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Electromagnetic sum rules by spectral distribution methods
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The spectral distribution methods are applied to calculate non-energy-weighted and
linear-energy-weighted sum rules for electric and magnetic multipole excitations in the ds-
shell nuclei Ne, ~ Mg, Si, 3 S, and 3 Ar. We see the inadequacy of ds-shell model space
to explain the observed isoscalar quadrupole transition strengths. Isospin admixing of 1+
levels in Mg and 'Si are also confirmed. For isovector M1, a detailed study of the
Kurath sum rule is made. The strength sums for the higher order multipoles where experi-
mental data are not accurate enough are also evaluated.

NUCLEAR STRUCTURE ~ Ne, 24Mg, 28Si, 32S, 36Ar; sum rules for
E2, E4, M1, M3, M5 transitions; Brown-Kuo Hamiltonian; spectral

distribution methods used for calculation, ' Kurath sum rule extended.

I. INTRODUCTION

A statistical approach to nuclear structure calcu-
lations has been recently developed, ' in part, to
overcome a major practical limitation in the con-
ventional shell-model approach. By dispensing with
the need to know the nuclear wave functions, these
statistical methods make it possible to handle calcu-
lations in large model spaces. The theory is based
on the recognition of certain simplifying features
arising out of the many-particle nature of the model

spaces, by virtue of which, strengths and expecta-
tion values exhibit, in most cases, a smooth
behavior (with small fluctuations) over the model
space spectrum. Recently, the method was success-
fully applied to the study of beta-decay giant reso-

nances and electromagnetic sum rules. We report
here on the latter application.

A brief review of the spectral distribution method
is given in Sec. II. In Sec. III we discuss the non-
energy-weighted sum rules (NEWS R). The
NEWSR is evaluated for electric and magnetic mul-

tipole excitations from the ground state in the ds-
shell nuclei Ne, Mg, Si, S, and Ar. A gen-
erally applicable procedure for evaluating the eigen-
value bound to the NEWSR is presented and nu-
merical results obtained for the said excitations and
nuclei. Comparisons are made with experimental
data and shell-model results. By this sum-rule

analysis we are able to prove the known inadequacy
of the ds-shell model space to explain the observed
isoscalar quadrupole strengths in these nuclei. In
addition, isospin admixing of 1+ levels in Mg and

Si are confirmed. The strength sums for the
higher order multipoles, where experimental data is
not accurate enough, are also predicted.

The linear-energy-weighted sum-rules (LEWSR)
are discussed in Sec. IV. When the Hamiltonian is
one body, this has a very simple form (expressible in
terms of occupancies) and amounts to an extension
of the Kurath sum rule to other types of excitations
and to arbitrary one-body Hamiltonians. This is
then extended to a unitary sum rule which takes ac-
count of a part of the two-body contribution to
LEWSR, but can still be expressed in terms of occu-
pancies. Further, the contribution to the I.EWSR
from the two-body interaction is fully evaluated.
Comparisons are made with experimental data and
with other theories. For isovector M 1, a detailed
study is made of the Kurath sum rule in the ds shell
and the importance of the two-body contribution is
established.

II. REVIEW OF SPECTRAL
DISTRIBUTION METHODS

In a conventional nuclear shell-model calcula-
tion, one first generates the eigenvalues and eigen-
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vectors of the Hamiltonian in a many-particle
model space consisting of m particles distributed
among N single-particle states with two-body in-
teractions between the particles. Then the expecta-
tion values and strength functions of other opera-
tors of interest are calculated in the Hamiltonian
eigenstates. All properties of the nuclear system in
the chosen model space, and with the chosen in-
teraction, are tlien defined, and one expects to get
better and better results (as compared with experi-
ment) by enlarging the model space and improving
the model interaction. But, in practice, this soon
becomes impossible since, even for relatively small
values of m and N (and even if there are simplifying
symmetries), the dimensionalities of the matrices to
be constructed and diagonalized become too large to
handle even for the most sophisticated computers.

The purpose of statistical nuclear spectros-
copy' is to overcome this limitation by essentially
starting at the other end of the problem. The idea
is to look at the global properties of the Hamiltoni-
an and other operators in the model space, and at
the correlations between them. Some general pro-
perties of the system can be obtained most readily
this way. Level densities and spectra can also be
constructed from the moments. In fact, at least in
finite-dimensional model spaces, one could in prin-
ciple produce all the microscopic details by evaluat-

ing moments and covariances up to the order deter-
mined by the dimensionality of the model space.
But this, by itself, would not be of much practical
significance, if it were not for the existence of two
helpful factors that contribute towards making this
approach more successful than would be presumed
otherwise.

The first simplifying factor derives from the
recognition of the role played by a central limit
theorem (CLT) in many-particle model spaces
constructed by distributing nucleons over some fin-
ite set of single-particle states. Then, by virtue of
this CLT, in the limit of large particle number, the
smoothed eigenvalue distributions for most Hamil-
tonian operators in the model space become close to
Gaussian. This, in turn, implies closely related
characteristic asymptotic forms, for expectation
values and strengths of other operators, defined by
only a small number of traces over the model space
of operators and their products. Such operator
traces can be calculated ' by methods which do not
involve construction of any Hamiltonian eigenfunc-
tions. The fact that such traces can be obtained in
a many-particle space by "propagation" from lower
particle spaces is the second simplifying factor.

This requires one to evaluate those traces only in a
minimum defining set of spaces of low particle or
hole number. These two features make the statisti-
cal approach attractive, especially in model spaces
of large dimensionality. Moreover, by its very na-
ture, it gives results as more or less explicit func-
tions of the Hamiltonian matrix elements so that
one can easily connect the features of the Hamil-
tonian with the corresponding properties of the
strengths and expectation values.

A. Polynomial expansions

R(8",W)=
f
(8"

f
0

f
W) f'. (2.l)

The states
f
W) and

f

W') may be in different
eigensubspaces of H or the eigensubspaces may
coincide. Let d and d' be their dimensionalities. It
is also convenient to consider the eigenvalue densi-
ties I(z) and I'(z) in the initial and final subspaces.
Also define

p(z) =d 'I(z), p'(z) =(d') 'I'(z) . (2.2)

Associated with these densities are complete sets of
orthonormal polynomials P„andP„'such that

IP&(x)P„(x)p(x)dx=5&„, (2.3)

5(x —y)=p(x) QP„(x)P„(y), (2.4)

with similar relations between p' and Pz. These po-
lynomials' can be constructed explicitly in terms of
the density moments

I,=f p(z)z&dz=(H&)

(2.5)

where we use the notation that, for any operator 6,
((6)) denotes the trace over the

f
W) model

space and (6) denotes the average expectation
value. The first two polynomials are

Apart from the spectra and level densities, most
calculations in statistical nuclear spectroscopy are
based on two (usually rapidly convergent) polyno-
mial expansions; one for the expectation values and
another for strengths.

Let H be the Hamiltonian for the nuclear system
and 0 be an excitation operator which induces tran-
sitions

f
W) 8

f

W') between starting states
f
W)

and final states
f
8"). Then the microscopic tran-

sition strength is defined as



25 ELECTROMAGNETIC SUM RULES BY SPECTRAL. . . 2031

Po(z)=1, Pi(z)=(z —g'}/o, (2.6) When the density is Gaussian, i.e.,

where 8'=Mi and 0. =Mq —Mi are the centroid
and variance, respectively. The polynomial of order
v requires density moments of orders up to 2v and
is given by

Mi M2 . M

1 ( W —g')
p( W) = exp

&2no'
(2.8)

the polynomials P& are related to the Hermite poly-
nomials Hz by

[D, ,D„]'"P„(z)=
M2

M

Z Z ~ ~

M„+i

M2„

P~(W)=(p!) '~ H,q[(W —I')/o],
where

H,~( z)=2 I' Hq(z/~2) .

(2.9)

(2.7)

where D„is the determinant in Eq. (2.7) with the
last row replaced by [M„,M„+i, . . .Mq„].

When the density is of chi-squared type, the Pz are
related to the Laguerre polynomials.

In terms of the orthogonal polynomials P&(x),
one derives

R ( W', W) =(I'( W)I ( W}) '(( 0 5(H —W') 05(H —W) }}
=(dd') ' g ((OtPq(H)OP„(H))) P~(W')P„(IV) (2.10)

and similarly for the expectation value of an operator K,

K(W)=(I(W)) '((K5(H —W)&}

=g (KP„(H)) Pq(W) . (2.11)

B. Central limit theorem

The above polynomial expansions would not be
of much practical value if it were not for their rapid
convergence. This results from the fact that, as we
increase the number of particles, the model space
eigenvalue density for "almost all" Hamiltonians

goes rapidly to Gaussian (by CLT). In the case of
noninteracting particles this comes about because
the density convolutes as we add particles. Thus, if
we construct an m-particle system by adding one
particle at a time and consider the energy of the
state into which a particle is placed as a random
variable, then the total energy is the sum of random
variables and its density is given by the convolution
of m single particle energy densities. The CLT then
assures us that the convoluted density approaches
Gaussian as the number of particles increases.

The convolution argument requires the variables
to be additive and independent. These conditions
are not met for a system of interacting nucleons.

K(W)=(K} +(K(H —I )} (2.12)

The Pauli blocking effect (which can be ignored for
dilute systems, i.e., m «N) violates statistical in-
dependence, and additivity is violated if interactions
have to be considered. Despite all this, it is found
that all nuclear Hamiltonians which give reasonable
agreements with experimental data have model
space spectra ' which are close to Gaussian. This
is better understood by studying an ensemble of
Hamiltonians of two-body interactions. "' It is
found that the ensemble-averaged density is Gaus-

: sian and that for large systems (1« m «N), only
a negligible fraction of the members of the ensemble
give deviant densities. However, in actual calcula-
tions, corrections to Gaussian are often necessary
and will be incorporated.

In the CLT limit, Eqs. (2.10) and (2.11) can be
approximated by
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t

R(W', W)=(d') ' (0 0) +(0 (H —8")0) +(0 0(H —8')}
(0')' 02

W' 8" W 8'
+ (Ot(H —8")0(H —8') ) (2.13)

Equation (2.12) and, in fact, (2.11) also can be de-
rived by a linear-response theory. ' lt can also be
interpreted by a geometrical picture.

Finally, it should be noted that there are opera-
tors, like J, Q Q, and pairing, which do not have
asymptotic Gaussian spectra. '

Q Q, in fact, has an
asymptotic density which is chi-squared in five
variables, and in general, the spectrum of an opera-
tor of the multipole form T .T is chi-squared in
(2A, +1) variables, which becomes Gaussian when A,

is large enough.

C. Configuration partitioning

Partitioning the model space into subspaces is
often necessary to treat properly the exact sym-
metries conserved by a Hamiltonian. On the other
hand, partitioning by other properly chosen nonex-
act symmetries can provide, as discussed below, a
simple way to get better accuracy, especially when
dealing with huge model spaces. For that purpose
we could add high-order terms to the CLT results
[Eqs. (2.12) and (2.13}]but these terms involve more
complicated traces that rapidly become harder to
evaluate. Configuration partitioning provides an
easier solution. In this, the single-particle space is
divided into orbits, say I in number. Then

iN;=N, where N; is the number of states in
I

I (W)
E(W)=g K(W:m),

I~ W
(2.14)

E(W:m)=g (EP~ '(H)) Pq '(W) (2.15)

and

the ith orbit. Correspondingly, the m-particle space
is divided into configurations defined, as usual, by
assigning nuinbers of particles to the various
orbits —m; particles in the ith orbit —such that

,m;=m. Each configuration is then defined

by a partition m =—[m „m2„.. . , mi] and addition-
al attributes (like isospin T or angular momentum
J} if any. For a properly-chosen partitioning, the
configuration densities are to some extent localized
in the spectrum and it is natural to introduce ortho-
normal polynomials for each configuration and pro-
duce the overall result by combining the contribu-
tions of all the configurations. Each configuration
term looks after a part of the total spectrum and
when many such configurations are present, one
gets high accuracy even with low order polynomi-
als. It is thus equivalent to going to considerably
higher orders in the polynomial expansion over the
entire model space. With configuration partition-
ing, Eqs. (2.10) and (2.11) can be replaced by'

I-,(W')I- (W)
R(W', m', Wm) = g, R (W', m', Wm),

I~ W'I~ Wm, m

where

R(W', ', W, )=(d, ) 'g (0 (
' — )P„(H)OP'„'(H)}™P„' '(W')P„' '(W) .

p, v

(2.16)

(2.17)

The superscripts and suffixes m or m ' indicate that
the corresponding quantities refer to or are evaluat-
ed in the configuration space m or m ', respectively.
As the configuration traces are no harder to evalu-
ate ' than the scalar ones, better accuracy is ob-
tained in a simple way. It should also be remarked
that in the configuration traces above, there is no
restriction on the intermediate states. All the corre-

I

lations and interferences are thus properly included
and the result is formally exact.

D. Unitary geometry and trace propagation

The (~ ) states formed by distributing m fermions
over N single-particle states form an irreducible rep-
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resentation of the group U(N) of unitary transfor-
mations in the single-particle space. This symmetry
plays an important role in calculations because it
provides simple methods for the evaluation of
traces of operators. The trace operators in the m-

particle space are scalars under this U(N) group.
Operators can be decomposed according to their un-

1

itary ranks v=0, 1, . . . , , N (—where each v cor-

responds, in the language of Young shapes, to a
column structure [N —v, v], or as is more common-

ly used, to a row structure [2",1 "]). Then, a k-

body operator F(k) can be written as

k n —v
E(k)=g F"(k)=g k Fk(v), (2.18)

v=O v=O

where F"(k) is the unitary' rank-v part of E(k)
and it has been further factored into its irreducible'

part Fk(v) which is a v-body operator derived from
a k-body operator, as the subscript indicates. The
binomial factor (k "„)converts Ek(v) into a k-body
operator. Then, for a (0+ 1+ . +u)-body opera-
tor, we have

I

Q Q 7g —v

@=Ok =v
(2.19)

The v=O part gives the centroid of F. The scalar
product of two irreducible operators F" and G is
then

(FvGv')m

T r
1

m N —m N —v
(F G")"5

where

(2.20)

N
(Fvgv)v XEÃ~.

a,P
(2.21)

The defining v-particle matrix elements F ~ and

G~p are related to those of F and G by contraction
operators. (Here we have assumed F and G to have

real matrix elements. Then the Hermitian property
makes them symmetric too. ) Then, we have for the
scalar product of two operators F and G, of max-

imum particle ranks u and U, respectively,

T

m —v
(FG)-=X X X k,

v=O k =v k'=v

m —v- m N —m N —v
,k' —v. v v v

(2.22)

where (u, v) & is the minimum of the pair. Without
the v=O term, Eq. (2.22) would give the covariance
of F and G, viz. , ((F—(E))(G —(G)))

These methods can be easily extended for config-
uration traces. Related methods for more compli-
cated trace evaluation have been developed ' ' re-
cently, and are expected to be important in the com-
putation of higher-order traces.

E. Spectra and occupancies

From the smoothed eigenvalue density p( W), it is
not possible to extract the actual discrete spectra ex-

l

E i —1

d f p(W)dW=Q dj+-
j=1

(2.23)

where dj denotes the degeneracy of jth energy level
and d is the total dimensionality. In view of the
CLT, good results are obtainable, by assuming a
four moment Gram-Charlier expansion for p(W),
viz. ,

I

actly, but the following prescription (Ratcliff's pro-
cedure) gives the most probable positions of the en-

ergy levels. The energy E; of the ith level is ob-
tained by requiring that

p(W)= exp( —x'/2) Yi 3 Y41+—(x —3x)+ (x —6x +3)
2mo 6 24

(2.24)

where x =( W —W')/o and 8', O', Yi, and Y4 are the
centroid, width, skewness, and excess, respectively,
of the Hamiltonian H. When the model space is
partitioned by configurations, p( W) is taken to be a
sum of configuration densities, each configuration
density usually assumed to be a Gaussian.

The position of energy levels determined by these

I

methods are found to deviate from their exact posi-
tions by within half a local level spacing.

The occupancy n, (W) of the rth orbit can be'
calculated by putting E =n„in Eq. (2.12). Better
accuracy is obtained if the model space is parti-
tioned into these orbits, because then in Eq. (2.15)
only the p =0 term survives, and we get
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(2.25)n„(W)= I (8')
where m, denotes number of particles in the rth or-
bit corresponding to the configuration m.

The non-energy-weighted sum rule (NEWSR)
for the excitations generated by an exc]ttation opera-
tor 0 acting on a state

~
a) measures the expecta-

tion value (a
~

0 0
~

a). As pointed out by Hsu, '

it is bounded by the largest eigenvalue of the (posi-
tive definite) operator 0 0 acting in the model
space of the system. Such sum-rule results can be
of use in assessing whether a given model space and
a given interaction Hamiltonian would be adequate
to explain experimentally measured transition
strengths, the point being that the individual
strength is dominated by the sum-rule quantity
which in turn is dominated by the maximum 0~0
eigenvalue. If the experimental measurement is
larger than the maximum eigenvalue then one has
to enlarge the model space.

In small model spaces the eigenvalues can be
found by constructing and diagonalizing the 0 0
matrices; in certain other cases (as with isoscalar
E2 transitions within a single major shell) OtO is
equivalent to a Casimir operator whose eigenvalues

may be taken to be known. However, we shall
I

present a generally applicable procedure for evaluat-

ing the maximum eigenvalue using spectral distri-
bution methods.

These eigenvalue limits, being independent of the
Hamiltonian, are useful only in cases where the in-
dividual strength, or at least the total strength ori-
ginating in a given state, is large (as happens some-
times with E2 excitations). But in other cases this
limit may not be very useful. In such situations we
need to know the NEWSR (i.e., the OtO expecta-
tion value) itself, which takes account of the fact
that the strength distribution depends on the Harn-
iltonian. The spectral distribution method can be
used to do this too.

We shall present below, in Secs. IIIB and IIIC,
procedures for evaluating both the NEWSR and its
eigenvalue bound. Then in Sec. III D we apply
these methods to electromagnetic excitations in
even-even self-conjugate ds-shell nuclei. Before we
do all this, we give, in Sec. IIIA, a brief account of
the NEWSR in the spherical tensor formalism. Fi-
nally, in Sec. III E, we discuss average strengths and
units.

A. Sum rule analysj[s

Consider a nuclear transition from an initial state
(xl;p;) to a final state (yI A@I). Let gI OO be

the excitation operator. We use a direct-product
notation (of Ref. 20) here wherein I—:(J,T),
A,
—=(k, t), p:—(M, W), [I ]=—(2J+1) (2T+1), and

U(I ~I 2I'31 g.I'5I"6)=U(J'JpJ3J4.J5J6)U(T'T2T3Tg. T'T6),
where x and y denote quantum numbers other than angular momentum and isospin. M and a are the z-
components of angular momentum J and isospin T, respectively. M; and W~ would be the same for transi-
tions in a given nucleus (as with examples in the next section) but we keep the generality for the present. We
shall make use of the techniques of spherical tensors and Racah algebra.

Nuclear levels are degenerate with respect to the z-component M of angular momentum J and hence it is na-
tural to define the transition strength (also called the reduced transition probability) 8(O,xI;~yI f) by
averaging over the initial z components MI and summing over the final ones. Thus,

1

8(0',XI', yl'~)=[J, ]-' g [(y,„',[ +0"[@,„')['
M.M~ t =0

t

'=0
(3.1)

where the second equality obtained by using the Wigner-Eckart theorem involves double barred matrix ele-
ments (dbme) of 0 . Here r =O for isoscalar and r = 1 for isovector excitations. Now let

8(0",XI;~1&)=+8(O~,xl;~yI I) . (3.2)

This gives the total reduced transition probability from the level xI; in the initial nucleus to all the levels of
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angular momentum rf in the final nucleus. Further simplification can be obtained by using the spherical ten-
sor formulas

rf &{yrfllo" llx'r, &

(3.3)

=[rf]'"g ( I)—'+' 'U-(r, Xr.,X':rfS)(xr,
1
~(O'XO')'~ ~x'r, & . (3.4)

Then,

a(0',xr, rf) [J Tf—] 'Q g c . c"',
t=O t'=0

xy [rf]'"(—1)
' ' U(r, Ar, A.':rfb)(xr,

~~
(0'XO')'~~ xr, &,

(3.&)

where A, =(k, t) and A, '=(k, t'). For transitions from I;=(0,0) this expression reduces to

B(0,0~rf)=[t] '(x,O~ 0" 0 ~x,O&5ir (3.6)

where we have used the Hermiticity property

oi ( 1 )IOi (3.7)

and the relation

ok, .oi. ( 1)A[g]1/2(0 j,xok. )0 (3.8)

Then, Eq. (3.6) gives the NEWSR for transitions induced by the excitation operator 0 from the initial state
x,I;=(0,0). We shall therefore be interested in the eigenvalues and expectation values of 0 .0 . The expli-
cit construction of the excitation operators 0" for electric and magnetic multipoles is given in Appendix A
and the evaluation of 0 0 in the standard form, from 0, is given in Appendix B.

B. Eigenvalue bounds

The eigenvalue densities of 0 .0 are highly
non-Gaussian. ' The skewness and excess of these
operators are given in Table I. For example,
E2 (T =0) E2 (T =0) has a skewness of 0.96 and
excess of 0.88 in the (ds) space. By partitioning we
approximate this density by a sum of configuration
densities, each assumed to be a Gaussian. Thus, in
the (ds) ' model space, the eigenvalue density of
0 .0 is assumed to be

I~ T(x)=+I r(x}, (3.9)

oi
( )

d(m, T}
V' ~2~ ~o'(m, T)

g exp
[x —I oi(m, T)]

20 oui(m, T)

(3.10)

where g'oi(m, T) and aors (m, T) are the centroid

I

and variance of the eigenvalues of 0 0 in the
configuration space (m, T), and d(m, T) is the
dimensionality of this (m, T) space. The highest
eigenvalue Xoi of I r(x) is then evaluated by re-
quiring that

I~7'xdx=2
OA,

(3.1 1)

The validity of a configuration-Gaussian approxi-
mation to a non-Gaussian density lies in the fact
that each configuration density looks after a more
or less localized region of the spectrum, and when
the whole space is divided into many configura-
tions, these many pieces of information combine
rather well to reproduce the original density.
Crudely speaking, one could compare this pro-
cedure to the process of approximating an irregular
patch of area (in two dimensions) by a large number
of tiny regular squares.

In Fig. 1, we plot the distribution function for
E2 (T=0) E2 (T=0) in the (ds) ' =

space, along
with the configuration-Gaussian approximation to
it. The agreement is good except at the lower end
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TABLE I. Skewness and excess parameters for EA. Elan, d MA, MA, operators in (ds) spaces [for isoscalar M 1, the J
term has been left out—see Eq. (3.14)]. Owing to the hole m particle symmetry of these operators, the values for (ds)'
and (ds) are the same as those for (ds) and (ds), respectively, and hence are not tabulated.

E2
Isoscalar

M1 M3

Skewness
Isovector

M1 M3

0.993
0.957
0.950

0.835
0.846
0.839

0.760
1.37
1.47

1.27
1.31
1.31

0.647
0.568
0.488

0.520
0.664
0.694

0.130
0.241
0.232

1.09
0.908
0.873

0.438
0.386
0.326

—0.137
—0.239
—0.277

4
8

12

1.18
0.877
0.794

0.864
0.646
0.583

Isoscalar
M1

—0.604
2.35
3.01

1.55
1.72
1.73

0.824
0.255
0.078

—0.118
0.173
0.273

0.231
0.036
0.017

Isovector
M1

1.85
0.860
0.615

M3

0.071
—0.125
—0.215

—0.242
—0.079
—0.105

where the configuration-Gaussian approximation
has a tail extending to the negative side. Our in-

terest, however, is only at the upper end. In Table
II we give the largest eigenvalues calculated by this
method for EA, .EA, and Mk MA, in the ds shell. In
the (ds) ' = cases we also calculate exact values by
shell model and, for isoscalar E2, by SU(3). Good
agreement is found in all cases [except for isoscalar
M1, for which the larger discrepancy is due to the
fact that M 1 ( T =0).M 1 (T =0) being proportion-

I.O

O

z 0.8

al to S (see ahead) has only three distinct eigen-
values inthe(ds) ' =

space].

C. Expectation values

The expectation value of 0 0 can be obtained

by the polynomial expansion (2.11) or its CLT ap-
proximation (2.12) with E =0".0". In a (ds) '

model space, the first term of the expansion is
(Ox.O ) ', which is the average total strength
from a single state and gives the 0th approximation
to the NEWSR. These values are tabulated in Table
III, for electric and magnetic multipoles in the ds
shell. The second term in the expectation value ex-

pansion,

(OA, .Oil(H (If )m, T))m, T(
sr~ (I,T)

06

0.4
I—
U)

0.2

0
—l5 25 45

E2(T=O) E2 (T =Oj

takes account of the fact that the strength distribu-
tion depends on the Hamiltonian. It depends on the
0 -0 component of H and gives a contribution
which is proportional to the correlation coefficient
between 0 0 and H. These correlation coeffi-
cients are given in Table IV. The ground state (see
Table V) expectation values thus determined are
given in Tables VI and VII.

We shall get even better accuracy for the expecta-
tion values by using the configuration partitioning
technique described in Sec. II, with (m, T) configu-
rations and CI.T approximation in each configura-
tion. These are also given in Tables VI and VII.

FIG. 1. The eigenvalue distribution function for E2
(T=O)-E2 (T=O) in the (ds) ' = space. The staircase
curve is the exact distribution function obtained by a
shell-model calculation and the other curve is the
configuration-Gaussian approximation to it.

D. Examples

We consider NEWSR for electric and magnetic
multipole transitions from the ground state in
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TABLE II. Upper bounds for the NEWSR of electric and magnetic transitions from the ground state in even-even

self-conjugate nuclei. These are the largest eigenvalues of 0 .0 when the excitation 0 is isoscalar and of —,0 .0
when the excitation is isovector [see Eq. (3.6)], and were obtained by the configuration-distribution method in (ds)
spaces. Also given (in parenthesis) are the bounds from the exact largest eigenvalues, calculated via SU(3) in the E2 case
and via shell model in other cases. Units are e fm for the electric (EL) cases and p~ fm for the magnetic (ML)
cases. All values should be multiplied by the corresponding scale factors given in the last row.

m =A —16
Nucleus E2

Isoscalar
M1

Isovector
M1 M3

2ON

28S

32S

Ar

Scale
factor

62
(70)

125
(133)

160
{179)

152
(161)

92
(103)

(83)

174

241

255

160

10

35.6
(20.6)

76.1

92.3

76.1

35.6

10

20.3
(17.9)

38.0

45.6

46.0

30.1

10

4.9
(4.4)

8.3

10.8

12.2

10.6

10'

50
(43)

116

54
(50)

121

169

178

10

46.5
(47.7)

80.8

91.5

80.8

46.5

29.0
{27.1)

52.8

64.5

64.0

43.0

10

9.5
(7.7)

16.1

20.8

23.6

20.8

10'

even-even self-conjugate ds-shell nuclei. The Ham-
iltonian used is the Brown-Kuo (BK) interaction
with experimental ' 0 single-particle energies. The
ground state energies are determined by the Ratcliff
procedure' and are given in Table V. The con-
struction of the excitation operators 0 and their
scalar product 0 .0 are discussed in an appendix.
The upper bounds to NEWSR, obtained from the
highest eigenvalues of 0 .0 calculated in

(ds) = spaces using the statistical method of Sec.
III B, are given in Table II. In some cases we also
give, for comparison, the bounds obtained from the
actual largest eigenvalues. The 0th approximation
to the NE%SR are given in Table III. Given in
Tables VI and VII are the NE%SR calculated using
the CLT approximations in the scalar (m, T=0)
and also the configuration (m, T =0) spaces.

The experimental values of NE%'SR, also given

TABLE III. Zeroth approximation to the NEWSR for electric and magnetic multipole excitations from the ground
state in even-even self-conjugate ds-shell nuclei. These are the centroids of [t] ' 0" O~ in (ds) r=0 spaces, where t =0
for isoscalar and t =1 for isovector excitations. The units are e fm for the electric (EL) cases and p~ fm for the
magnetic (ML) cases. All values should be multiplied by the corresponding scale factors in the last row.

m =A —16
~Nucleus

Isoscalar
M1 M3

Isovector
M1 M3 M5

"Ne

Mg

28S

32S

3 Ag

Scale
factor

19.5

35.2

43.9

42.6

28.8

26.5

54.0

74.6

79.3

58.0

10

10.1

16.2

18.2

16.2

10.1

10

5.57

10.1

12.6

12.2

8.25

10

1.38

2.81

3.88

4.12

3.01

10'

16.7

30.1

37.7

36.7

24.7

22.7

46.3

64.0

68.0

49.7

10

14.3

22.9

25.8

22.9

14.3

11.0

19.8

24.7

24.0

16.2

10

3.37

6.90

9.53

10.1

7.4

10'
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TABLE IV. Correlation coefficients in the (ds) ' = spaces between the BK Hamiltonian and 0 0 for electric and
magnetic excitation operators 0 [for isoscalar M 1, the J term has been left out see Eq. (3.141].

m =A —16 Isoscalar
M1

Isovector
M1 M3

4
8

12
16
20

—0.523
—0.557
—0.552
—0.519
—0.431

—0.244
—0.323
—0.333
—0.308
—0.220

+ 0.012
+ 0.172
+ 0.195
+ 0.161
+ 0.010

—0.331
—0.059
+ 0.080
+ 0.216
+ 0.458

—0.378
—0.112
+ 0.134
+ 0.382
+ 0.644

+ 0.290
+ D.231
+ 0.215
+ D.219
+ 0.250

+ 0.208
+ 0.137
+ 0.116
+ 0.121

+ 0.159

+ 0.376
+ 0.512
+ 0.563
+ 0.585
+ 0.594

—0.273
—0.015
+ 0.145

+ 0.289
+ 0.471

—0.512
—0.326
—0.052
+ 0.274
+ 0.562

in Tables VI and VII, have been deduced from the
data compiled in the literature. These data are
from Refs. 23 —27 for isovector M 1 and from Ref.
28 for all others. We now turn to a more detailed
discussion.

1. Elecfric quadrupole

In the isoscalar quadrupole case, along with the
eigenvalue bound (to the NEWSR) calculated by the
configuration-distribution method, we have also
given (in Table II) the upper bounds from the exact
largest eigenvalues calculated by the SU(3) model.
These are the values given in parenthesis under the
isoscalar E2 column. They were obtained using the
expression

TABLE V. Ground state parameters for even-even
self-conjugate ds-shell nuclei. The ground state energy
was determined by the configuration-distribution method
(Ratcliff procedure) with (m, T =0) configurations. The
Hamiltonian assumed is that of Brown-Kuo with ' 0 sin-

gle particle energies.

Nucleus

Active nucleons
in ds shell

Ground state

J T

20Ne

Mg
28S'

32S

36Ar

4
8

12
16
20

—40.1

—97.0
—158.
—222.
—287.

e b [A, +p +Ap+3A, +3@ ,L(I. +1)]-—
16m

for the eigenvalues of E2 (T =0) E2 (T=0) when
the model space is restricted to a single major shell.
Here b is a scale parameter for the oscillator wave

functions; we have assumed the standard value
b =1.043' fm in all of our calculations. For a
given number of particles, the leading (A,,p) repre-
sentation defines the highest eigenvalue. For exam-
ple, in (ds) ' =

corresponding to Mg, the exact
largest eigenvalue of E2 (T=0) E2 (T=0) from
SU(3) is 133 e fm, whereas the spectral distribu-
tion method gives 125 e fm . In all cases, the latter
method is seen to give values within 10% of the ex-
act values. SU(3) and similar simple and exact
methods are not usually available, in other kinds of
model spaces and with other types of excitations,
but the configuration-distribution method is no
harder to apply to other cases.

We find that the ground state expectation values
for E2 (T=0).E2 (T =0) (see Table VI) are a large
fraction of the largest eigenvalues (see Table II), a
result of the high negative correlation (see Table IV)
of this operator with the Hamiltonian. For exam-
ple, the correlation coefficient in (ds)'2 T=o is
—0.56 and it takes the ground state expectation
value to 102 e fm from an average expectation
value of 44 e fm . The corresponding maximum
eigenvalue is 160 e fm by spectral distribution
method and 179 e fm exact.

For purposes of comparison, we quote here the
results of some exact shell-model calculations. In

Ne, Countee et al. , get (with BK Hamiltonian) a
value of 49 e fm for the isoscalar quadrupole tran-
sition strength B( E20 ~+2& ) from the ground
state to the first excited 2+ state and very small
((0.3) contributions to the higher lying 2+ states.
We get 43 e fm for the NEWSR. The experimen-
tal value of 8 (E2,0+~2& ) is 292 e fm . McGro-
ry and Wildenthal, ' using a suitably modified Kuo
interaction and a truncated basis (with no more
than four particles outside d5&2 and no more than
two in d3/2) get a value of 79 e fm for
8(E2,0+~2+1) in 24Mg and 74 e fm4 in Si. Our
values for NEWSR using the BK Hamiltonian and
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TABLE VI. NEWSR for isoscalar electric and magnetic multipole excitations from the ground state in even-even self-
conjugate ds-shell nuclei. Values calculated by the scalar theory as well as by the more accurate configuration partition-
ing method [with (m, T =0) configurations] are given. The Hamiltonian assumed is that of Brown-Kuo with 0 single-
particle energies. Experimental values are also given where available, and include the strengths to levels below —15 MeV
excitation only. The units are e fm for the electric (EL) cases and pz fm for the magnetic (ML) cases. All values
should be multiplied by the corresponding scale factors given in the last column.

Nucleus —+ "Ne Mg 32S Ar
Scale
factor

M3

M5

Scalar
Config.
Expt.

Scalar
Config.
Expt.

Scalar
Config.
Expt.

Scalar
Config.
Expt.

Scalar
Config.
Expt.

36
43

292+36

35
42

9.8
9.3

8.7
6.6

2.3
1.5

79
89

518+38

85
105

7.3
4.1

29.7+ 11.5

11.4
8.5

3.3
2.3

102
111

358+22

122
159

5.8
1.3

2.41+0.08

10.2
8.7

3.1
2.6

92
94

387+43

123
174

7.8
3.8

0.23+0.07

6.3
6.7

1.6
2.0

50
49

364+42

76
108

9.9
8.7

1.73+0.08

1.6
2.1

0.6

102

102

10
10
10 2

]02

102

1P5

1P5

TABLE VII. NEWSR for isovector electric and magnetic multipole excitations from the ground state in even-even

self-conjugate ds-shell nuclei. Values calculated by the scalar theory as well as by the configuration partitioning method
are given (except for isovector M1, where we give the 0th approximation to NEWSR—see text). The Hamiltonian as-
sumed is that of Brown-Kuo with 0 single-particle energies. Experimental values are also given where available, but in-

clude the strengths to levels below —15 MeV excitation only. The units are e fm for the electric (EL) cases and

pz fm for the magnetic (ML) cases. All values should be multiplied by the corresponding scale factors given in the
last column.

Nucleus "Ne Mg 2sSi 32S Ar
Scale
factor

Scalar
Config.
Expt.

Scalar
Config,
Expt.

9.6
6.5

18
19

18
15

38
43

22
20
0.34

55
65

22
21

1.79

58
75

15
15
2.11

41
57

1

1

1

10
10

M3

M5

0th approx.
Expt.

Scalar
Config.
Expt.

Scalar
Config.
Expt.

14
2.04

15
10

5.9
5.0

23
5.81

20
15

9.5
8.2

26
6.68

20
17

10
8.9

23
6.50

15
15

6.8
6.2

14
3.11

6.7
6.6

1.2
1.6

10
103

10
10'
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the full ds-space are 89 e fm for Mg and 111
e fm for Si. The experimental values of
8(E2,0+~2i ) are 486 e fm in Mg and 337
e fm in Si. And for S, with an MSDI interac-
tion and a truncated basis (not less than ten parti-
cles in d 5&2) Wildenthal et al. get a
8(E2,0+~2& ) value of 54 e fm . We get 94
e fm for the NEWSR and the experimental value
is 387 e fm. In Ar, Wildenthal et al. get a
8 (E2,0+~2+& } value of 73 e fm using a realistic
interaction in the full ds-shell model space. Our
value is 49 e fm for the NE%SR and the experi-
mental value is 364 e fm .

Experimental transition strengths for isoscalar
quadrupole are seen to be much larger than the
predicted NE%SR and their eigenvalue bounds.
For example, the 0+~2+ transition connecting the
two lowest states of Si is experimentally deter-
mined to have a strength of (337+15) e fm while
the upper bound for the NEWSR, calculated in
(ds}' ' =, is 179 e fm . This proves that the ds-
orbital space is inadequate. It has become cus-
tomary to account for the large experimental E2
strength by the assumption of an effective charge,
the justification being that the same effective charge
works over a region of several nuclei. A proper
treatment would, however, require enlarging the
model space to include excitations across major
shells. Such extended treatment would seem to be
out of the question by any method except our own,
and we propose to do such calculations in the fu-
ture. %e have not assumed here any effective
charges in our calculations, and the values of other
calculations quoted here have been corrected to
discount any effective charges assumed by the origi-
nal authors.

The isovector quadrupole strengths are known to
be extremely fragmented and to lie at high excita-

2. Magnetic dipok

The isoscalar magnetic dipole operator M 1

(T =0) is &3/16ir[ J+(g„+gz—1)S], but the J
term does not contribute to the transitions that we
consider. The J term is much larger in magnitude
than the S term, and if it is not excluded, the fixed-
T traces needed in the calculation are mostly deter-
mined by the diagonal contribution from the J
term. This amounts to adding nonexistent transi-
tion strength. This difficulty would not arise in
fixed-JT model spaces (except for b,J=0, J+0
transitions, in which case, the diagonal contribution
can be eliminated by adding a term P J to the exci-
tation operator so as to minimize the NEWSR
quantity with respect to P). However, in the present
case, dropping the J term essentially removes the
said difficulty, because, then the correlation coeffi-
cient between M 1 (T =0).M1 (T=0}and J drops
from very large to extremely small values. For ex-
ample, in (ds)' ' =, this correlation coefficient is
0.94 when the J term is included and 0.003 when it
is left out.

Hence, we take

M 1 (T=0)=v'3/16m(g„+g~ —1)S .

The isovector M 1 has the form

(3.12)

tion energies. The experimental values of NB%SR
quoted in Table VII include the contribution due to
the lowest 2+, T=1 states only. Thus, in Si the
experimental value of transition strength from the
ground state to the first 2+, T = 1 level at 9.38 MeV
is only 0.34 e fm, whereas the calculated value of
the NEWSR is 20 e fm and its eigenvalue bound
is 116e fm .

M 1 (T = l)=V3/16~+ [—j;r;+(g„—g~+1) s;r;] . (3.13)

Since (g„+g~—1) /(g„—g~+1) =0 008, the .iso-
vector M 1 transitions are estimated to be about 100
times stronger than their isoscalar counterparts.
We shall discuss more about this in Sec. III E.

For isoscalar M 1, it is easy to calculate the eigen-
value bounds exactly. By Eq. (3.12)

M 1 (T=0).M 1 (T=0)= — —(g„+g~—1) &
16m

(3.14)

Then the maximum value of S in the model space

I

defines the upper bound for the NEWSR. In the
examples, we consider S takes the maximum value
of w/2, where w is the number of nucleons or holes
(in the ds shell), whichever is smaller. This implies
an upper bound of

3
)2 w(w+2)

Rn+Rp—

for the NEWSR. These are tabulated below (in un-
its of 10 2 p~~, where pz is the nuclear magneton}.
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Nucleus

upper
bound
(in 10 p~ )

"Ne

20.6

24Mg

68.9

"Si

145

32S

68.9

36Ar

20.6

Thus, for Si we get an upper bound of 1.45 pz
by this method and 0.92 p~ by the spectral distri-
bution method (see Table II). The larger
discrepancy seen here is, however, expected because
S has a spectrum that is highly degenerate (taking
only three distinct eigenvalues in the Ne and Ar
cases and going up to seven in the case of Si), but
the fact that even in this case the spectral distribu-
tion method gives bounds well within a factor of 2
compared to the exact ones is very encouraging (in
many cases, a factor of 2 would be tolerable for
such upper bounds).

These eigenvalue bounds are very large compared
to the experimental values. For example, in S the
one observed M 1 (T=0) transition to the ground
state has a B(M1,0+—+I+) strength of 0.23X10
pN only. The eigenvalue bounds for the NEWSR
in this case are 76X 10 p~ by the spectral distri-
bution method and 69X10 pN exactly. It is
then necessary to look at the NEWSR itself in order
to get a better understanding. These are given in
Table VI.

In Mg, the M 1 (T=0).M1 (T =0) centroid,
i.e., the zeroth approximation to NEWSR, is
16X10 pN . As the correlation coefficient with
H is positive (+0.17), the value of NEWSR at the
ground state is even lower and we obtain
7.3X10 p~ by scalar and 4. 1X10 pN by
configuration calculations. The eigenvalue bound
is 69X 10 p& . The experimental transition
strengths are 0.8X 10 p~ to the 7.75 MeV lev-
el and 29X10 p~ to the 9.83 MeV level, thus
exceeding the calculated NEWSR value, and also
the larger zeroth approximation to it, but well
within the eigenvalue bound. The large strength
from the 9.83 MeV level suggests that there is
some isospin mixing due to the neighboring
J=1+, T= 1 level at 9.97 MeV. (The 9.83 and
9.97 MeV levels in Mg cannot both have T =1
because there is only one 1+ analog state in the
corresponding region of excitation energy in Na. )

Since the transition strength to the 9.97 MeV lev-
el is 193X10 pN, the mixing amounts to a
Coulomb matrix element of 53 keV. If the experi-
mental errors in the measurements corresponding
to the 9.83 and 9.97 MeV levels are considered,
this value could go down to 38 keV.

Isospin admixture has also been suspected in
Si. The experimental values of M 1 strengths are

0.12X 10 pz and 2.3X 10 p& to the
J=1+,T =0 levels at 8.33 and 10.73 MeV, respec-
tively. The large M 1 strength of the latter level

suggests isospin admixing due to the neighboring
J=1+,T = 1 level at 10.90 MeV which has an M 1

strength of 113X10 pN from the ground state.
This would amount to a Coulomb matrix element
of 24 keV. The calculated values of NEWSR are
18X10 p~ by zeroth approximation, 5.8X10
p~ by scalar, and 1.3X10 p~ by configuration

calculations (the correlation coefficient with H is
+0.195). This is quite compatible with isospin

admixing —even if we allow for large inaccuracies
that may arise in this case because the NEWSR
value is small and far away (towards zero) from its
value at the spectral centroid.

In S the theoretical NEWSR js 3.8X10 p~ .
Experimentally, for the one observed transition,
B(M1,0+—+1~ ) is 0.23X10 p~ . Wildenthal

et al. find, by a shell-model calculation, a
B(M1,0+~1+&) strength of 0.27X10 pz in S
using an MSDI interaction. They did not calculate
the NEWSR. The 1+ levels at 7.00 MeV (T =1)
and 7.19 MeV (T=0) are plausible candidates for
isospin admixing, but there are no experimental
measurements of transition rates corresponding to
these.

In Ar, the spin assignments are ambiguous.
The 4.95 MeV level may be J=1+ or J=2+. As-
suming J=1+, the experimental B(M1,0+~1+i)
strength is 1.73 X 10 pz compared to the calcu-
lated NEWSR value of 8.7X10 p, N . (The 2+
assignment would mean a E2 strength of 16.8
e'fm )

For isovector magnetic dipole, the 0th approxi-
mation to the NEWSR are given in Table III.
This value for Mg is 23 p~, compared to the ex-
perimental NEWSR of 5.6 pz (for two transi-
tions). The Ml (T=1).M1 (T=1) operator is
strongly and positively correlated with H with a
correlation coefficient of + 0.51 in (ds) ' = . Be-
cause of this high positive correlation, the NEWSR
at the ground state is expected to be considerably
less than the 0th approximation and hence closer
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to the experimental value. But the CI.T approxi-
mations to the ground state NE%SR gives nega-
tive values (—2.2 pz in a scalar calculation and
—14.6 pz in a configuration calculation), thus in-

dicating that in this case it is necessary to consider
the higher order terms of the polynomial expan-
sions (2.11) and (2.15). This we shall investigate in
the future.

3. Other multipoles

%e also calculate the NE%SR and their eigen-
value bounds for E4, M3, and M5 transitions,
both isoscalar and isovector. These are also given
in Tables II, III, VI, and VII. The correlation
coefficients with H are given in Table IV. E4
(T=0}E4 (T =0}has a correlation coefficient of
—0.33 with H in (ds)' ' =, and a largest eigen-
value of 2.4X10 e fm . Its ground state expecta-
tion value is 1.6X10 e fm . For isovector E4 the
correlation coefficient is small and positive [0.12 in
(ds)' ' = ]. For M3 and M5, both isoscalar and
isovector, the correlation coefficients with H are
strongly dependent on the number of active nu-

cleons, changing from negative values in the begin-

ning of the shell to positive values at the upper
end. For example, M5 (T=0).M5 (T=0) has a
correlation coefficient of —0.38 in (ds) ' = and

+ 0.64 in (ds)2o, r=o

The experimental strengths for E4, M 3, and M 5

are not known well enough for comparsion with the
calculated values. The branching ratios for them
are indicated only by an upper limit, in the experi-
mental literature; they cannot be measured accu-
rately because of competing lower order electromag-
netic transitions which are much stronger. Our cal-
culations indicate that the actual branching ratios
are expected to be several orders of magnitude
smaller than the upper limits indicated in the exper-
imental literature. For example, in Si, the y-ray
branching ratio from the 4+,T=0 level at 4.62
MeV to the ground state is &0.5% (and —100%
to the 2+ state at 1.78 MeV) and since the mean
lifetime r =59 fs the transition strength
B(E4,0+~4i ) is &47)&10 e fm. The theoreti-
cal value is only 1.6)(10 e fm for the NE%SR
and 2.4)&10 e fm for its upper bound. The cor-
responding %eisskopf unit is 454 e fm . Similar
situations are found in other nuclei and with M3
and M S transitions.

E. Average strengths and units

The %eisskopf single particle unit for the elec-
tric and magnetic multipole transitions is often

found to be too crude an estimate of the typical
transition strengths in nuclei. For example, the
Weisskopf unit for magnetic dipole transition has
the value 1.79 pz, whereas the average experimen-
tal strengths are usually weaker by one or two ord-
ers of magnitude. A more realistic estimate of the
typical magnitudes mould be given by the average
transition strength in the model space one is work-

ing in. This would also enable the shell effects to
be taken into account in such a strength unit.

The average strength can be calculated by divid-

ing the the NE%SR by the number of transitions.
Using the NEWSR given in Tables VI and VII and
taking the number of transitions to be the dimen-

sionality of the I =A, subspace of (ds), we tabu-

late, in Table VIII, the average strengths in the
five ds-shell nuclei under consideration. For com-
parison purposes, the Weisskopf units are tabulated
in Table IX. For example, in Mg the average
strength for isoscalar E2 is 0.74 e fm, whereas the
Weisskopf unit is 4.11 e fm . For a given mul-

tipole the average strength is smaller in the middle
of the shell than at either end.

The relative magnitudes of the different mul-

tipoles can also be inferred from the average
strengths. Thus, the isovector M1 is seen to be
stronger than isoscalar M 1, by a factor of 100 in

Ne, 300 in Mg, and 1000 in Si. Isoscalar E2 is
about ten times stronger than isovector E2 and iso-
scalar E4 is about five times stronger than isovector
E4, in the midshell region. On the other hand, for
M3 and MS, the isovector parts are stronger than
the isoscalar ones, by a factor of 10 for M3 and 20
for MS.

The ratio of an individual transition strength to
the average strength can be considered as a meas-
ure of collectivity for the transition. In Table X
we give these values for the strongest of the ob-
served transitions from the ground state for each
multipole. Thus, the experimental B(E2,0+~2+, )

of 486 e 2 fm4 jn 24Mg and 337 e 2 fm4 jn 28Sj
correspond to collectivities of about 6500 and
9900, respectively. Comparing different mul-

tipoles, isoscalar E2 is seen to be the most collec-
tive, isovector M1 coming next. The collectivities
of the strongest nonadmixed isoscalar and isovector

ransitions in 28Si are 190 and 550, respective-
ly.

IV. LINEAR-ENERGY-WEIGHTED SUM RULES

The linear-energy-weighted sum rules (LEWSR)
are often used in the analysis of experimental data
and theoretical models. But a generally applicable
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TABLE VIII. Average strengths for electric and magnetic transitions in the ds shell. The units are e fm for the
electric (EL) and pz fm for the magnetic (ML) cases. All values should be multiplied by the corresponding scale fac-
tor in the last row.

m =3 —16
"Nucleus

Isoscalar
M1 M3

Isovector
M1 M3

"Ne
Mg

28S'

32S

"Ar

77
7.4
3.4
7.8

88

96
8.0
4.2

13
246

30
0.53
0.061
0.49

28

15
0.65
0.23
0.51
4.7

6.3
0.22
0.079
0.19
2.5

9.9
0.75
0.35
1.1
2.3

38
2.0
0.99
3.5

110

26
1.6
0.65
1.6

26

14
0.66
0.25
0.66
9.6

15
0.46
0.16
0.35
4.7

Scale
factor

10 10-4 10 10 10 10 104

TABLE IX. Weisskopf units in e2fm2i for electric
(EL) and p~ fm for magnetic (ML) transitions. All
values should be multiplied by the corresponding scale
factors in the last row.

Nucleus E2 E4 M1 M3

method to calculate the LEWSR has been lacking.
The shell-model approach cannot be used (due to
practical limitations) in large model spaces. Other
approaches, like the classical sum rule for electric
multipoles and the Kurath sum rule for isovector
M 1, have involved crude approximations.

We shall give here a quite general theory of
LEWSR and then calculate it for electric and mag-
netic multipole transitions from the ground state in
even-even self-conjugate ds-shell nuclei. When the
Hamiltonian is one body, this has a very simple
form, expressible in terms of ground-state occupan-
cies, single-particle energies, and the double-barred
matrix elements of the excitation operator. This
amounts to an extension of the Kurath sum rule
(which is for isovector Ml and for a one-body
spin-orbit Hamiltonian) to other types of excita-
tions and to arbitrary one-body Hamiltonians. We
shall also discuss a unitary sum rule which takes
account of a part of the two-body contribution, but

can still be expressed in terms of occupancies.
Further, we shall also evaluate the contributions to
the LEWSR from the two-body interactions.
Comparisons are also made with experimental data
and with some shell-model results. For isovector
M 1, the relative importance of spin-flip and orbi-
tal contributions is examined explicitly.

The LEWSR operator is discussed in Sec. IVA
and the applications to isovector magnetic dipole,
isoscalar magnetic dipole, and electric quadrupole
excitations are given in Secs. IV B, C, and D. Other
multipoles are considered in Sec. IV E. In Sec.
IV F, the strength centroids are evaluated using the
NEWSR quantities calculated earlier in Sec. III.

A. The LEWSR operator

The linear-energy-weighted sum for the excita-
tions xI;—+I f (using the notation of Sec. III and
Ref. 20) generated by a one-body excitation operator
0 is defined by [where A, = (k, t), I = (J,T)]

TABLE X. Collectivities for the strongest observed
transition from the ground state for each nucleus and
multipole.

Ne
Mg

"Si
32S

Ar

Scale
factor

3.22
4.11
5.05
6.04
7.06

185
301
454
649
888

1.79
1.79
1.79
1.79
1.79

89.6
114
140
168
196

5.67
9.22

13.9
19.9
27.2

10

m =A —16
"Nucleus

"Ne
Mg

28S1

32S

"Ar

380
6600
9900
4200

380

160
190
46
6.1

Isoscalar
E2 M1

98
170

9.3

7.9
220
550
220

6.0

Isovector
E2 M 1
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SEw=[J] 'g g g &Pyp, l g 0"'lt)'. ',. &

y M M) t=O
(4.1)

Using the methods of
1

SEw =[2;Ty]
t=0

spherical tensors and Racah algebra, Eq. (4.1) can be rewritten as

tt p

&& g ( —1)'+'-"U(r,zr,.x':r~ ) &xr,
l
l(o'x [H,o']')"l lxr, &, (4-2)

where for any two spherical tensors T and U the commutator is defined by

[T', U ]"=—(T'X & )"—( —1)'+ -"(U X T')". (4.3)

The electric and magnetic multipole excitations are Hermitian [satisfying the condition 0 =( —1) 0 ], and
then the double barred expectation value in Eq. (4.2) can be replaced by

—,( I;ll(0'x[H, o']')"—([H,o']' xo')"llxI;),
and if in addition 1;=(0,0) we get

Spw ———,( —1) [A]'~ [t] '(x, O
l [0,[H, O~] ] l

x,O) . (4.4)

S,"w =pe, &x,o
l
n„l

x,o&, (4.5)

where (x,O
l n„

l
x,O) is the ground state occupancy

of the rth orbit, and

e.=l:t] 'gtt. b+b. ( —1)" '[r] '«bb
b

Here for any r and b, ebb is the one-body energy in
orbit b and a,b is the double barred matrix element

(rllo lib). Moreover, g„[r]e,=O.
A part of the two-body contribution to the ex-

pectation value in Eq. (4.4) can also be expressed in
terms of occupancies by making a unitary decompo-
sition of the operator [0,[H, O ] ] . Noting that
this operator is traceless in all m-particle spaces
(and hence does not have a unitary rank zero part),
we define the unitary sum by

SEw'=g e„+ g„(x,Ol n, lx, O) .
X —2

(4.7)

When there is no radial degeneracy, this is all of the

Here t =0 for isoscalar and t =1 for isovector ex-
citations. Since 0 is one-body, the operator
[0,[H, O ] ] has the same particle rank as H it-
self. If H is of mixed particle rank, the p-body part
o [0,[H, O ] ) is determined by the p-body
part of H only. Explicit construction of this double
commutator operator when H is a (1+2)-body
operator is given in Appendix C. The contribution
to SEw in Eq. (4.4) from the one-body part of H has
the simple form

I

unitary rank-one contribution. Here g„is the trace-
less induced one-body matrix element of orbit r, de-
fined (see Ref. 3) in terms of the standard two-body
matrix elements V,"b,q (see Appendix C) of
[Ox, [H, O ] ] by (since the average induced one-

body part vanishes)

k.= —,( —1)'[~]'"[t] ' [r] 'g[rl~b. b
b

(4.8)

We evaluate the ground state expectation value
and occupancies appearing in Eqs. (4.4), (4.5), and
(4.7) by the spectral distribution method using the
configuration decomposition with fixed isospin
(T=0). The Hamiltonian used is (BK) that of
Brown-Kuo with ' 0 single-particle energies.
For electric and magnetic multipole excitations in
the ds shell, the parameters e„and g, are given in
Table XI. The ground state occupancies are given
in Table XII. We also tabulate the skewness, ex-
cess, and correlation coefficients with H of the
I.EWSR operator appearing in Eq. (4.4). These are
given in Tables XIII and XIV.

B. Isavector magnetic dipole

M1 (T=1)=

The excitation operator is
1/2

3 g[—1 r +(g. S, )s ~;]. —
7T

(4.9)
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TABLE XI. One-body and induced one-body parts of the LEWSR operator —( —l) [A,]'/ [t] '[0,[H, O ] ] of Eq.

(4.4) for isoscalar (t =0), isovector (t =1), and electric and magnetic multipole excitations (0 ) in the ds shell. The
values given are for i Ne and are to be multiplied by the corresponding scale factors in the last row. For the other even-

even self-conjugate ds-shell nuclei of mass number 2, multiply these Ne values by (A/20) /' for electric multipole (EL)
and by (A /20)' " for magnetic multipole (ML).

E4 M3 E2 E4

&5/2

e3/2

ei/2

45/2

k/2
k1 /2

4.21
—10.94

9.24
6.26

—1.62
—15.54

27.5
—41.2

0.0
14.3

—21.4
0.0

6.99
—10.49

0.0
3.62

—5.43
0.0

0.546
—0.032
—1.574

1.828
—0.016
—5.446

0.0
0.0
0.0
0.0
0.0
0.0

4.21
—10.94

9.24
6.26

—1.62
—15.54

27.5
—41.2

0.0
14.3

—21.4
0.0

8.58
—12.87

0.0
4.46

—6.69
0.0

3.48
—2.97
—4.50

6.23
—1.55

—15.59

0.0
0.0
0.0
0.0
0.0
0.0

Scale
factor

10 10 10 10 10

Excitations of nuclei using the 180' electron scatter-
ing technique have been found to be very con-
venient for studying these transitions. The
strengths of these transitions are usually discussed
in terms of the Kurath sum rule.

Kurath made detailed studies of lp-shell nuclei

using the Hamiltonian

A =+A 0(i)+a+ 1; s;+g V(i,j)

(4.10)

a/EC=4 5 6 in. '—C were needed for the theoreti-
cal estimates to fit with experimental strengths.

The LE%SR for this model was then calculated

by forming the double commutator [see Eq. (4.4)]
between A of Eq. (4.10) and Ml (T=1) of Eq.
(4.9). The 4 o(i) term commutes with the M 1

(T =1) operator. The contribution from the spin-

orbit term is

SEw = a (g~ —g„—1) (0
~ g 1; s;

~
0) .

16m.

which is a harmonic oscillator shell-model with
spin-orbit coupling and two-body interactions of a
central force nature. The relative strength a/E
(where E-1 MeV is a representative integral of
the two-body interaction) of spin-orbit coupling
was varied to study the effects and determine the
best fits. A value of a /E =3 in Be and

(4.11)

Kurath found that for 4E nuclei the total calculat-
ed LE%SR was dominated by this spin-orbit con-
tribution. Moreover, his calculations agreed well
with the experimental data in p-shell nuclei. These
conclusions were then extrapolated to ds-shell nu-

clei, although no corresponding shell-model studies

TABLE XII. The ground state occupancies of even-even self-conjugate ds-shell nuclei in

the extreme single particle model and also those obtained by the configuration-distribution
method [calculated in (ds) = model spaces] using the BK Hamiltonian.

m =A —16
Extreme single
particle model

Distribution method

"Nucleus
Ne

Mg
28Si

32S

Ar

d 5/2

4
8

12
12
12

3/2

0
0
0
0
4

S 1/2

0
0
0

4

3.09
5.76
8.14

10,21
11.63

3/2

0.26
0.93
1.77
2.84
4.65

S 1/2

0.65
1.31
2.09
2.95
3.73
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TABLE XIII. Skewness and excess parameters in (ds) spaces of the LEWSR operators [see Eq. (4.4)] for isoscalar
and isovector, and electric and magnetic multipole from the ground states of even-even self-conjugate ds-shell nuclei.

m =A —16
~Nucleus E2

Isoscalar
Ml M3

Skewness
Isovector

M1 M3 MS

Ne

Mg
28Si

32S

Ar

0.380
0.223
0.201
0.266
0.461

—0.164
—0.141
—0.127
—0.094
+ 0.014

—1.06
—0.819
—0.669
—0.556
—0.356

—0.568
—0.481
—0.428
—0.3SO
—0.132

—0.763
—0.667
—0.651
—0.667
—0.763

—0.090
—0.284
—0.314
—0.266
—0.044

—0.221
—0.255
—0.243
—0.188
—0.030

—0.234
—0.063
—0.027
—0.051
—0.081

+ 0.031
—0.207
—0.219
—0.118
+ 0.193

+ 0.098
—0.143
—0.184
—0.143
+ 0.098

m =A —16
Nucleus

20N

Mg
28Si

32S

Ar

+ 0.094
—0.200
—0.192
—0.163
+ 0.038

+ 0.232
+ 0.050
—0.007
—0.068
—0.250

Isoscalar
M1

+ 1.23
+ 1.05
+ 0.755
+ 0.359
—0.360

M3

0.832
0.208
0.112
0.292
0.906

Excess

1.65
0.462
0.248
0.462
1.63

E2

+ 0.055
—0.070
—0.113
—0.107
—0.060

—0.099
—0.196
—0.249
—0.253
—0.254

Isovector
M1

—0.430
—0.084
—0.002
—0.112
—0.428

M3

—0.419
—0.106
+ 0.013

0.079
+ 0.347

—0.043
—0.029
—0.027
—0.029
—0.043

were made.
In the ds shell, the Kurath sum SEw of Eq.

(4.11) can be written as

Ew ~ (g gn 1) (2ns/2 n3/2)
Ku 3 2

32~

=4.286(2n s/2 —3&3/2 ))ME (4.12)

Here n5&2 and n3/2 are the ground state occupancies
of the orbits ds/z and d3/g respectively, and we

have used the commonly accepted value a =2.03
MeV corresponding to the splitting of d5~2 and d3/2
levels as experimentally observed in ' 0 spectra.
This is then equivalent to the contribution SEw of
Eq. (4.5) to the LE&SR from the one-body part of
the BK Hamiltonian, because the s ~~2 orbit
does not affect single-particle excitations of magnet-

ic dipole character (or, simply, (f~~M1()s&/2)=0,
unless f

=st�

/2 and [su2 I
lltf 1

I 1
i ) =0, unless

t =$1/2).
Here we make a thorough study of the LE&SR

for isovector magnetic dipole transitions from the
ground state in even-even self-conjugate ds-shell nu-

clei. First, we calculate the Kurath sum rule using
three sets of occupancies: (i) from the extreme
single-particle model (j-j coupling), (ii) from the
spectral distribution method using the BK Hamil-
tonian, and (iii) experimental occupancies '4 (ob-

tained from single-nucleon transfer reactions); the
values are given in Table XV. SE~ is very sensitive
to the occupancies. Thus, in Si, the Kurath sum
rule is 103 pN MeV in the extreme single particle
limit, but goes down to 47 p~ MeV when the
ground state occupancies obtained by the spectral
distribution method are used. This compares favor-

TABLE XIV. Correlation coefficients in (ds) ' =
spaces, between the BK Hamiltonian and the LEWSR operators

[see Eq. (4.4)] for isoscalar and isovector, electric and magnetic multipole transitions from the ground states of even-even
self-conjugate ds-shell nuclei.

m =A —16
"Nucleus E4

Isoscalar
M1 M5 E2

Isovector
M1 M3

Ne
Mg

"si
32S

"Ar

—0.585
—0.552
—0.556
—0.585
—0.663

—0.745
—0.704
—0.710
—0.745
—0.826

—0.632
—0.578
—0.587
—0.637
—0.749

—0.622
—0.663
—0.665
—0.643
—0.584

—0.546
—0.584
—0.579
—0.546
—0.4S9

—0.680
—0.707
—0.713
—0.711
—0.702

—0.872
—0.881
—0.887
—0.895
—0.909

—0.754
—0.640
—0.635
—0.691
—0.836

—0.760
—0.729
—0.708
—0.681
—0.631

—0.762
—0.742
—0.689
—0.586
—0.343
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TABLE XV. Linear-energy-weighted sum rules for isovector magnetic dipole transitions from the ground state in

some ds-shell nuclei. The values in parenthesis are from the (less accurate) scalar theory and are given for comparison

purposes. The spin-flip contribution is the value of LEWSR obtained by excluding the 1 ~ term in Eq. (4.9) for the iso-

vector M 1 operator. The units are p~ MeV.

Kurath sum rule Total LEWSR

Nucleus

Extreme
single

particle
Distribution

method
Experimental
occupancies

Unitary
sum
rule

Distribution
method Experiment'

Spin-flip
contribution

Ne

Mg

28Si

32S

Ar

34

103

103

51

23

37

51

38

49'

69

58

67
(75)

106
(126)

127
(152)

125
(148)

91
(103)

23

58'

77'

69~

33h

38
(50)

57
(80)

70
(96)

75
(96)

61
(70)

'See Ref. 39.
bSee Ref. 41.
'See Ref. 42.
dSee Ref. 23.

'See Ref. 24.
See Ref. 25.

~See Ref. 26.
"See Ref. 27.

ably with the value of 49 pN MeV obtained by us-

ing the occupancies determined experimentally by
Gove et al. from the Si(d, He) Al reaction.
However, the total LEWSR is experimentally deter-
mined (by the known isovector M 1 strengths) to be
at least 77 p~ MeV, indicating substantial contri-
butions from the two-body part of the Hamiltonian.

A part of the contribution from the two-body in-
teraction to the LEWSR is included in the unitary
sum rule Sg' [see Eq. (4.7)] which have also been
given in Table XV. The value is 59 p~ MeV for

Si and is also below the experimental value.
Thus, except in the extreme single-particle model

(which is too crude, anyway), neither the Kurath
sum rule nor its unitary extension is capable of ex-
plaining satisfactorily the experimental situation.
We therefore calculate the total LEWSR, using the
full (1+2)-body BK Hamiltonian. The calcula-
tions were made by configuration partitioning in
fixed-(m, T =0) spaces and the values are given in
Table XV. Also given, for comparison purposes,
are the values obtained by the less accurate scalar

theory. Thus, for Si, the total calculated
LEWSR is 127 pN MeV (152 by scalar calcula-
tion) compared to the experimental value of at
least 77 pN MeV. The experimental measure-
ments include transitions to a few low lying states
only, and hence are expected to be somewhat lower
than the theoretical result.

Finally, we estimate the relative importance of
spin-flip and orbital contributions to the isovector
M1 strengths. The spin-flip part is obtained by
neglecting the 1 r term in Eq. (4.9) for the M 1

( T = 1) operator. The values are tabulated in
Table XV. Indeed, we find that the spin-flip con-
tribution predominates. Thus, in Si on neglecting
the 1 r term in Eq. (4.9) we get an LEWSR value
of 70 pz MeV compared to the value 127 p~
MeV obtained with the full operator. This means,
assuming the spin-flip and orbital-flip contribu-
tions to be in phase (for otherwise, the orbital part
would have to be unreasonably large; it could also
be easily verified by a direct calculation), the spin-
flip amplitude is about 0.74 of the total amplitude.
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C. Isoscalar magnetic dipole

These transitions are generally weak because the
neutron and proton spin contributions tend to can-
cel. In this case also, the contribution SEw from
the one-body part of H to the LEWSR can be ex-
pressed in a form similar to the Kurath sum rule.
Since the J term in the isoscalar M1 operator

v 3/16n[J+(g„+g~—1)S]

commutes with H, it is only the S term that contri-
butes, and with the parameter a chosen to
represent the splitting of the single-particle levels

d5g2 and d3/2 the one-body contribution can be
written as

SEw —— a (g„+g~—1) (0
~ g 1; s;

~
0}

16m

=0.0350(2n5&z —3n3/2}p~ MeV . (4.13}

%e calculate SEw using the occupancies presented
in Table XII and give the values in Table XVI.
Also given there are the unitary sum SEw' and the
total LEWSR for isoscalar M 1.

For example, in Si, the one-body contribution
to LEWSR is 0.33 pz MeV (0 84 pz. MeV in jj-

coupling) and the unitary rank-one part of the
two-body contribution increases this to the unitary

sum SEw value of 0.48 p~ MeV. The total
LEWSR is 0.50 pz MeV. The one-body contribu-
tion is seen to dominate the total LE%SR in all

cases.
The experimental values given in Table XVI in-

clude the one or two observed transitions only and

hence are not complete. However, the following
conclusions can be made.

In Mg, the total calculated value for the total
LE%SR is 0.37 p& MeV whereas the experimen-
tal value is 2.9 p~ MeV, for which the 7.75 MeV
level contributes 0.064 p~ MeV and the 9.83 MeV
level contributes 2.83 p~ MeV. As discussed in
the NEWSR case (Sec. III), the 9.83 MeV level is

suspected to have admixtures from the T =1 level

at 9.97 MeV, thus accounting for its larger transi-
tion strength and hence larger energy-weighted

strength.
In Si, the 10.73 MeV level contributes 0.247

p~ MeV and the 8.33 MeV level contributes 0.01

p~ MeV to LEWSR, the theoretical value of total
LEWSR being 0.5 p~ MeV. This is compatible
with the isospin admixing of the 10.73 MeV

(T=0) and 10.90 MeV (T =1) levels suggested by
the NE%SR discussion.

TABLE XVI. Linear-energy-weighted sum rules for isoscalar magnetic dipole transitions
from the ground state in some ds-shell nuclei. Values given in parenthesis are from a scalar
calculation. The experimental values include the one or two observed transitions only and
hence are not complete. The units are p~ MeV. The experimental data are from Ref. 28.

~EW
(1) @v=1 Total LE%'SR

Nucleus

Extreme
single

particle

Distribution
method Distribution

method
Expt.

Ne

Mg

28Si

32S

"Ar

0.28

O.S6

0.84

0.84

0.42

0.19

0.30

0.38

0.41

0.33

0.20

0.36

0.48

0.56

0.47

0.19
(0.42)

0.37
(0.76)

0.50
(0.93)

0.53
(0.91)

0.41
(0.63)

2.9 +1 1"

0.26 +0.01"

0.011+0.003'

0.009+0.004'

'For one transition.
For two transitions.
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D. Electric quadrupole

The LEWSR for isoscalar and isovector electric
quadrupole transitions are given in Table XVII.
For the isoscalar quadrupole, the one-body contri-
bution is a significant fraction of the total
LEWSR. For example, in Si, the one-body con-
tribution SEw is 43 e fm MeV and the unitary
rank-one part of the two-body contribution in-
creases this to SEw' value of 53 e fm MeV. The
total LEWSR is 164 e fm MeV, calculated by the
configuration partitioning method in (ds)'
The scalar theory, which gives 165, is seen to be
equally good. From the shell-model calculation of
McGrory and Wildenthal ' (who used a suitably
modified Kuo interaction and a truncated basis),
the 0+~2+& isoscalar quadrupole transition contri-
butes a value 131 e fm MeV to the LEWSR. As
seen in Sec. III the experimental transition
strengths are much larger than can be explained by
any ds-shell calculation (thus proving the netxl to
enlarge the model space), and hence give large
values of LEWSR too.

For isovector quadrupole, the one-body and the
unitary rank-one parts of the LEWSR are the same
as for the isoscalar case. However, the total
LE%SR is much larger. This is because T =1 lev-

els, in general, lie at higher excitation energies

compared to T =0 levels. For Si, the total
LEWSR is 449 e fm MeV, of which 43 e fm
MeV is from the one-body part.

A commonly used linear-energy-weighted sum

rule for electric multipole (EL) transitions is the
classical quantity

2 2S" (EL Z)= —"'+ ' +"
(0~ "-'~O)

4 2m' 4m

(4.14)

where (0~ r ~0) is the ground state expecta-
tion value of r . [The result is the same for
both isoscalar and isovector electric multipole (EL)
transitions from the ground state in even-even

self-conjugate nuclei. ] This result is obtained by
assuming the two-body interaction V(i,j) in the
Hamiltonian

V; +g V(i j)
i p i&j

to be local and neglecting velocity dependent and
exchange forces. Then the only nonvanishing con-
tribution to LEWSR is from the kinetic energy
term

2m&

TABLE XVII. Linear-energy-weighted sum rules for isoscalar and isovector electric quadrupole transitions from the

ground states of some ds-shell nuclei. The values in parenthesis are those obtained by a scalar calculation. SEw, SEw',

and SEw are common to both the isoscalar and isovector transitions. The experimental and shell-model values take into

account transitions to the first few levels only. Except for Ne, the Hamiltonians used in the shell-model calculations are
different from the BK Hamiltonian we have used (see Sec. III for a brief account of the interactions and model spaces

they used). No effective charges are assumed. The units are e fm" MeV. The experimental data are from Ref. 28.

Nucleus

Extreme
single

particle

SEw
(&)

Distribution
method

SEw

Total
LE%SR

Isoscalar

Shell
model

Expt.

Isovector

Total
LE&SR

SEw

Ne

Mg

28$)

32$

Ar

38

63

120

17

30

43

54

53

48
(57)
115

(123)

(165)
174

(164)
101

(106)

72'

108b

106'

136d

477+ 60

835+ 63

756+ 82

987+126

724+ 93

152
(135)
337

(308)

(408)
430

(382)
252

(217)

2630

3560

5750

6990

'See Ref. 30.
bSee Ref. 31.
'See Ref. 32.
dSee Ref. 33.
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and it yields Eq. (4.14). In a simple liquid drop
picture, all of the LEWSR of Eq. (4.14) lies in one
collective state. For a uniform mass distribution
of radius 8, (r ) =38'j(l+3), and using the com-
monly accepted value of R =1.2A'i fm, we get,
for l. =2,

Si'w(E 2, T)= 17.82A i e fm MeV . (4.15)

These are given in the last column of Table XVII.
Experimentally, one finds that no more than 10%
of this sum rule is exhausted by a single low-lying
collective state. Theoretically, this kinetic energy
part of the sum rule is found to be much larger
than the total LEWSR calculated in the ds shell.
For example, in Mg, the total LEWSR calculated
by the spectral distribution method for isoscalar
quadrupole excitations is 115 e fm MeV com-
pared to 3560 e fm MeV obtained from Eq.
(4.15). The connection between the classical result
(4.14) and calculations in restricted model spaces
like the ds shell is not yet fully understood.

E. Other multipoles

The linear-energy-weighted sum rules for isoscal-
ar and isovector E4, M 3, and M5 transitions from
the ground state in even-even self-conjugate ds-

shell nuclei are given in Tables XVIII, XIX, and
XX.

For isoscalar E4, the one-body contribution to
LEWSR is as much as 50% of the total LEWSR.
The values of Sqw, Spw', and Sp~ in Si are
236)& 10, 298&(10, and 572& 10, respectively, in
units of e fm MeV. The classical sum rule [see
Eq. (4.14)], on the other hand, is much larger (as in
the E2 case), its value for Si being 2.92X10
e fm MeV.

For isovector E4, the one-body part and also the
unitary rank-one part of the LEWSR are a small,
but still an appreciable fraction of the total
LEWSR, the values in Mg being 153)&10,
178)&10, and 856)& 10 e fm MeV, respectively.

For both isoscalar and isovector M3, the one-

body part as well as the full unitary rank-one part
of the LEWSR is only a small part of the total
LEWSR. These three quantities, in Si, are
1.37X10, 3.53X10, and 89.2X10 JM~ fm MeV
for isoscalar M3, and 17.1X10, 26.7X10, and
216X 10 pz fm MeV for isovector M3.

The one-body as well as the unitary rank-one
.contributions vanish for both isoscalar and isovec-
tor M5. The LEWSR in Si is calculated to be
45.2X10 pz fm MeV for isoscalar M5 and

116X10 pz fm MeV for isovector M5.

TABLE XVIII. Linear-energy-weighted sum rules for isoscalar and isovector E4 transitions from the ground state for
some ds-shell nuclei. The values in parenthesis are those obtained by a scalar calculation. Sqw, Szw', and Sqw are com-
mon toboth theisoscalarandtheisovectortransitions. Theunitsaree fm MeV. Noeffectivechargesareassumed. All
values should be multiplied by the corresponding scale factors in the last row.

Nucleus

Extreme
single

particle

SEw(&)

Distribution
method

SEW Isoscalar
Total

LEWSR

Isovector
Total

LEWSR

SEw

2oN

24Mg

"si

32S

Ar

Scale
factor

110

281

517

618

362

153

236

306

10

80

178

298

10

148
(198)

370
(466)

572
(701)

666
(793)

491
(604)

10

348
(337)

856
(840)

1270
(1250)

1380
(1320)

983
(886)

10

1.06

1.84

2.92

4.36

6.21

10'
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TABLE XIX. Linear-energy-weighted sum rules for isoscalar and isovector M3 transitions from the ground state for
some ds-shell nuclei. The values in parenthesis are those obtained by a scalar calculation. The units are p~ fm MeV.
All values should be multiplied by the corresponding scale factors in the last row.

Nucleus

Extreme
single

particle

Isoscalar
SEw

(1)

Distribution
method

Sv=1
EW

Total
LEWSR

Extreme
single

particle

Isovector

SEw
(1)

Distribution
method

SEw
Total

LEWSR

"Ne

Mg

"Si

32S

36Ar

Scale
factor

2.2

4.9

8.2

0.35

0.19

10

0.65

1.2

1.4

0.49

10

0.94

2.4

3.5

3.5

1.6

10

35.4
(22.9)

74.7
{57.9)

89.2
(78.0)

68.7
(70.7)

26.9
(35.7)

10

14

31

52

33

10

13

17

19

15

10

18

27

31

24

10

82
(75)

170
(164)

216
(214)

191
{200)

94
(115)

10

Nucleus

Isoscalar
total

LEWSR

Isovector
total

LEWSR

"Ne

Mg

28S1

32S

"Ar

Scale
factor

16.5
(8.9)

36.7
{25.2)

45.2
(36.9)

34.5
(35.0)

13.0
(16.8)

10'

36.8
(28.9)

87.5
(71.5)

116
(98.3)

99.0
(88.4)

39.7
(38.3)

10'

TABLE XX. Linear-energy-weighted sum rules for
isoscalar and isovector M5 transitions from the ground
state for some ds-shell nuclei. The values in parenthesis
are those obtained by a scalar calculation. The units are

p~ fm MeV. All values should be multiplied by the
corresponding scale factors in the last row. SE~ and
SE' are not given because they vanish.

F. Strength centroids

The strength centroids are defined by the ratio
I.EWSR/NEWSR. In general, because of the na-
ture of their use, larger inaccuracies are tolerable
for sum rules than for strength centroids. Hence,
although with the present accuracy of our calcula-
tions we have been able to do meaningful com-
parison with experiment as far as sum rules are
concerned (soine other existing sum rules are much
more crude than ours), strength centroids are a dif-
ferent matter and require better accuracy. Howev-
er, for completeness, we give a brief discussion of
the strength centroids calculated with our sum
rules, but exclude the magnetic dipole case where
larger inaccuracies can be expected in the NEWSR.

When 0 0 is positively correlated with H, its
ground state expectation value is below the 0 .0
centroid (both the expectation value and the cen-
troid are positive since 0 0 is a positive definite
operator). The spectral distribution method actual-
ly estimates how many widths away from the cen-
troid does this expectation value lie, and if it is far
enough below the centroid to be a low value (as
with isoscalar M I), even a small inaccuracy in the
separation of the expectation value from the cen-
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troid could lead to a large inaccuracy in the expec-
tation value thus estimated. And in some extreme
cases (like isovector M 1) we may even get a nega-
tive value (in the CLT limit). It would then be
necessary to include the higher order terms in the
polynomial expansions. Detailed shell-model com-
parisons made by Draayer, French, and Wong in-
dicate that terms up to fourth order would be suf-
ficient to get good accuracy.

Another source of inaccuracy is that our calcula-
tions are with fixed (m, T) traces and not with
fixed (m, J,T) ones. This amounts to an averaging
over the various J values, and J being an exact
symmetry, could sometimes lead to significant
inaccuracies. But detailed studies made by Kar
(for P decay) have shown that reasonably good re-

sults should be obtainable even without fixed J
averaging. Although evaluation of fixed (m, J,T)
traces are difficult at present, the theory has been
worked out by French and Mugambi and a corn-
puter code has been written by I.ougheed and
Wong. We hope to be able to use it in the fu-
ture. A related problem is that for isoscalar exci-
tations, with fixed (m, T) spaces, the contributions

from the diagonal terms (which do not cause tran-
sitions) to the NEWSR cannot be properly elim-
inated (for isovector excitations they are automati-
cally excluded because of fixed T).

The strength centroids we calculated are given in
Table XXI. For isoscalar E2, if the assumption of
effective charges is justified, one expects to get
strength centroids in agreement with experiment
even though the individual sums are not. We find
a discrepancy of about 20%%uo between theory and
experiment [we expect even better accuracy when
fixed (m,J,T) calculations are made]. The low
values of strength centroids predict collectivity for
these transitions and this, of course, is what is seen
experimentally, with the lowest 2+, T =0 state car-
rying most of the transition strength.

V. CONCLUSION

The spectral distribution method is opposed in
spirit to the conventional shell-model approach
where the calculations are of a highly detailed na-
ture, but strong approximations about the model

TABLE XXI. Strength centroids for the different multipoles. Given for each nucleus are (a) strength centroid by
scalar theory, (b) strength centroid by configuration theory, (c) strength centroid by experiment, and (d) energy of the
lowest experimentally seen level of the corresponding multipolarity. The units are MeV.

Nucleus
Isoscalar

E4 M3
Isovector

E4 M3

"Ne

Mg

28Si

32S

"Ar

a
b
c
d

1.58
1.12

1.63

1.S6
1.29
1.61
1.37

1.62
1.48
2.11
1.78

1.77
1.84
2.55
2.23

2.14
2.05
1.99
1.97

5.63
3.52

5.49
3.52

4.12

5.7S
3.60

4.62

6.45
3.83

4.46

7.99
4.55

2.62
5.38

5.08
8.84

7.66
10.2

6.28

11.2
10.3

5.41

22.3
13.0

3.9
11.1

7.61
16.2

12.0
17.5

22.3
17.7

14.1
23.4

10.27

17.4
23.0

10.06

18.2
22.8

9.38

17.3
20.7

7.12

14.0
16.8

6.61

19.1
18.6

21.9
19.9

9.52

22.9
19.6

22.9
18.3

21.6
17.3

5.16
7.95

8.12
11.2

10.8
12.6

13.7
12.9

17.2
14.2

7.34

49
7.3

7.5
10.7

9.8
13.1

13.0
16.1
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space and the model interaction are often made for
practical reasons; instead, by disregarding some of
the details, it seeks to extend the calculations to
less restricted model spaces, at the same time keep-
ing the essential physical content intact. This is
achieved by making use of certain simplicities that
exist in many-particle model spaces.

We have seen here some applications of this
method to electromagnetic transition data in Ne,

Mg, Si, S, and Ar. The model space for
these calculations was the full ds shell. So far
there have not been any exact shell-model strength
calculations in the full ds-shell model space for

Mg Si, and S.
By calculations of the NEWSR and its upper

bound, we were able to demonstrate the inadequacy
of the ds-shell space to explain low-lying isoscalar
E2 excitations in these nuclei. We could also
predict isospin admixings of I+ levels in Mg and
in Si. Moreover, we predicted the strength sums
for the higher order multipoles where the experi-
mental data are not yet accurate enough.

We made a detailed study of the Kurath sum
rule in these ds-shell nuclei, and evaluated the
corrections to it from the two-body interaction.
This two-body contribution to LEWSR has not
been evaluated before for ds-shell nuclei. We have
also given "Kurath-type" sum rules for other mul-

tipoles. These were then extended to a unitary sum
rule, which takes into account a part of the two-

body interaction and then we evaluated the total
LE%SR also.

Among the extensions and improvements of this
work that we propose to do in the future are (1) ex-
tending the model space to allow for excitations
across major shells —this cannot be done by the con-
ventional approach —such extended calculations are
necessary to treat properly the giant isoscalar quad-
rupole strengths; (2) including in the calculation,
one or two higher order terms of the polynomial
expansions —this would enable us to calculate the
ground state expectation values with better accura-
cy, especially when 0 0 is positively correlated
with H; and (3) making the calculations with fixed
(m, J,T) traces—this would give better accuracy and
also enable us to extend our calculations to initial

I

states with nonzero angular momentum.

This work was supported in part by grants from
the Department of Energy and the National Sci-
ence Foundation.

APPENDIX A: ELECTRIC AND MAGNETIC
MULTIPOLE OPERATORS

For a nucleus consisiting of A active nucleons,
the electric multipole operator of order L is de-

fined by35

where e; is the charge on the ith nucleon (or its
"effective charge"), (r;, 8;, P;) are its spherical
coordinates, and Y is the spherical harmonic of
order L. In the isospin notation (r; =+ 1 for neu-
tron, —1 for proton), E can be broken up into
isoscalar and isovector parts such that

EL EL,T =0+EL,T =1

where
A

gL, T=O r g LYL(e y
i=1

e —e„gL, T=1 r " y LYL(e y )
i=1

where ez and e„arethe effective charges of proton
and neutron, respectively.

The double barred matrix elements (dbme) of the
one-body electric and magnetic multipole operators
are obtained as follows. Each single particle state

1

can be denoted by ~nlsjmtt, ) (where s = —, and
1

t =—, for all nucleons). It can be separated into ra-

dial, angular, and isospin parts,

~

nlsjmtt, ) =
~

nl )
~
Isj m )

~
tt, ) .

[The notation used is the standard one with n, l, s,
j, m, t, and t, representing, respectively, the radial,
orbital angular momentum, spin, total angular
momentum (j =1+s), z component of total angu-
lar momentum, isospin, and z component of iso-
spin quantum numbers. ] Then, using properties of
spherical tensors and Racah algebra one obtains

f+li 1/2 lf L li
Cooo'

1/2
(2jf +1)(2j;+1)

(ntlfsJ'ft
f (I

/ [,n;I;sj;t)= (nflf [r fn;1;)( —1)'

(2L + 1)(2lf+ 1)

16m

X '
(ez+e„)~2, for T =0 (isoscalar),
—(er —e„)v6, for T =1 (isovector) .
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Similarly, the magnetic multipole operators are defined by

M =p,++[grad;r; Y (8;P;)]. e; +g;s;l L+1
which is then divided into isoscalar and isovector parts,

A

M ' = =pz g [grad;r; Y (8;P;)] (ep+e„) + s; 1;

M ' = = —p~ g [grad;r; Y (8;P;)] (ep —e„) + s;
z. i l. I; (gp gn )

so that

ML ML, T—0+ML, T—1

Here p~ ——el/2mpc is the nuclear magneton, I; and s; are the orbital and spin angular momenta of the ith
particle, and gp and g„are the spin-gyromagnetic factors for proton and neutron, respectively (we assume
the standard values gp =5.5855 and g„=—3.8256). The dbme are then given by (see also Ref. 35),

(2jf +1)(2j;+1)(21f+1)(2L —1)
(ttflfsjft

~
~M

~
~rt;I;sj;t)=(rtflf ~r '~tt;I;)( —1) '(2L+1) Er,

where

PT —~

L+1 Qj; (j; + 1)(2j;+1)W(lf , L —lj;;jf1—;) W(jfj; L —11;Lj;)(ep+ e„)

L —(ep+e„)(g, +g. )

L —1

& Jf

j; 'v 2, for T =0 (isoscalar),

and

pz —— — Qj; (j; +1)(2j;+1)W(lf , L —1j;;j~l;)W—(jfj;L —11;Lj;)(ep —e„)L+1

gp gn—
(
') L

2 2 P

X

L —1

2 Jf

j; 'v 6, for T =1 (isovector) .

1 L

The radial matrix elements (nflf
~

r"
~
n;I; ) (k =L for EL, k =L —1 for ML) are to be evaluated in the

wave functions of a harmonic oscillator potential since they form the basis states in the shell model. The
wave functions for a harmonic oscillator potential U(r) = , Mto r a—re given by

I
nlsjmtt, ) =Rnid(r) I

lsjm ) I

where the radial part R„t(r)is

—vr2/2 IR.,(r) =N„,e- "r'm„,(vr'),
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with

1 McoV—
b

{the standard value is v=0.962 ' fm ). The eigenvalue corresponding to the above wave function is

E„~=(2n+1+—, }%co, n =0, 1,. . .

[for example, n =0 for ld, n = 1 for 2s in the (ds} shell]. We also have

(21 +2n + 1)!!(2v)+

2"n![(21+1)!&]

Using the integrals

(21 +1)!!
(21 2 1)&i

(21 +1)!!"
3/5r j2, if 1 is an integer,

f
(2v)I+3/2

if 1 is half integer,
)
j+3/2

we can readily obtain the following expression

{nflf
~

r
~

n 1' }—f R'„I (r)r R„I (r)r dr

off 5

g ( —1)"' "'
pp o 2v

k/g i ~ ~

le Jig

Pf Ps

(21f +2nf +1)!!(21;+2n;+ 1)!!

nf!n;!2 '

1/2

(if+1.+214f+2p. +k+1)!l 1, if l)+12+k is even,

(2lf+214f+1)!!(21;+2@,;+1)!! &2/n, if l)+12+@ is odd.

APPENDIX B: SCALAR PRODUCT 0~.0"
OF TENSORIAL OPERATOR 0

We use the notation of Ref. 20. Let

0=+a e
r, s

be a one-body Hermitian [0 =(—1) 0, and
hence a =(—1)" 'a ] operator of tensorial rank
A, , where

[g]—1/2(g r Xps)2,

Here A ' and B' are the creation and destruction ten-

sor operators for orbits r and s, respectively. We
use a spin-isospin direct product notation
where I =—(J T), ( —1)" =(—1) +, [I']
=(2J+ 1) X(2T+ 1), and for the Racah W coeffi-
cients, JY(I )I2I3I4.I 5I 4) =W(J]J2J3J425Js)
W(T) T2T3T4 T5TQ), etc. Then, by the methods
of spherical tensors and Racah algebra, we can
write 0 0 in the standard form

0'0'= g e~[r]'/'(A "XB')'
r,s

+ g [1 ]' 'W„",„('II"(r,s) X 'Is"( r, u })
res
t+Nr
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Here r, s, t, and u denote orbit labels and

tIt"(r,s) = —g~(A "XA')",

1, if res,
1/V 2, if r =s .

H = pe„[r]''(A "XB')
r,s

rstu:I
rgs
t&s

We then get
2

&rs = [r]

Here a, b, r, s, t, and u denote the orbit labels,

( 1)t+u —I'pi' +( 1)r+s —t —up& ]

1, ifr~,
1/W2, if r =s,

where P~« =(—1)"+" a„asuW(rtsu:A, I ). Because

of symmetry relations among prt„,a further reduction

is possible, giving finally

and a direct product spin-isospin notation is used,

with

[r]—:2(2j,+1),

APPENDIX C: EVALUATION
OF [O~, [HO ] ]

When 0 is a one-body operator and 0 is a
(1+2)-body operator, [O,[H,O ] ] is also a
(1+2)-body operator, with its one-body and two-

body parts determined solely by the one-body and

two-body parts, respectively, of H. We now ex-

press this double commutator operator in the stan-

dard form for (1+2)-body operators. The nota-
tion used is that of Ref. 20. Let

0 =pa [A] ' (A'XB )
a, b

( —1)"—= ( —1) "

etc., as in Appendix B. We also set

W =—( —1)'+' W

=—( —1)'+" W"

1).+.-t «Wr

We then get, using the methods of spherical ten-

sors and Racah algebra [see also Eqs. (3.10), (4.4),
and (A5.16) in Ref. 20]:

[O~,[H, O~] ] = g q [r]' (A "XB')
r, s

rstu:F
r&s
t&u

X(iIt (r,s) X iIt"(t, tt))',

where (assuming no radial degeneracy),

~/„=5 2/a, bag, ( —1)" + [t(,] ' [r] '(ebb —e ),
b

yr g 2g 2[XI ( 1)r+s —I'XI'
( 1)t+u —FXI' +( l )r+s —t —uXI' ]

This step is for antisymmetrization, and the X «appearing here are given by

where

T, = g a .a ( —1)"+'+1+"+ +"+
g 'g, 'W;„JW(AiI's:rQ)[Q]W(1 tAj:uQ)g

i,j,Q

T2 ga;tasj( —1) + +——[Q]g;u 'gj 'Wurf W(Kit'u:tQ)W(I re:sQ)g
ij,Q
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T3 ———pa„a,j(—1) "g„, '(,J 'W(1 siA, :rj)WJ«f(t, u),

T4 ———g aaaj.„(—1)'+'+J "gj g« 'Wt&~~ W(t uiA, :jt)f (r,s),

T5 ———ga„a;„(—1)" '+ [r] 'W",„g„f(t, u),

Ts —g——a;,a„(—1)' '+ [t] 'W,„g« f(r,s),

and

1, if r(s,
0, otherwise .
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