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Nuclear form factors in the timelike region
and photoproduction of pions in nuclei
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The requirement of gauge invariance is applied to the matrix element for pion
photoproduction near threshold for spin 1/2 —+—+1/2+—and 0—+~1+—transitions and leads
to relations between Fq(p ) and Fz( —p ), and to partially conserved axial-vector current
relations. These relations lead to theoretical predictions for cross sections consistent with
experiment within the level of approximations made. Straightforward analytic continua-
tion of the axial-vector form factor to the timelike region is also examined.

NUCLEAR REACTIONS Gauge invariance, PCAC, weak nuclear
form factors for Li(y, m+) He and ' C(y, m. +)' B.

I. INTRODUCTION

Matrix elements of the electromagnetic and
weak currents between any two single-particle
states with four-momenta p and p', respectively,
can be expressed in terms of form factors F; (t)
with t=(p' p) which co—ntain information about
the structure of the initial and final states. In
principle, form factors can be calculated if the
dynamics of the constituent particles is known. In
practice, however, form factors are usually ob-
tained from experiment, and information about the
structure is extracted from analysis of the data.

From the elastic and inelastic scattering of v,e, and p, one can obtain the form factors for
spacelike t (t & 0). In muon-capture processes, the
form factors for fixed values of t (t=—m& ) are
probed, whereas P-decay processes involve timelike
t (t & 0). In the latter case, however, ~t~ is usually
small and only the F; (t=0) are obtained. The
behavior of F; (t) for the timelike region is experi-
mentally less well known since the directly accessi-
ble timelike region is t ) (m +m') and annihila-
tion experiments such as i +f~y=-"+ + e and
i +f= =" + v, are exceedingly difficult. Although
some data exist for the nucleon case, no informa-
tion is available at present for any of the nuclear

cases.
In spite of this difficulty, in the nucleon case, in

order to obtain, e.g., F; (t=@ ), one can safely
analytically continue F;(t) from the spacelike t re-

gion to t=p . This procedure is valid because the
pole is far away from t=lJ, . (p is the pion mass. )

In the nuclear case, because of the nuclear size,
the form factors vary much more rapidly as func-
tions of t than the nucleon form factors do. The
apparent pole lies roughly at t R =p 2
This makes the corresponding analytic continua-
tion from t= —p to t=p very uncertain.

In this paper we attempt to find. the behavior of
the nuclear form factors in the small t timelike re-
gion (i.e., t=p ). Our investigation is based on the
observation that pion photoproduction in nuclei
near threshold is described, when calculated using
the elementary particle treatment in th first Born

approximation, by nuclear form factors evaluated
both at t= —p and p . The gauge invariance of
the transition amplitude then yields a relationship
between Fz (t=p ) and Fz (t= —p ). This predic-
tion is used to calculate the cross sections for
y+ Lj~6He+ ~+ and y+ 2("~ B+~+ near
threshold. The results are compared with calcula-
tions in which Fz (t=p ) is obtained from Fz
(t= —p ) by a straightforward analytic continua-
tion.
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II.

~
~

~
TRANSITIONS

The partially conserved axial vector current rela-
tion of Gell-Mann and Levy in the first order in
the electromagnetic interaction is, in standard nota-
tion,

(dq+ie&q)Aq +'(x-) =f p P'„+ '(x-) .

With use of (Cl +p )p'+-'(x) =j'+-'(x), one finds

qp(f—~Ap+'(0) ~i,y)'],
(2)

where the prime on the last term denotes the remo-

val of the pion pole. In the limit of q —+0, only the
first term (with q =0) survives, which is the
Kroll-Ruderman theorem. Instead of taking the
limit q~0, one can actually calculate the right-
hand side of Eq. (2) in the Born approximation.
The first term is described by form factors evaluat-
ed at t= (p' p) =—one—ar the threshold for pion
production. On the other hand, the second term,
when calculated in the first order Born approxima-
tion with the standard three diagrams, ' contains
form factors evaluated at t=0 and p owing to the
fact that y and m+ are on the mass shell.

First we consider the case of y +p ~n + m+

near threshold. The calculation of Eq. (2) is
straightforward. Gauge invariance is then im-

posed on the final amplitude. This requirement
leads to the following relation:

ieu(p') y q[F&( —p ) —Fq(p )]+(m +mp)F&( —p ) —
2 Fp( —p ) —,f g „p( —p )—y5u(p)=0,

p
(3)

where Fz(+iJ, ) and Fp(+p ) are the nucleon axial-vector and pseudoscalar form factors, respectively, and q
and k are the momenta of the pion and the photon, respectively. In order to eliminate the kinematical fac-
tors we multiply Eq. (3) by upp)y&ysu(p') from the right and sum over all the spins. After some straightfor-
ward algebra, we obtain

[FN P } +a(iJ )](P—qPp P 'Pqp+P qPp mnmpqp)

+[(m„+mp)F„"(—p ) — z Fp( p') ,f g—„p( —p'—)](m„p„—mpp„')=0.—
p

(4)

Since p„,p„', and q„are independent, their coeffi-
cients must vanish. This leads to the following
two independent relations:

~~(I ') =F~( v'»—
(mn+mp)FA( p )+pFp"( —p ),

1 2,f.g:,( I } .-—
(5a)

(5b)

That is, if the above relations are satisfied, then the
final amplitude calculated in the first order Born
approximation is automatically gauge invariant.
The second relation is nothing but the PCAC rela-
tion obtained by taking t= —p in the matrix ele-

ment of Eq. (1), in the absence of the electromag-
netic interaction, between the neutron and proton
states,

(m„~mp )F„"(t) Fp(t)=-—p'f g:,(t}
p p —t

Equation (Sa) is not exactly true, since we have,
experimentally,

Fq (0)
Fq(t) = mz-1 GeV .

(1 tlmg )—
However, our results are expected to be valid in the
first order of the Born approximation (up to the
order of p, /mp). Clearly, up to this order, Eq. (7)
implies Eq. (Sa). Thus, the gauge condition Eq.
(5a) is consistent with Eq. (7), which is expected to
hold in the region t (JM .

The above formulas and discussions may, in

fact, be applied to any nuclear transitions of the]+ ]+
type —, ~—, . However, the only example where

sufficient data are available is the transition
He~ H. In this case, as was true in the nucleon

case, the condition for gauge invariance [Eq. (5a)]
is essentially satisfied to the order JM/m& because of
the relatively large size of the mass Mq ——Sp .
Thus, no new information is obtained from this
case.

The situation for the transition 0+-~1-+is more
interesting. The transitions Li(1+}—+ He(0+} and
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' C(0+)~' B(1+) are examples for which the data
necessary for our discussion are available.

III. 0+—~1+ TRANSITIONS

In the following, we discuss, for definiteness, the
transition ' C(0+)~' B(1+). [The result for

Li(1+)~6He(0+) is trivially obtained from that
for the 'zC case.] The form factors that appear in
the transition y(k, e) + "C(p)~' B(p', g) + ~+(q),
where k, p, p', and q are the four-momenta, and e
and g are the polarization four vectors, respective-
ly, are defined by

("C(p') ~j„' (0)
~

"C(p))=F(t)(p'+p)„, F(0)=6,

( "B(p')
~j„' '(0)

~

"B(p))
= —(p'+p)„[ g' gF, (r)+(g'-J )(gp ')F, (t) F,(r)(—gg.J +g„g p) ],

F((0)=5, F2(0)=, F3(0)=5(1+«),5v

2@i

I ~

("B(p') ~&p+'(0)
~

"C(p)) =~' (pe(t)+(p' p)p, —+p(&)
p

("B(p')
~j '+'(0)

~

"C(p) ) = g'. (p' p—)g;f(t—)

where p =5(1 + «) and Q=5(r —«')/m are, respectively, the total magnetic dipole and electric quadrupole
moments of ' B and m is the nuclear mass. Noting that t=(p' p) =p n—ear threshold production and cal-
culating the second term in Eq. (2) in the standard first Born approximation, we obtain

F 2

(' B
~j '+'(0)

~

' C,y) = —e g' eF& ( —p ) —g' (k —q)e q
p

I ~ &2 2 2+e, F„(p, ) g' qF, (0)+—g' k
z [F&(0)——,F3(0)]p'-k 2m

F, (0)+g'.k q.k+~ q p F&(0) ~

Pl P?l

8
F„(p )F3(0) g'.eq.k+g'. k—e.q+p'. k g'.e

2p'k 2m

+~
k k qFA(P )F( )+ kf g f( P )~ q(k' 'k k' q) . —

p k 2q-k

We remark that the form factors F; and Ez have arguments zero and p, respectively, because of the fact
that y and m.+ are on the mass shell.

We now impose the gauge invariance condition on the amplitude. We obtain the following two relations
which are the coefficients of the (g' q) and (g' k) terms, respectively, set equal to zero:

F„(p ) Fp( p) —,f g—,/( ——p ) =—0, (10a)

VA( P) FP( —P) —2f~g~lf( —P—)I —FA(P )—[F3(0)—F) (0)]=0 . (lob)

In deriving Eq. (10), we have neglected the terms
of order (p/m) .

The PCAC relation in the absence of the elec-
tromagnetic interaction obtained from Eqs. (1) and

(8) is
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—e Ag'e+g' ke q +g' kep'B, , C

p foal P

where A, B, C are to be determined. Equation
(10b), thus modified, yields the relation

(12)

The quantity in the first set of square brackets in

Eq. (10b) is identical with Eq. (11) at threshold,
i.e., t= —p, and thus, Eq. (10b) is consistent with
PCAC only if terms of the order (p/m) are
neglected. This is in contrast to the spin —, case,
where at threshold Eq. (5b) was consistent with the
PCAC condition to this order.

In order to recover gauge invariance of the am-

plitude to the order (p/m) while not affecting Eq.
(10a), we add to the amplitude terms of the type

F~(p') =&~( —p') . (15)

Near the threshold, the g' e terms in Eq. (9)
dominate in the differential cross section, and are
given by

( z81 (+i(0)1 C )

Fi(0)F~(p )

With the additional terms described by Eqs.
(12)—(14) near threshold, we satisfy PCAC and
obtain the same gauge conditions for the 0+—~1—+

transitions as for the spin —, case, i.e., to the order

(p/m) and to this order:

A+8+C=Fq(p ) [F3(0)—Fi(0)] (13)

A =Fq(p ) [F3(0)—FI (0)],
18=——22

1C= —3 .2

(14)

under the assumption of PCAC [Eq. (11)].
Although the addition of these terms appear to

be somewhat arbitrary, the standard three Born
terms used here, not representing a true lowest ord-
er perturbation expansion, are not necessarily gauge
invariant to the order (p/m), and other Born terms
must also be considered. Since the single nuclear
excited state (without pions and others) make the
dominant contribution at the energies involved

here, we consider only this possibility. The inter-
mediate states themselves can be of spin one or
spin zero. However, because we wish to correct
Eq. (10b) without affecting Eq. (10a), which allows

us to recover PCAC as well as the gauge condition
in the spin —, case, we want only those terms

which on application of the gauge condition will be
proportional to g k, but contain no g q term.
These contributions will all come from the Born
diagram in which the photon is coupled to the spin
one states.

From the ' B-photon vertex we see that the ratio
of A, B, and C must be —2, 1, and —1, respective-

ly. This, with Eq. (13), yields the result

a
4m'

where p(Z,
1 q 1

) is the final Coulomb correction
factor. From Eqs. (16) and (17) we find

a 1 1 8

4~ g„„(2n) 16(m +p) f~

X Fg( —p')— FI (0)Fg (p')
2

So far our discussion has been based on the cal-
culation of the amplitude in the first Born approxi-
mation with no reference to Low's theorem. Sup-

pose we keep in Eq. (9), in accordance with Low's

theorem, only the terms of order k ' and k in the
Born approximation of the second term in Eq. (2).
Then it can be seen that the resulting amplitude
with the gauge invariance requirement gives rise to
the constraints identical to those of the spin —,

case. The slope of the cross section in this case is
given by

(16)

The slope of the center-of-mass-system differential
cross section is defined by

q 1 1 e

4'ir, h„, (2n. ) 16(m +p) f
'2

Fw( p) F3(0)F—g(p —)
2fP1

(19)
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Fz(0)=1.03, mq ——2.74 p

Using Eqs. (15},(18), (19},and (21}we obtain

(21)

theor

=1.6 pb/sr, (22)

which may be compared with an experimental
value of

=1.31 pb/sr . (23)
expt

The matrix elements for the Li~ He system are
identical to those for the ' C~' B system so that it
is only necessary to replace Fz ( —p ) and F&(0) by
the appropriate value'

Fq(0) =2.26, mq ——2. 12 IM

These values lead to a result

(24)

4m
=1.6 pb/sr (25)

versus an experimental value" of

=1.12 pb/sr . (26)

Next, instead of using the relation (15), we cal-
culate F~(p ) directly from Eq. (20) by analytically
continuing to the timelike value t=p . The results
are

F„(p,~) 4.62, for ' C

F„( &2) 7.76, for Li

which yield, with use of Eq. (18) or (19),

(27)

0.90 pb/sr, for ' C

0.S1 pb/sr, for Li . (28}

We therefore see that the experimental values lie
exactly in the middle of the two predictions. This
implies that since the correction term in Eq. (18)

Although the second terms in Eqs. (18) and (19)
are different in nature, the two approaches lead to
the same numerical result, since [F3(0)/2F~(0)]
= —,(1+a.)-1 for both Li and ' B.

Employing the standard dipole fit we may write

Fg (0)
F„(t)= for t(0

(1 t/m—g )

where experiments give

or (19) is negative, the prediction of Fq (p ) based
on the gauge invariance is an underestimate,
whereas the value obtained from a straightforward
analytic continuation is an overestimate of the true
va ue 0 FA(itL

IV. SUMMARY AND CONCLUSIONS

In deriving the above results we have made a
number of assumptions. We have treated the
Gell-Mann-Levy version of PCAC as exact. Elec-
tric quadrupole contributions to the pion photopro-
duction amplitude are ignored. This was done for
consistency because these contributions are all of
order (p/m) or higher. We have also ignored the
pseudotensor term in the axial-vector current ma-

trix element. From experience' with muon-

capture and neutrino reaction calculations, we esti-
mate that its contribution to the pion photoproduc-
tion amplitude should be no more than S% to
—10% of' the axial-v'ector form factor contribu-
tions to the Born terms. Finally, we have ignored
pion distortion effects.

Within these assumptions we have found that
the imposition of gauge invariance on the ampli-
tude for threshold pion photoproduction consisting
of the catastrophic term (Kroll-Ruderman term)
and the standard three Born diagrams leads, for
the spin —, case, to two requirements. First, it im-

plies that Fq(p }=Eq(—p ), and second, that the
PCAC relation is satisfied at t= —p . The former
requirement for the nucleon and light nuclei cases
is trivially satisfied by the axial-vector form factor
which may be analytically continued from the phy-
sical region to t=p . This is due to the large value
for Mz, which reflects the fact that the pole in
Fz(t) is far from t=p .

On the other hand, the same is not true for the
transition 0-+~1+—. In this case, one of the gauge
invariance constraints is inconsistent with the
PCAC relation. Since we expect the PCAC rela-
tion to hold at t= —p, it is necessary to modify
the amplitude in such a way that the PCAC rela-
tion is recovered. The modification means that we
have to go beyond the standard Born diagrams.
With some reasonable assumptions this modifica-
-tion can be made unambiguously. The modified
amplitude is then gauge invariant up to the order
of (p/m) and the situation becomes identical to
that of the transition —, ~—, . However, if' Low s

theorem is applied to the amplitude by ignoring



25 NUCLEAR FORM FACTORS IN THE TIMELIKE REGION AND. . .

the terms linear in k in the Born approximation,
PCAC is automatically satisfied and Fz(p, )

=Fq( —p ) follows.
We have found that in both the —, ~—, and

0+-~1+—transitions, the gauge invariance require-
ment implies the relation Fz(p ) =Fz( —p ). This
may serve as a prescription for obtaining the form
factor at the timelike region of t from its spacelike
behavior. Using the two examples y+ ' C~' B
+++ and y+ 'Li 'He+ ~+, we have demon-
strated that this prescription yields results not in-
consistent with experiment up to the level expected
in the approximation used here. However, the
predictions are consistently larger than the experi-
mental values implying, as noted already, that the
reflection Fz(p ) =Fq( —p ) seems to underesti-
mate the value of Fq (p ).

On the other hand, a straightforward analytic
continuation of the Fz (t) to t=IJ, gives overes-
timated values of Fz(p ) This .is not unexpected,
because the presence of the anomalous mass thres-
hold associated with the nucleon breakup as well as
the nuclear size make the pole in Fz (t) closer to
the physical region (r (0) than in the nucleon and
light nuclei cases. Furthermore, since near thres-

hold the final state interaction between the outgo-
ing pion and the final nucleus, which we have
neglected so far, has a tendency to decrease' the
theoretical predictions of (a /4~), the analytic con-
tinuation is actually less favorable than the com-
parison between theory [Eq. (28)] and experiment
[Eqs. (23) and (26)] indicates. In view of this
correction, it seems that the relation Fq (p )

=Fz ( —p ) is not too unreasonable after all.
Finally, we note that we obtain, from our

analysis, no information about g,f(p ) in contrast
to the previous analysis. However, for the physi-
cally attainable region for Fq(t) [but not for
g f(t)] we'obtain the result F~ (t)=f g~r(t), where
—p &t &0.

Finally, we remark that for the 0—++-+1+—transi-
tions considered here, Fz (0) is substantially larger
than Fz( —p ) and cannot be substitued for it, un-

like the case for the nucleon and light nucleus.
This accounts for most of the disagreement in Ref.
5 between the theoretical value and the experimen-
tal value for (a/4m).
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