential whose proper-
ties we want to investigate), the corresponding re-
flection coefficients will read

I IB+ II ~

(0)

(+) 2l QKp=9a+Rie
( —)

—2l CX/Cp='ga+gie

(16a)

(16b)

(16c)

U,ff(r)~ U ff(r)+ ling(r),

[where a is a complex factor and g(r) some analyti-
cal complex function] causes a modification of the
action integrals (taken between turning points r;
and rj) linear to first order in a
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Eliminating the complex constant n from this sys-
tern and solving for gB and gl gives

~(+)( —) (0)'
(0)

(+) ( —) (o) ' »
+g —2g

This can be written in terms of the differences
g(+) (~(+) ~( ))

(17)

g(+)g( —) g(+ )g( —)

tB 9 + g(+)+g( —) ' ' g(+)+ g( —)

III. NUMERICAL EVALUATION OF THE
BARRIER AND INTERNAL WAVE AMPLITUDES

P =RB/2, (21)

where Rz denotes the barrier radius (cf. Fig. l) for
the grazing angular momentum. The amplitude
8'& of the perturbation should be reasonably small

so that r)1 behaves as indicated in (14). In practi-
cal calculations 8'~ was chosen as

8') -0.18'o, (22)

where 8'0 is the strength of the original imaginary
potential. It must be stressed that the results gen-

erated by the proposed method can be considered
meaningful only if they do not depend critically on
the parameters of the perturbation p and 8'~.

In Fig. 3, we present a detailed comparison of
the barrier and internal components of the reflec-

We now turn to the practical use of the ap-
proach presented in the preceding section. It
should be recalled that our method, which is based
on the semiclassical decomposition of Eq. (7),
makes sense only if the real part of the effective
potential Ud~ has a well marked pocket for all the
active partial waves (i.e., those for which

E, & Vs), as is the case in the semiclassical ap-
proach. Moreover, the absorptive part 8' of the
potential investigated must be strong enough to
guarantee the absence of shape resonances, so that
(7) is a good approximation to (4). Finally, there
should not be more than three active turning
points in the problem studied. Additional turning

~ 5points can be expected to appear for imaginary
potentials with a very small diffuseness (that is, for
a~ (0.3 fm) or in the case of nonmonotonic, rap-

idly varying real potentials.
Although the method could be worked out with

modifications of a different type, we decided to re-

strict to imaginary perturbations, i.e.,

«g(r) =+i W~ h (r), (19)

where 8'& is a real constant. The real perturbing
form factor h (r) should display two essential

features: (i) it has to decrease fast enough at large
r not to modify the barrier wave, and (ii) this de-

crease must be reasonably smooth so that it does
not cause unwanted additional reflection inside the
potential pocket. It was found that these conflict-
ing constraints can be met with the following
choice:

h(r)=exp[ (rip) ] . — (20)

Numerical tests indicated that in order to satisfy
condition (i) above the range p of the perturbation
should be chosen as
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FIG. 3. Ca(a, a) at 29.0 MeV laboratory energy (a)
real part of the effective potential for angular momenta
near the grazing; the horizontal line corresponds to the
center of mass energy; (b) barrier and internal wave con-
tributions to the scattering reflection coefficients (our
method), full lines; %KB (barrier), dots; WKB (inter-
nal), squares; (c) same as (b) for the barrier and internal
wave cross sections. The parameters of the modification
used and those of the original potential can be found in
Tables I and II.
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Kg(r) =i(+ Wl —W2}h (r), (23)

where Wi and h(r) remain as defined above and
8'2 is an extra positive constant which has to be
chosen large enough to damp out the remaining
resonant contribution. The magnitude of 8 z

must, of course, remain reasonable to avoid pro-
ducing the kind of spurious reflection we discussed

tion coefficients and scattering cross sections gen-
erated by our method and by the semiclassical
code for Ca(a, a) scattering at 29 MeV incident
energy. The potential used in these calculations is
that of Delbar et al. The parameters of the
modification and those of the investigated optical
potential can be found in Tables I and II. Exami-
nation of Fig. 3 reveals a very good agreement be-
tween both methods, particularly for the internal
wave contribution. For low angular momentum,
however, there is a systematic discrepancy for the
barrier wave reflection coefficients. Owing to the
smallness of the latter, this is seen to have only
limited impact on the corresponding cross section
(cf. Fig. 3}. We would like to point out in this
respect that such a kind of decomposition is not
intended to provide us with high accuracy results
but rather with a semiquantitative understanding
of the processes underlying the scattering. The ori-
gin of these small discrepancies is not fully under-
stood. They seem to occur mainly when the inter-
nal wave contribution is large, i.e., for weak ab-
sorption. This makes us suspect that they are due
to a very small residual resonant contribution to
which our method, being based on the calculation
of delicate differences, is expected to be particular-
ly sensitive. This interpretation is substantiated by
the success of the following variant of the method.
We replace the perturbation of Eq. (19) with

in Sec. II. In practice, it can be chosen so that the
modified internal wave reflection coefficients be-
come comparable to the barrier ones for low angu-
lar momenta. Numerical tests indicated that the
detailed choice of 8'2 is still less stringent than
that of the other parameters of the perturbation.
Used with the modification (23) the method
described at the end of Sec. II will now predict
correctly only the barrier contribution gz. The
correct internal contribution gi can be recovered
by substracting these ris from the reflection coeffi-
cients generated with the original potential without
any modification. To summarize, using modifica-
tion (23) thus requires four optical model evalua-
tions corresponding to the following potentials [cf
Eq. (15)]:

V,„,(r) i W2h —(r),
V,p, (r)+i(Wi —W2)h (r),

V,p, (r)+i( —Wi —W2}h (r),

V,pt(r) .

(24a)

(24b)

(24c)

(24d)

IV. APPLICATION OF THE METHOD
TO LIGHT- AND HEAVY-ION SCATTERING

In this section we test our method against the
semiclassical results for a few selected examples

This new prescription leads to a much better
agreement with the semiclassical approach, as can
be seen in Fig. 4, where calculations were repeated
for the same system as that studied in Fig. 3.
Prescription (24) has been used for all the examples
presented in the next section, although the simpler
prescription (15) was found to provide reasonable
results for all the investigated cases.

TABLE I. Parameters of the modifications [Eqs. (19)—{23)]used to separate the various
optical model scattering amplitudes into their barrier and internal components.

Case No. System E1,b (MeV) p (fm) 8'1 (MeV) W2 (MeV) Fig. No.

1

2
3
4
5
6
7
8

9
10
11

a+40Ca
a+40Ca
a+44ca
a+ "Zr

L +160
160+40C

12C +40C

12C+48Ca

160+28S1

160+28S1

160+40Ca

29.0
29.0
29.0
23.4
29.8
54.0
51.0
47.2
55.0
55.0
50.0

3.25
3.25
3.40
4.10
2.70
4.50
4.10
4.00
4.15
4.20
4.50

1.0
1.0
2.0
2.5
0.7
1.0
1.0
1.0
1.0
1.0
1.0

0.0
50.0
20.0
0.0

30.0
20.0
20.0
15.0
30.0
20.0
10.0

3
4
5

6
7
8

11
12
13
14
15
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TABLE II. Parameters of the investigated potentials [Eq. (25)] (refer also to Table I). Energies are expressed in

MeV, lengths in fm.

Case No. Rv Ref.

1.2
3'
4
5

6
7
8

9
10
11

188.92
162.63
230.5
187.0
111.87
60.5
58.8

160.0
75.21
50.0

4.685
5.013
5.647
2.646
7.2S
6.91
6.74
6.566
6.865
7.894

0.645
0.625
0.554
0.890
0.478
0.518
0.574
0.490
0.493
0.42

2.0
2.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

11.342
28.10
23.5
6.6
9.89
8.87

10.0
10.0
8.5
7.6

6.0
5.475
5.647
6.073
7.08
7.09
7.22
6.847
6.704
5.94

0.5
0.5
0.554
0.54
0.56
0.707
0.817
0.490
0.1844
0.30

2.0
2.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

4.446
4.589
5.647
6.300
7.25
6.91
6.74
7.223
7.892
5.94

6
6
7
8

10
12
12
18
19
9

'Some of the parameters of this potential have been refitted to experiment.

and we discuss briefly the physics involved. For
each case presented the parameters of the modifi-
cation (23) and those of the investigated potentials
are collected in Tables I and II. The optical poten-

tials we use have the form

V(r) = Vof )+exp[(r —R v)/(vvav)] I

W(r) = —WoI (+exp[(r —Rs )/(vs atv)] I

(25)

O
(D

X'

V)
10

and the Coulomb potential Vc(r) corresponds to a
uniformly charged sphere of radius Rc.

A. ' Ca(a, a) 29.0 MeV

10-

0

-10-

-20-

10

IX
O

I

10

Co (n, a)

10

10
0

29.0 MeV

'IO

I s ~ I

20

Elastic e-particle scattering from the calcium
isotopes has been thoroughly investigated because
of the large backward enhancement seen in some
experimental angular distributions (see, e.g., Ref. 6
and references quoted therein). The case of

Ca(a, a) at 29 MeV has been investigated in the
preceding section. It can be seen in Fig. 4 that
the internal wave contribution dominates at large
angles and is responsible for the anomalous large
angle scattering ("ALAS" ) observed for that sys-

tem. We performed a similar decomposition for
Ca(a, a) at the same energy (see Fig. 5). Here

the internal contribution is an order of magnitude
smaller because of the stronger absorption, making
the full scattering cross section look "normal. " A
detailed discussion of the semiclassical decomposi-
tion for these two systems can be found in Ref. 6.

10 I I I I I I I I I I I I

B. Zr(a, a) 23.4 MeV

60

FIG. 4. Same as Fig. 3 for other parameters of the
modification (see text and Table I).

This case has been selected because the excita-
tion function around 175' displays a spectacular
"dip," about 1 MeV wide, at about 23 MeV in-
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cident energy. ' Although these data (including the
dip) could be fitted using a standard Woods-Saxon
optical potential, the particular features of the
optical potential causing this dip were not under-
stood. After carrying out the decomposition into
barrier and internal components, it becomes clear
that there is an accidental destructive interference
between both components of the scattering ampli-
tude which turn out to be of comparable magni-
tude for 8=180' around this incident ener (cf.
Fi . 6. Aig. ). detailed calculation shows that they are,

energy c .

moreover, in phase opposition at the same energy.
Our analysis thus reveals the purely accidental na-
ture of the phenomenon; its occurrence is linked to
a very unlikely coincidence between the detailed
properties of the real and imaginary parts of the
potential. Before we leave this case we would like
to point to the very good agreement of the results
of our method with those of the semiclassical ap-
proach.

C. ' Q( Li, 6Li) 29.8 MeV

The results obtained with the potential of Bas-
sani et al. are presented in Fig. 7. We observe an

excellent agreement of the internal wave contribu-
tions generated by both decomposition methods.
The agreement for the barrier wave contributions is
not so good, although quite sufficient for our pur-
pose.

The scattering is seen to be already dominated

by the internal contribution at moderate angles as a
result of the large values assumed by the corre-
sponding reflection coefficients. The internal wave
contribution is felt at angles as small as 50'. Our
interpretation contrasts with that given in Ref. 8,
where it was concluded that Li behaves as a
strongly absorbed projectile at low energy. The
confusion seems to have originated from the pres-
ence of discrete ambiguities in the original optical
model analysis. In fact, the discrete ambiguities
evidenced in optical model analyses of elastic
scattering data are in no way connected to the
strong absorption properties of the interaction but
can even appear for very weakly absorbing poten-
tials, provided that the real part of the effective
potential displays a pocket. Such potentials have

)
Qp

X

O

10
Qp

X
~I

10-

l =]3

'l0

10
'l0-

-10

-20—

2

10

10
0

I I I I I I I I I I I

10
l

20

I I I0
8

r(&m)
-10

20
10 ~ I I ~ I ~ I ~ ~

'l0
l

20

44
Ca (o„c(,) 29.0 MeV Zr (o, , o, ) 23.4 Me V

10 10

CL
O

O

10 10

10
60 120 8, (deg)

10
60 120 O, (deg)

FIG. 5. Same as Fig. 3 for Ca(a, a) at 29.0 MeV. FIG. 6. Same as Fig. 3 for Zr(a, a) at 23.4 MeV.
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flection coefficients generated by any standard op-
tical model code. The very good agreement ob-
served between our method. and the semiclassical
results also makes it a promising tool for investi-

gating cases which are out of reach of the semi-
classical approach, e.g., folding model, "model in-

dependent, " and numerically-supplied potentials.
The physical interest of this type of decomposi-

tion has been illustrated by applying our method to
a few selected examples —most of which were not
investigated previously from the present point of
view —ranging from u- to heavy-ion scattering.
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