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Inelastic electron scattering from the low-lying even-parity states of "0 has been per-
formed. The measurements span a range in momentum transfer from 0.6 to 2.7 fm
Form factors have been determined for the two lowest 0+ excitations, the three lowest 2+
excitations, and the three lowest 4+ excitations. Transition densities for the 2+ and 4+ ex-
citations have been obtained from a Fourier-Bessel analysis of these data. Comparisons
were made with the predictions of various theoretical calculations and the agreement was
found generally to be poor. A coexistence model was used to decompose the measured
form factors into their single-particle and collective components, which in turn were com-
pared with their counterparts in ' 0 and ' 0. The results indicate that this model provides
a useful framework within which to understand the structure of the oxygen isotopes. Tran-
sition densities also were obtained within the context of this model.

NUCLEAR REACTIQNS "G(e,e') low-lying even-parity excited

states; measured form factors at 90' and 160', 0.6&q &2.7 frn '; com-

parison to shell and coexistence models; transition densities extracted.

I. INTRODUCTION

The structure of the low-lying, even-parity states
in the oxygen isotopes has long been a problem in
nuclear physics. In the simple shell model of ' 0,
even-parity excitations require the promotion of
either one particle from the Op shell to the lpOf
shell or two particles from the Op shell to the 1s Od

shell. The energy involved is of the order to 2fico or
about 30 MeV, in sharp contrast to the actual exci-
tation energies of the lowest 0+ (6.05 MeV) and 2+
(6.92 MeV) states in ' O. In the simple shell model

of ' 0, two neutrons in the 1sOd shell are bound to
an inert ' 0 core. By rearranging the valence neu-

trons within this shell and coupling them to dif-
ferent angular moments J, one can construct ten

states with even values of J; three 0+ states, five 2+
states, and two 4+ states. Many shell-model calcu-
lations have been performed using this basis. '

This picture clearly is too simple. The electromag-
netic transitions between low-lying states are greatly
enhanced over what would be expected for neutron
transitions. This suggests that the ' 6 core is play-

ing a large role in these excitations.

Brown provided the basis for much of the subse-

quent theoretical work when he suggested that ad-
mixtures of states of permanent deformation coexist
with the standard shell-model states in the low-

lying levels of these isotopes. The structure of these
deformed states remains an open question, although
several descriptions have been attempted. ' An
alternative approach to the problem is simply to ex-

pand the shell-model basis by including the Op&&2

shell; in the case of ' 0, by allowing four-particle,
two-hole (4p2h) contributions to mix with the stan-
dard 2p0h configurations. ' ' The energy level

spectra calculated in several of these references are
shown in Fig. 1.

Much information about the structure of ' 0 ex-
ists in addition to the transition rates mentioned
above; a complete compilation can be found in Ref.
15. Two previous inelastic electron-scattering ex-
periments on ' 0 are described in the literature. ' '
Neither of these experiments was precise enough or
complete enough to yield detailed information
about the wave functions involved; the present
measurements, however, are precise enough and
span a range in momentum transfer broad enough
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where Z is the atomic number of the target nucleus,

os' ——(a/2EO) cos ( —,8)/sin ( —,8)

is the Mott cross section, a is the fine-structure
constant, Eo is the incident electron energy, 8 is the
scattering angle,

ri =[1+(2EO/M)sin ( —,8)]
2 — 2+

0 — 0
Expt. Thy. A Thy. 8 Thy. C Thy- D

FIG. 1. Low-lying even-parity states of ' O. Column
1 shows the experimentally observed spectrum. Column
2 (Thy. A) is taken from Morrison etal. (Ref. 12); the
question mark denotes a tentative identification.
Columns 3—5 (Thys. 8—D) are taken from the works
of Benson and Irvine (Ref. 10), McGrory and Wil-

denthal (Ref. 14), and Ellis and Engeland (Ref. 13),
respectively.

to provide this information.
Perhaps the most interesting possibility posed by

this experiment is the prospect of performing de-
tailed comparisons between the results obtained for
' 0 and the corresponding results for ' O and ' O.
This has been done for elastic electron' and pro-
ton' scattering from these isotopes, and the exten-
sion to inelastic scattering promises to be even more
fruitful. 2

The scope of this paper is restricted to the low-

lying even-parity, even-spin states in ' O. These in-
clude the two 0+ excitations at 3.62 and 5.33 MeV,
the three 2+ excitations at 1.98, 3.92, and 5.25
MeV, and the three 4+ excitations at 3.55, 7.11,and
7.85 MeV, shown in the Expt. column of Fig. 1.
Simultaneous measurements of the form factors of
the first 2+ state (6.92 MeV) in ' 0 and the first

state (O.S7 MeV) in ' 0 provide the bases for
the comparisons alluded to above.

II. ELECTRON SCATTERING

Following Ref. 21, the plane-wave Born approxi-
mation (PWBA) cross section for the electroexcita-

is the recoil factor, M is the mass of the target nu-

cleus, F/(q) is the longitudinal (or Coulomb) form
factor, and Fz (q) is the transverse electric form fac-
tor. The three-momentum transfer q is given by

q =2Eori' sin( —,8)(1—co/EO)' (2)

where co is the energy to which the nucleus is excit-
ed. The form factors F/ and F/ can be written in
terms of the electromagnetic transition operators
(M, T ) as

F'(q)
I
'=,
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(Jl le,'(q) flo) (3)

2Jf +1v'8(EL)= f p«(r)r + dr,
2J;+ 1

where J; (Jf ) is the spin of the initial (final) state.
The preceding equations (1)—(3) do not take ac-

count of the distortion of the electron waves by the
Coulomb field of the nucleus. A precise, although
still approximate, method of dealing with Coulomb
effects is the distorted-wave Born approximation
(DWBA). In DWBA, the electron-nucleus interac-
tion still is treated in lowest-order perturbation
theory, but the electron waves are no longer plane
waves. Rather, they are solutions of the Dirac
equation in the presence of the spherically sym-
metric part of the ground-state charge distribution.

The longitudinal form factor Fz(q) is related (in
PWBA) to the transition charge density p„(r) by

p„(r)= f FJ (q)e' q ' 'd q .

The transition charge density is in turn related to
the corresponding multipole moment by
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To first order, the effect of the distortion of the
electron waves is to increase the momentum
transfer which characterizes the nuclear scattering
event. The relation between the momentum
transfer q, as calculated from the kinematics of the
scattering event to the effective momentum transfer

ff which represents better the momentum actually
transferred during the scattering event, is

I/2
3 3 Zq«=' '+2 5 E („i)iii

Be(5/2 )-

O
102-

C

0
18p(p +)

18p(4 +)

18p (e ei)

Eo = 152.2 MeV

8 =90'

18p(2+)

where (r )'i is the root-mean-square (rms) radius
of the nuclear charge distribution. For most facets
of the present work this correction for Coulomb ef-
fects would have been adequate. However, in most
cases full DWBA calculations were performed.

III. EXPERIMENT AND DATA REDUCTION
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FIG. 2. Spectrum of electrons with incident energy
152.2 MeV scattered at 90' from an isotopically enriched
(' Q—7%, '7Q—2%, ' Q—91%) beryllium-oxide foil.
The leftmost two peaks are separated by only 80 keV.
The solid curve represents a least-squares fit to the data.

A. Experimental details

The present experiment was performed at the
MIT-Bates linear accelerator ' using the high-
resolution MIT energy-loss spectrometer. Figure
2 shows a representative scattered-electron spectrum
measured during this experiment. The leftmost two
peaks ['sO (4i+) and ' 0 (Oz+)] are separated by 80
keV and are seen to be resolved clearly.

The measurements comprising this experiment
were made at scattering angles of 90' and 160'. For
the measurements made at 90, incident electron en-

ergies between 90 and 370 MeV were used to obtain
a range in momentum transfer from 0.6 to 2.7
fm '. Energies between 125 and 275 MeV were
used for the 160' measurements, corresponding to a
range in momentum transfer from 1.3 to 2.7 fm

The targets used in this experiment were
beryllium-oxide foils enriched to varying degrees in
' 0 and ' O. They were fabricated at the Lawrence
Livermore Laboratory using novel chemical and

metallurgical techniques. First, water containing
isotopically enriched oxygen was vaporized and al-
lowed to react with gaseous beryllium chloride,
yielding a solution of BeO and HC1. Ammonia
then was introduced, reacting with the HC1 to cause
the BeO to form a white powdery precipitate.
These reactions are very selective and thereby en-
sured that all of the beryllium and oxygen in the
precipitate was in the form of BeO. The BeO was
pressed and sintered into thick wafers, which were
lapped down to the final thicknesses. The
thicknesses of the five targets ranged from 21 to 47
mg/cm (see Table I).

Electrons scattered elastically from nuclei with
different masses have final energies which are
separated by the differential kinematic recoils of the
nuclei. The high resolution of the MIT energy-loss
spectrometer enabled us to separate the oxygen elas-
tic peaks at all energies used in the present experi-
ment. Figure 3 shows the elastic region of a typical

TABLE I. Target compositions

Target
Thickness
(mg/cm ) 16Q (y )

Isotopic abundance
"Q (%) 1SQ

Be"Q
'Q

Be16,18Q

e16,17,18Q

Be16,17,18Q

47.2
45.8
21.6
42.5
21.3

7.2+0.1

55.8+0.6
52.3+0.4
14.1+0.3
14.2+0.1

2.0+0.1
1.0+0.1
1.0+0.1

19.7+0.4
19.2+0.4

90.8+0.4
43.2+0.5
46.7+0.5
66.2+0.1

66.7+0.4
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FIG. 3. Spectrum of electrons with incident energy
165.0 MeV scattered at 90' from an isotopically mixed
(' 0—14%, ' 0—19%, ' 0—67%) beryllium-oxide foil.
The clearly resolved peaks corresponding to elastic
scattering from the three oxygen isotopes are separated
by their different recoil energies.

spectrum. In addition to the elastic peaks of beryl-
lium and the three oxygen isotopes, one can see that
of the small carbon impurity in the target.

The relative abundances of the oxygen isotopes
were determined by comparing elastic-scattering
data from our set of enriched-isotope targets with
data obtained from a BeO target in which the oxy-
gen isotopes are present in their natural abundances
(see Appendix B). The results are listed in Table I.

B. Data reduction and error analysis

The present work comprises one facet of a wider

study of electron scattering from the three stable

oxygen isotopes; further details can be found in

Refs. 18, 27, and 28.
High-quality absolute measurements of elastic

electron scattering from ' 0 have been made else-

where. ' A reanalysis of these data" yielded an
accurate parametrization of the ' 0 ground state
charge distribution (see Appendix C}. Measure-

ments of elastic scattering from ' 0 made using tar-

gets containing both ' 0 and ' 0 were normalized

to the ' 0 elastic cross sections computed from this
distribution. From these measurements a
parametrization of the ' 0 ground state was ex-
tracted that is almost as precise as that of the
charge distribution of ' 0 (see Appendix C}. The
inelastic cross sections were normalized to the elas-
tic cross sections of both ' 0 and ' 0 as measured
during the same exposure. This made them in-
dependent of (1) dead-time corrections, (2) beam-
current monitoring, (3) fluctuations in target
thicknesses, and (4) uncertainty in the spectrometer
acceptance.

The energy scale of the focal-plane detectors was

calibrated using the energy spacings between peaks
corresponding to excited states of the nuclei present
in the mixed-isotope targets; the incident energy Eo
was determined using .the separations (due to dif-
ferential recoil energy' loss) between peaks
corresponding to states in different nuclei. The pre-
cision of this calibration typically was of the order
of 5 to 10X 10 (&Ro/Eo).

Corrections of the scattered-electron spectra for
dead-time losses were not necessary because only ra-
tios were required. However, it was important that
the dead-time effects be uniform across the focal
plane. This requirement was tested by measuring
an ' 0 spectrum twice, once with a low counting
rate and once with a high rate. From each spec-
trum the ratio of the cross sections for the ground
state and the first excited state (1.982 MeV) was ex-

tracted. The two measurements were compared and
were found to agree within the statistical limits

((1%)
There were a few locations in the focal plane

detectors near which the energy of detected elec-

trons was sometimes misidentified. No valid events

were lost thereby, but apparent 5 —10% fluctua-
tions in detection efficiency resulted. The errors in

energy identification were very small so the ineffi-

ciencies were very localized compared to the widths

of the peaks in the spectra. - These regions of the fo-
cal plane were either avoided or rendered unimpor-

tant by averaging spectra obtained using several fo-
cal plane positions. Line shape fitting of the spec-
tra further reduced the impact of these fluctuations

by effectively averaging the data from many chan-

nels. The net uncertainty introduced by these fluc-
tuations was within +1%.

Peak areas and corresponding cross sections were

extracted from the composite spectra using a least-

squares fitting technique based upon the routine
cURFIT. The fitting function used consisted of a
polynomial background plus an arbitrary number of
peaks. The natural widths of the states of interest

in this work are narrow, the widest being about 3
keV. Thus, the shapes of the peaks in the spectra
were determined by the system resolution function
and the radiative tails. The peak shapes used in the
present analysis were computed using the procedure
developed by Bergstrom, in which the total peak
shape is formed by convoluting a system resolution
function with a radiative-response function that de-

scribes the peak shape which would result if the in-

cident beam energy profile were a delta function.
The calculations of radiative processes were per-
formed in PWBA, neglecting recoil effects. This
has been estimated to introduce an error of not
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more than one percent, although in most cases even
this error was common to both elastic and inelastic
peaks and hence was cancelled out.

The independence from systematic effects leaves
the fitting step as the major source of uncertainty in
the extracted cross sections. The uncertainty in
each peak area was estimated in two ways. First,
the number of counts assigned to a peak was used to
compute a statistical error estimate. Second, the
uncertainty in each parameter used to define a peak
was determined using the procedure outlined in Ref.
31. The resulting uncertainty in the peak area was
computed by adding in quadrature the changes in
the area generated by increasing each parameter by
its corresponding uncertainty. The larger of these
two estimates was accepted.

The uncertainty in the normalization resulting
from the uncertainty in the computed ' 0 and ' 0
elastic cross sections ranges from 0.2% at 50 MeV
to about 10—15 % in the elastic diffraction
minimum and above an incident energy of 350
MeV.

The uncertainty in the normalization resulting
from an uncertainty &&o in the incident energy Eo
is of the order of 2%, except near the diffraction
minimum of the elastic scattering where it rises to
about 5%.

The uncertainty in the average scattering angle 0
is less than 0.05' (1 mr). For the measurements re-
ported here the horizontal (scattering plane) angular
acceptance of the spectrometer was 26 mrad; the
vertical acceptance was 121 mrad. The resulting
fractional uncertainty in the average momentum
transfer is at most 5X10, and generates uncer-
tainties in the cross sections of 0.3—0.5 %.

The uncertainties in the relative abundances of
the oxygen isotopes in the targets are negligible (see
Table I). Furthermore, a weighted average of the
' O and ' O elastic cross sections was used to nor-
malize the inelastic ' 0 data. Any error in the
abundance of ' O would imply an error of opposite
sign in the abundances of the other isotopes. These
errors tended to cancel when the elastic cross sec-
tions of both ' 0 and ' 0 were used to normalize
the inelastic data.
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in Figs. 4—10 and are tabulated in Appendix A. In
these figures
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Figure 4 shows the form factors, measured at 90',
of the first two excited 0+ states (Oq+, Oi+). The form
factor of the 02+ state is seen to be well sampled
throughout the momentum-transfer region from 0.6
to 2.7 fm ', while the paucity of data on the 0&+

state reflects the extreme weakness of its coupling
to the ground state. A previous measurement' in-
dicated that the form factor of the Oi+ state reaches
5)&10 at a momentum transfer of about 1 fm
The absence of any visible structure near 5.33 MeV
excitation in Fig. 2 implies that the form factor of
this state cannot exceed 4 or 5)& 10

Figures 5 —7 show the form factors of the first
three 2+ states (1.982, 3.919, and 5.250 MeV),
measured at 90'. The form factor of each is seen. to
be clearly defined throughout the momentum-
transfer range from 0.6 to 2.7 fm '. In particular,
the locations of the diffraction minima are well de-
fined (see Table III). In cases where a minimum in
a form factor results from cancellations of compet-
ing amplitudes, these locations can provide sensitive

IV. RESULTS AND DISCUSSION
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0
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1 2 3
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A. Measured form factors

The form factors of the low-lying, even-parity
states of ' 0 measured in this experiment are shown

FIG. 4. Form factors for the lowest two 0+ excita-
tions in ' 0, measured at 90 (data points). The solid
and dashed curves are from Refs. 33 and 34, respective-
ly. The dotted-dashed curve was computed from wave
functions given in Ref. 10.
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FIG. 5. Measured form factors for the lowest 2+ ex-
citation in ' O. The circles represent our measurements
made at 90', the squares are taken from Ref. 17. The
solid curve shows the result of an FBA fit to the data.
The dashed (dashed-dotted} curve was computed using
wave functions from Ref. 14 and e~& ——0.33e
(e~~ ——0.50e}. The dashed-dotted-dotted curve is taken
from Ref. 34, while the dotted curve was computed us-

ing wave functions from Ref. 10.
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FIG. 6. Measured form factors for the second 2+ ex-
citation in "O. See caption for Fig. 5 for description of
points and curves.

measures of the mixing of those amplitudes.
The 90' measurements of the form factors of the

lowest three 4+ states (3.553, 7.114, and 7.848 MeV)
are presentai in Fig. 8. The identification of the
7.848-MeV level as the third 4+ state is not definite;
a spin assignment of J=4+1 was made by Fortune
et al. on the basis of total cross-section measure-
ments of the ' C( Li,p) reaction. Arguments
presented below show that our data lend credence to
the 4+ assignment.

Figures 9 and 10 show the results of the 160'
measurements. The 03+ peak was not discernible at
160', and the 7.848-MeV peak either did not fall on
the detectors (at low incident energies) or was oc-
cluded by the many nearby peaks (at higher ener-
gies). For the measurements at 160 only targets
containing appreciable amounts of ' 0 were used
(see Table I). The resulting high density of peaks
above 7 MeV made the extraction of reliable cross
sections for the 7.848-MeV level impossible. It was
possible, however, to establish upper limits on the
cross sections. By establishing the upper limits on

10-3

~80(e e') "80"(2+)

Ml T Bates
k Saskatchevva{l

1O'—

~i

i o-6
0 1 2

q ~(fm "}

FIG. 7. Measured form factors for the third 2+ exci-
tation ' O. See caption for Fig. 5 for descriptions of
points and curves.
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FIG. 8. Measured form factors for the lowest three
4+ states in ' O. The data points represent our mea-
surements made at 90'. See caption for Fig. 5 for
descriptions of curves. The shaded band represents the
form factor for the third 4+ state computed [within the
context of the LSF (Ref. 11) model] from those mea-

sured for the lowest two 4+ states.

the total form factors
~

Ii
j

measured at 8= 160' to
be similar to those measured at 8=90 it was con-
cluded that the transverse form factor of the 7.848-
MeV excitation cannot exceed

~p
the longitudinal

form factor.
The curves that pass through the form factors of

the 2+ and 4+ states in Figs. 9 and 10 were generat-
ed (using DWBA) from Fourier-Bessel analyses
(FBA, see Sec. VIB) of the form factors of these
states as measured at 90. These curves represent
the form factors one expects to measure at 160' if
the form factors measured at 90 contain no trans-
verse components aside from negligibly small con-
tributions from the currents demanded by the con-
tinuity equation. The curve through the form fac-
tor of the 0+ state is a curve drawn by eye through
the data measured at 90'. In spite of the relatively
large errors it is evident that the form factors of
these states have no sigmficant transverse com-
ponents. The absence of transverse contributions to
the monopole transitions is required in order to con-
serve angular momentum. Transverse contributions

FIG. 9. Form factors for the lowest 0+ excitation
and the two lowest 4+ excitations in "0, measured at
160'. The solid curves are computed from the measure-
ments made at 90 under the assumption that the transi-
tions are purely longitudinal.

to the 2+ and 4+ transitions are not forbidden, but
one can understand qualitatively why they should
be very small. The low-lying states in ' 0 are dom-
inated by two-neutron configurations. A Coulomb
transition between two such states results from
core-polarization effects since the neutrons them-
selves carry no charge. These core polarizations are
collective phenomena and, accordingly, have essen-

tially no transverse components.

B. Fourier-Bessel analysis
and transition charge densities

In PWBA the form factor is related to the charge
density by

F~(q)= f e 'q''p (r)d r,
4m

where p is the nuclear charge distribution. For
elastic scattering p (r) is the ground-state distribu-

tion, while for inelastic scattering it is the transition
charge density. Inverting the above equation yields

p (r) = f Fz (q)e' q ' 'd q .
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FIG. 11. Transition charge densities for the lowest
three 2+ states in ' 0 (2~+-1.982 MeV, 22+-3.919 MeV,
23+-5.250 MeV) as determined from the measurements
made at 90'.

FIG. 10. Form factors for the lowest three 2+ states
in ' 0 as measured at 160'. The solid curves are com-
puted from the measurements made at 90' under the as-
sumption that the transitions are purely longitudinal.

The inelastic data (2+ and 4+ only) were
analyzed following the method of Heisenberg. In
this approach the 2 -pole transition density is
described by

p„(r)= g a„X„'jJ(X„r/R)8(R r), —Two different parametrizations p(r) were used in
the present work. First, the elastic scattering from
' 0 and ' 0, as well as the pseudoelastic (see Sec.
IVD) scattering from 's0, were analyzed following
the method of Friar and Negele. In this approach
the ground-state distribution is described by

where X„' is the rith zero of the spherical Bessel
function jj r(x). Here, R is the radius beyond
which the transition density is assumed to be zero.

The measurements made at 90' for each of the
three 2+ states and the lowest two 4+ states were
subjected to FBA; the solid curves in Figs. 5—8
show the fitted form factors obtained. The quality
of the fits is seen to be very good (the reduced X
for the five fits range from 0.8 for the 2~+ state to
1.6 for the 4r+ state). The extracted transition
charge densities are shown in Figs. 11 and 12. The
error envelopes on these graphs reflect both the sta-
tistical uncertainties and the incompleteness error
which results from the fact that our measurements
span a finite range in momentum transfer.

Figure 11 shows the transition densities for the

p(r) =pa(r)+ hp(r)

where po(r) is an initial estimate of p(r) and bp(r) is
determined by the parameters C„which are adjust-
ed to fit the data. The parameter R is the radius
beyond which p(r) is described sufficiently well by
po(r). The application of this technique to the elas-
tic scattering from the oxygen isotopes is given in
Ref. 18.

Cn . nor
=po(r)+ g sin 8(R r), —

r R
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FIG. 12. Transition charge densities for the lowest
two 4+ states in ' 0 (4&+-3.553 MeV, 42+-7.114 MeV) as
determined from the measurements made at 90'.

2+ states. The density for the 2i+ state is every-
where positive while those for the 22+ and 23+ states
are negative near the origin. For nuclei in the oxy-
gen region, the participation of an s orbital is re-
quired in order to generate a lobe in the transition
density so deep inside the nucleus. Therefore, it is
clear that the O&+ to 2i+ transition is dominated by
d-to-d transitions, while the other two contain ap-
preciable d-to-s (or s-to-d) components. The expan-
sion parameters for these transition densities are
given in Appendix D.

Figure 12 shows the transition densities for the
hexadecapole transitions. They are seen to be very
similar in shape. This is not surprising since the
major contributor to L=4 transitions is the d-to-d
transition. To generate another 4+ transition one
must either promote a particle from the Op shell to
the Of shell or start with two particles in the 1pOf
shell and recouple them to J=4. Energetic con-
siderations lead one to expect that such contribu-
tions to the low-lying states of ' 0 are small. The
expansion parameters for these transition densities
are given in Appendix D.

The reduced transition probabilities [8(El.) s] ex-
tracted from the FBA fits to the 2+ and 4+ cross
sections are shown in Table II. It should be noted
that the data used in these analyses comes from
measurements made at momentum transfers above

TABLE II. Reduced transition probabilities.

State B(EL; 0+—+L+) (e fm )

2~+ (1.982 MeV)
22+ (3.919 MeV)
23+ (5.25o Mev)
4)+ (3.553 MeV)
42+ (7.114 Mev)

44.8+1.3
22.2+1.0
28.3+1.5

(9.04+0.90)~ 10
(1.31+o.o6) x 1o'

0.6 fm ', a region from which extrapolation to the
photon point is not a model-independent procedure.
Nonetheless, the value obtained for the transition to
the 2~ state is in excellent agreement with recent
measurements; Flaum et al. report a value of
45.3+2.5 e fm and Void et al. report 40.2+1.2
e' fm'.

C. Comparisons with
theoretical calculations

Most of the theoretical work done on ' 0 falls
into one of two categories. First, there are the
extended-basis shell-model calculations containing
2pOh and 4p2h configurations with respect to a
closed Op shell. The subshells available to the parti-
cles and holes vary, as do the residual two-body in-
teractions. In the calculation of McGrory and Wil-
denthal, ' which is based upon the earlier work of
Zuker et al. , the basis is truncated to include only
the Opia, Od5g2, and 1sig2 orbitals. Another ap-
proach is that of Ellis and Engeland' in which al-
lowed configurations are chosen using more physi-
cal criteria, such as energetics. The second category
is composed of the coexistence models, in which
2pOh shell-model states are combined with one or
more strongly deformed states. Representative of
this genre are the works of Benson and Irvine, '

Morrison et al. ,
' and Lawson et al."

None of these models can tell the complete story.
The hope, of course, is that they can help in identi-
fying which degrees of freedom in the nucleus play
major roles in determining its properties. It is pos-
sible, in some cases, to reproduce simultaneously
8(EL) values and static moments by assigning "ef-
fective" or "polarization" charges to the nucleons
active in the model. These polarization charges
clearly are only a convenient means of parametriz-
ing the polarizing effects of the valence nucleons on
the core; thus, they represent the degree to which
polarizations of the rest of the nucleus influence the
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transitions. Within the context of the shell model,
these polarizations take the form of particle-hole
excitations that fall outside the basis used in the
structure calculations. The question of whether the
polarization charges are independent of momentum
transfer and therefore useful when discussing elec-
tron scattering has been addressed by Horsfjord.
His work suggests that in the case of the oxygen
isotopes constant polarization charges are useful up
to a momentum transfer of approximately 2 fm
Therefore, comparisons of the calculations to the
data beyond the first diffraction minima should be
trreated with extreme caution.

In order to compare the point nucleon form fac-
tors computed from the shell model wave functions
to experimental data one must account for (a) the
finite charge distribution of the proton and (b) the
lack of translational invariance of the shell model
wave functions. The former can be dealt with by
multiplying the point nucleon form factors by the
proton form factor [Fz(q)] which, for the range of
momentum transfer of interest here, is adequately
described by the dipole approximation '

Fz(q) =(1+q /18. 774 fm )

The latter can be accounted for approximately by
multiplying the point nucleon form factors by
F~(q), the "recoil correcton" factor

F()= qby

where b is the oscillator length parameter of the
well that best describes the nuclear potential, and A
is the mass number.

The magnitudes of the above corrections are not
trivial; at a momentum transfer of 2 fm ', for in-
stance, Fz is about 0.5 and Fz (b =1.8 fm, A = 18) is
about 1.4. Combinml, they produce a 30% effect.

The calculation of McGrory and Wildenthal'
was performed using a basis spanned by the Opi&2,

Od5~2, and 1s I~2 subshells. All 2pOh and 4p2h con-
figurations allowed by the Pauli principle were in-
cluded. The radial wave functions were computed
using a Woods-Saxon potential, the parameters of
which were chosen to reproduce ' 0 and ' 0 bind-
ing energies. The energy-level scheme predicted by
this model is shown in column C of Fig. 1. It
should be noted that the composition of the shell-
model wave functions is much less sensitive to the
details of the Hamiltonian than is the placement of
the energy levels. Thus, it would not be inconsistent
if the wave functions, and the form factors comput-
ed from them, gave a better description of the prop-
erties of this nucleus than is suggested by the

TABLE III. 2+ diffraction minima.

2)+ (fm ') 2p (fm ') 23+ (fm ')

e~) ——0.5
QQ
Y
Experiment

1.87
2.00
2.11
1.96+0.02

1.37
1.91
1.27
1.62+0.02

1.85
1.87
1.92
1.76+0.04

energy-level spectrum.
When this model was used to calculate electron-

scattering form factors for comparison with the
present data, constant polarization charges of 0.33e
and O.SOe were used. The first value was chosen to
reproduce the measured ' 8(E2) value for the
2~+-to-OI+ transition, and the second was used to ob-
tain a measure of the sensitivity of the form factors
to the choice of polarization charge. The form fac-
tor of the 2i+ transition correctly reproduces the lo-
cation of the first minimum (see Fig. 5). However,
the shortcomings of this calculation are evident
from Figs. 6 and 7.

The model of Ellis and Engeland' differs signifi-
cantly in that it is based upon the assumption that
correlations between particles in the same major
shell are of predominant importance. Accordingly,
the 4p2h states were formed by combining eigen-
functions obtained by solving the four-particle
problem in the lsOd shell with solutions of the
two-hole problem in the Op shell. Horsfjord~' re-
peated the Hamiltonian diagonalization treating the
intrinsic energy separation E between the 2pOh and
4p2h states as a free parameter and computed (us-

ing a polarization charge of 0.5e for each nucleon)
electron-scattering form factors for the Oi+ and 0&+

states as functions of E.
When a value for F. of —0.9 MeV is assumed, a

reasonable fit to the amplitude of the first max-
imum in the form factor of the 02+ state is obtained
(see Fig. 4). However, the location of the minimum
is predicted wrongly, as is its breadth. The predic-
tion for the form factor of the Oq+ state is seen to be
in agreement with the limits established by the
present data.

Although form factors calculated from the above
model are not available for the 2+ states, predic-
tions of the locations of the minima are. Table III
shows the locations of the minima computed using
either a constant polarization charge or calculated,
q-dependent polarization effects. Two different
forms were used for the particle-hole interaction
when the polarization effects were calculated; the
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quadrupole (QQ) interaction of Harvey and Khan-
na and a Yukawa (7) interaction. No calculation
is seen to be consistent with the data, although two
of them (e~i =0.5e, Y) correctly reproduce the rela-
tive ordering of the minima of the three 2+ states.

One of the earliest calculations to include intrin-
sically deformed states was that of Benson and Ir-
vine. ' They used the standard 2pOh states from the
spherical shell model plus a single intrinsically de-
formed state which is formed by removing two pro-
tons from the Opi/i orbital of the spherically-
symmetric shell model and putting them together
with two neutrons into the k = —, Nilsson orbital.
They calculated electromagnetic transition rates us-

ing harmonic-oscillator radial wave functions with
a polarization charge of 0.5e assigned to each nu-
cleon.

The form factor for the 2i+ transition computed
using these wave functions is too low at the first
maximum by a factor of 2 and locates the diffrac-
tion minimum almost 0.4 fm ' too low (see Fig. 5);
that for the 2i+ transition underestimates the max-
imum by a factor of 5 (see Fig. 6). For the 2s+ tran-
sition the agreement between the calculation and
data is acceptable in the region of the first max-

imum.
On the other hand, Morrison et al. ' generated

wave functions using the multideterminant
Hartree-Fock (HF) method with a six-determinant
basis. Corresponding form factors were calculated
for the Oq+ state and all three 2+ states. In no case
is the agreement satisfactory. The predicted
minimum of the Oz+ form factor is well reproduced,
but the amplitude is wrong by a factor of 2. The
encouraging agreement in magnitude with the
measured form factor for the 2i+ transition is miti-

gated by the sharp disagreement over the location of
the minimum.

Thus, none of the above calculations yields an

adequate description of the measured form factors;
each success that a model achieves is accompanied

by a corresponding failure.

D. Coexistence model
of Lawson, Serduke, and Fortune

The model of Lawson, Serduke, and Fortune"
(LSF) embodies a much more empirical approach to
the description of the low-lying 0+, 2+, and 4+
states of ' O. In common with the two coexistence
models discussed above, the physical states are con-
structed from a combination of collective deformed
states and 2pOh states. However, in the other coex-
istence models the assumption is made that there
exists a single intrinsically deformed state from
which are projected states of various angular mo-
menta, while in the LSF model the three collective
states (lgz&; J =0+, 2+, and 4+) are treated as
separate entities. The allowed 2pOh J=0 configura-
tions are (ds/z) and (si/z) . Similarly, the J=2
2pOh configurations are (ds/z), (ds/2si/2),
(ds/2d3/2), and (d3/2si/g). The only 2pOh configu-
rations with J=4 are (ds/2) and (ds/2d3/i). There-
fore, the basis of the 0+ states has three com-
ponents, that of the 2+ states has five, and that of
the 4+ states has three. The matrix elements of the
Hamiltonian connecting the basis states were deter-
mined by fitting known properties of the physical
states to be described.

The model contains three further assumptions of
consequence. First, the radial wave functions of the
Od5g2 and Od3/2 orbitals are the same, but this radi-
al dependence is not explicitly specified. Second,
the polarization charge appropriate for a Od s/2 neu-

tron is equal to that for a Ods/2 neutron. Third,
and probably most restrictive, the collective states
cannot be connected to the 2pOh states by a one-

body operator, such as an electromagnetic transition
operator.

Within this model the Coulomb matrix element
for the excitation of a state can be expressed as a
linear combination of matrix elements involving
basis states. For the case of a monopole (CO) tran-
sition to the nth 0+ state the matrix element is
given by

&On IIMo IIOi+ & =~a &(ds/2) 'Olllo
I
l(ds/2»0&+&n &(s'i/2) 'Ol l~o ll(&i/2) '0&

+c.& '41 l~o'I I'4&

where ML(q) is the 2 -pole Coulomb transition
operator, q is the momentum transfer, and the coef-
ficients A„, 8„,and C, are computed2s from the ex-
pansion coefficients of the states involved. The
measurement of the electron-scattering form factors

I

for the three 0+ states in ' 0 that are described by
the model determines (if the signs of these matrix
elements can be established) the three basic matrix
elements. From these one can determine the
momentum distribution (or equivalently, the spatial
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distribution) of each basis state. It should be noted
that each of these matrix elements describes the
"pseudoelastic" scattering from a complete basis
state; that is, from the core as well as from the
valence nucleons.

For a quadrupole (C2) transition, the matrix ele-
ment can be expressed as

(2„+IIMi lloi+&=D„(dll Milld &

+E„(sIIM, lid&

+~.&pal 1M' II po&,

where the states Id & and Is & are functions of the
spatial coordinates only. One can obtain the
momentum dependence of each matrix element by
measuring the electon-scattering form factors for
the lowest three 2+ states in ' O.

For a hexadecapole (C4) transition, the matrix
element can be reduced to

&4'IIM4110i' & =G.&d IIM4 lid &

+H„(+oI IM4 II+0& .

Since there are only two terms in this expression,
the measurement of two 4+ form factors suffices to
determine the basic matrix elements.

By inverting the above relationships one can ex-

press the matrix elements involving the distinct
components as functions of the measured form fac-
tors. The uncertainties assigned to the component
matrix elements then can be computed from the un-

certainties in the measured form factors.
Two points regarding this procedure warrant no-

tice. First, by measuring a cross section one deter-

mines only the square of the corresponding matrix
element; the sign of the matrix element is not deter-

mined. A second problem stems from the fact that
when electrons of incident energy Ez excite the nu-

cleus to energies coi and coq by scattering through an

angle 8, the momentum transfers involved are dif-
ferent [see Eq. (2)]. This problem was dealt with by
choosing (for each ED and 8) the momentum

transfer associated with the lowest-energy state of
the multipolarity involved (i.e., 0+, , 2i+, and 4+i) as
the standard. Then, from a graph containing all of
the data for a subsequent level a value of the form
factor for this level at the standard q was obtained

by interpolation from the nearest data points. It
should be noted that this interpolation does not in-

volve any smoothing of the data. Other nearby data
points were used only to determine the slope used in
a linear interpolation.

Consider the 0+ states. Since there are three

measured form factors, there are four possible
choices of signs (+ + +, + + —,+ —+, and

+ ——). We assume that the difference between
the radii of the 2pOh (dz~z) component and the
2pOh (sinai) component is small compared to the
difference between the radius of either of them and
that of the deformed component. This assumption,
along with the expansion coefficients of LSF, deter-
mines that at low momentum transfer the sign of
the Oq+ form factor must be opposite that of the Oz+

form factor. This still leaves two choices (+ —+
and + + —). A decomposition was performed us-

ing each choice. First, the phase set (+ —+ ) was
assumed and the form factor for the pseudoelastic
scattering from each component in the 0+ wave
functions was extracted. These extracted form fac-
tors then were subjected to FBA. The charge densi-

ty of the collective deformed component was found
to have a root-mean-square (rms) radius of 2.38 fm,
much smaller than the 2.72-fm rms radius of ' O. '

The shape of the extracts charge density differs
dramatically from that of ' 0; the central density is
depressed and the surface severely sharpened. The
d (plus the spherical core) and s (plus the spheri-
cal core) components have radii of 2.83 and 2.75
fm, respectively. When the valence neutrons are in
the ds~q shell, charge is pulled from the region
around 1.6 fm and moved outward, whereas when

they are in the s~~q shell, charge is pulled outward
from the center of the nucleus.

When the other phase set (+ + —) was assumed,
it was impossible to trace the form factor of the col-
lective deformed component through the diffraction
minimum. Cancellations between various com-
ponents cause the collective form factor to be deter-
mined by the difference of two relatively large num-

bers, and large fluctuations in the form factor re-
sult. It is, however, possible to trace the other two
components because they are less sensitive to this
problem. These extracted form factors are shown
in Fig. 13. Above a momentum transfer of 1.3
fm ', the form factor of the collective state is not
well enough determined to be of any use in the sub-

sequent analysis. Only those values that are shown
were used. The solid curves represent FBA fits to
the extracted form factors.

The rms radii extracted for the various com-
ponents are the following: d —2.74 fm, s —2.84
fm, and collective —3.18 fm. As before, the central
density of the collective state is depressed, but now
the surface is very diffuse (which explains the large
rms radius). The differences between the charge
densities of the d and s configurations and that of
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FIG. 13. Pseudoelastic form factors for the 0+ basis
states of the LSF model of ' O. The solid curves
represent FBA fits to the form factors.

' 0 are shown in Fig. 14. They are similar to those
obtained assuming the other phase set (+ —+ ),
except that the roles of the configurations are re-
versed. In the present case, neutrons in the d5&z
shell pull charge from the center of the nucleus
while neutrons in the s~~2 shell pull it from around
1.6 fm.

A treatment of the collective deformed com-
ponent of ' 0 as a triaxial rotor yields the result
that the deformed component has a larger radius
and larger diffuseness than the spherical com-
ponent. The phase set (+ + —) yields the same re-
lative results and is, therefore, more appealing. The
collective state in that calculation has an rms radius
of 3.07 fm, very close to the radius of the collective
state in ' 0.

The differences between the charge densities of
the 2pOh configurations in ' 0 and the charge den-
sity of ' 0 also favor this choice of phase set. The
major lobe of a 1s wave function occurs at a larger
radius than does that of a Od wave function. There-
fore, one would expect that a particle in the 1s shell
would pull charge out a larger radius. Such is the
case when the phase set (+ + —) is assumed.

It should be noted that these comparisons are to
the physical ' 0 charge distribution, which itself
contains not only a spherical component but also a

FIG. 14. Differences between the charge distributions
of the two-neutron 0+ basis states of the LSF model of
' O and that of the ' 0 ground state. The shaded
(hatched) region shows the charge-distribution difference
between the closed-shell-plus-d (g ) state and the ' 0
ground state which contains a small nonspherical com-
ponent.

deformed component. The contribution of this de-
formed component is small (about 10%). To a
similar level of accuracy one can view the ground
state of ' 0 as a Ods&2 neutron coupled to ' 0.
Within the context of this picture one would expect
the difference between the charge distributions of
' 0 and ' 0 to be similar to one half the difference
between the charge distribution of the d (spherical
core plus two Od5~2 neutrons) components of ' 0
and that of ' 0. Figure 15 shows these differences;
the ' 0(d ) —' 0 charge-distribution difference is
that determined assuming the phase set (++—)

and the ' 0—' 0 charge-distribution difference is
from Ref. 18 (Appendix C). In view of the similari-
ties between these charge-distribution differences it
is not surprising that the rms r@dius computed for
' 0 from the ' 0 results

r (' 0)=r (' 0)+ I r [' 0(d )j r(' 0) I /—2

=2.73 fm

is in close agreement with the observed rms radius
for ' 0 of 2.71+0.01 fm. These results indicate
that the analysis using the phase set (+ + —)

yields a physically reasonable and consistent pic-
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FIG. 15. Charge-distribution differences between "0
16and O. The shaded region shows the charge-

distribution difference computed from the results of the
' 0 decomposition (see text). The hatched region shows
the observed charge-distribution difference.

ture.
Throughout the above analysis the parameters

from the "unconstrained" fit of LSF were used.
Little difference was seen between results obtained
using this set and results obtained using a different
set.

The choice of phase set for the decomposition of
the 2+ form factors is much easier. Only one
choice yields matrix elements whose signs are con-
sistent with those obtained by LSF. The form fac-
tors for the components of the 2+ transitions are
shown in Fig. 16.

It is interesting to compare the longitudinal part
of the transition to the first excited state of ' 0

&+
(—, , 0.871 MeV) to a d-to-s single particle

Coulomb transition which should have a form fac-
tor similar to that obtained for a d-to-s transition in
18O. The solid curve in Fig. 17 is computed (under

the assumption that the transition is purely Od 5~2 to
is!&2) from the d-to-s form factor extracted from
the 0 data. The fact that the curve falls below the18

data implies that collective configurations may be
playing a role. The collective-collective (C-C) C2
form factor has the same shape as the d-to-s single-
particle form factor so the inclusion of such a com-
ponent into the description of the Coulomb transi-
tion to the first excited —, state of ' 0 mould sim-

17p(e e ) 17p (1/2 )

MIT Bates (C2)

askatchewan (C2)—

1O4

1O5

C)

C)

106 I I

0
q &(fm "}

FIG. 17. Form factor for the longitudinal quadrupole
excitation of the first — (0.871 MeV) state in ' O. The
circles are from the present work and the squares are
from Ref. 45. The solid curve is computed from the d-
to-s quadrupole transition matrix element deduced from
the form factors of the low-lying 2+ states in "O.
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10-7 ) ) M . .. ) L~. J L.. !
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FIG. 16. Form factors for quadrupole transitions be-
tween basis states of the LSF model of ' O. The solid
curves represent FBA fits to the form factors.

-3
I I I I

i
I I I I I I I



1792 B.E. NORUM et al. 25

ply scale upwards the curve shown in Fig. 17; e.g.,
the inclusion of a S%%uo C-C C2 component in this
transition would scale this curve upwards by 40Fo
and thus would result in a good fit to the data.
Such a contribution would be consistent with the
known spectroscopic factors of the ground and
first excited states of ' 0 [S(—, )=S(—, ) =0.9].

Another important comparison is between the C-
C C2 transition in ' 0 and the 0~+-to-2~+ transition
in ' 0. The solid curve in Fig. 18 represents the C-
C C2 form factor scaled to fit the measured 8(E2)
for the transition in ' O. The agreement is striking.
The shape of the form factor and the location of its
diffraction minimum are reproduced precisely.
Even the magnitude and shape of the second lobe
are not inconsistent with the data. This agreement
is not a trivial consequence of fitting parameters to
reproduce 8(E2) values; the momentum-transfer
dependences of the three measured form factors
that contribute to the determination of this form
factor are significantly different (see Figs. 5 —7, and

10 1 I ( I j
I I I I

i
1

16O(e e )16 O (2+)

MIT Bates

I NBS

$ Tohoku

0

10

Table II). Furthermore, only one ground-state
8 (E2) value (2I+ —+OI+) was involved in the I.SF fit.
The agreement, therefore, is strong evidence that
the collective states in ' 0 and ' 0 have very simi-
lar structures.

If one assumes that the 2i+ state in ' 0 is purely
deformed, then it can be argued" that the contribu-
tion of the deformed component to the ground state
of ' 0 is about 10%. If one also assumes that the
collective deformed configurations in '60 are identi-
cal to those in ' 0, then the form factor of the 2I+

excitation in ' 0 is computed to be too large by a
factor of 2.5. This indicates that the deformed
component of ' 0 is more complex than assumed.

The 2+ component form factors were subjected
to FBA and the resulting fits are shown by the solid
curves in Fig. 16. The extracted transition charge
densities are shown in Fig. 19. The d-to-d transi-
tion density is seen to be everywhere positive, to be
about 2.3 fm wide at half maximum, and to peak at
2.3 fm. The transition density for a single-particle
d-to-d transition computed using Woods-Saxon
wave functions with parameters taken from Don-
nelly and Walker (radius 3.25 fm, diffuseness 0.5
fm, spin-orbit strength 6 MeV, and well depth 50.6
MeV) shows the same behavior. It peaks at a radius
of 2.3 fm, is 2.3 fm wide at half its maximum value,
and is everywhere positive. on the other hand, the
extracted d-to-s transition density is seen to peak at

[ [ I l I [ I i
I

I0
10 ")—

104—
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I I 1 I l I

1

q ~(fm ~)

FIG. 18. Form factor for the excitation of the first
2+ (6.917 MeV) state in ' O. The circles are from the
present work, the squares are from Ref. 44, and the dia-
monds are from Ref. 47. The solid curve is the
collective-collective quadrupole-transition matrix element
deduced from the form factors of the low-lying 2+
states in ' 0 scaled to reproduce the 8(E2) for the
0~+~2~+ transition in ' O.
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FIG. 19. Transition charge densities for quadrupole
transition between basis states of the I.SF model of "O.
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2.8 fm and to have a small negative lobe near the
origin. A calculation for a 1-to-s transition using
the above potential well yields a transition density
which also peaks at 2.8 fm, but has a large negative
lobe near the origin. That the extracted d-to-s tran-
sition density has a more shallow inner lobe is not
surprising. The polarization effects which generate
the charge density are collective in nature and there-
fore are predominantly surface effects.

The 4+ form factors can be expanded in terms of
two components only; that corresponding to a d-to-
d transition and that corresponding to a C-C transi-
tion. By measuring the form factors of the lowest
two 4+ states one can determine these components
and then use them to predict the form factor of the
third 4+ state. Again, an assumption for the rela-
tive phase between the two measured form factors
must be made. In the present case the choice is
made so that the form factor of the collective (C-Q
transition is larger than that of the single-particle
transition. The resulting decomposition of the form
factors into their LSF components is shown in Fig.
20. Here, the choice of the LSF parameter set had

I I I
)

( I t I
[

I I '. t

10 2—

a measurable effect on the form factors that were
extracted. The circles in Fig. 20 show the results
obtained for the C-C form factor when the "con-
strained II" parameters of LSF were used, while the
squares show the corresponding results obtained
with their "unconstrained" parameters. For the
subsequent steps in the analysis, the form factors
obtained using the unconstrained parameters were
used.

The solid curves in Fig. 20 represent the FBA fits
to these components. The prediction of the model
for the form factor of the third 4+ state is shown
by the shaded band in Fig. 8. The agreement up to
the maximum of the form factor is excellent, giving
strong indication that the state at 7.848 MeV is
indeed the third 4+ state. However, beyond the
maximum there is pronounced disagreement. The
source of this discrepancy is not clear. It is possible
that the model simply is not adequate to describe
the high-momentum components of these excita-
tions. It also is possible that an unresolved state of
multipolarity greater than 4 exists near the 7.848-
MeV level.

The transition charge distributions for the LSF
components of the 4+ states are shown in Fig. 21.
The shapes of the transition charge densities for the
two physical 4+ transitions are very similar in
shape (see Fig. 12), so it is no surprise that the
charge densities for the components of these transi-
tions are very similar in shape as well.
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FIG. 20. Form factors for hexadecapole transitions
between basis states of the LSF model of "O. The la-
bels in parentheses denote the set of constraints applied
in computing the wave functions (see Ref. 11). The
solid curves represent FBA fits to the form factors.
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FIG. 21. Transition charge densities for hexadecapole
transitions between basis states of the LSF model of ' O.
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V. SUMMARY AND CONCLUSIONS

%e have measured the inelastic electron-
scattering form factors for eight low-lying even-

parity states in 0 in the range of momentum
transfer from 0.6 to 2.7 fm '. Data obtained at
two angles show that these form factors have no ap-
preciable transverse components. Fourier-8essel
analyses were performed to yield transition charge
densities and 8 (EL) values.

The measured form factors were compared with
the predictions of various theoretical models, but in
no case did the calculated results represent a good
fit to the data. In addition, the measured form fac-
tors were decomposed into single-particle and col-
lective components within the context of the coex-
istence model of Lawson, Serduke, and Fortune.
From these components we have extracted single-
particle and collective transition charge densities
which represent a physically reasonable picture of
' 0. These densities have shapes which are ap-
propriate for corresponding transitions in ' 0 and
' 0. It would be very interesting to see this calcula-
tion refined by the inclusion of the present data.

The experimental results presented here under-

score the need for additional experimental and
theoretical effort. More and better measurements
of the 03+ and 4~+ form factors of ' 0 should be
made, and it is at least equally important that better
data on the low-lying levels of both ' 0 and ' 0 be
obtained. The availability of such data would en-

able one to obtain a much improved picture of the
similarities among the oxygen isotopes. An experi-
mental program to obtain these data is in progress.
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APPENDIX A: MEASURED FORM FACTORS

The form factors are defined by

I
+(q)

I

'=
d~ /Z'~M 7

where

qfr =2Eosin(8/2)g'~
' 1/2

3 3
X &+—

2 5

Za
E ("2)i/2

where (r )'~ is the rms radius of 'sO (2.794 fm).
This momentum transfer is related to the effective
momentum transfer for inelastic scattering to each
of the excited states by

inel el
qeff qeff+I ~/Eo '

where co is the energy of the excited state. The no-
tation for the form factors is such that

a bc( d)=. a bc—X10 ". .

The uncertainty quoted for each form factor in-

cludes systematic as well as statistical uncertainties.

APPENDIX 8: TARGET-COMPOSITION
ANALYSIS

The relative abundances of the oxygen isotopes in

the mixed-isotope targets were determined by exa-

mining elastic-scattering data (Eo ——165.0 MeV,
8=90'; see Fig. 3) from the complete set of targets
(see Table I). A target made from naturally occur-
ring oxygen (Be' 0) also was used.

Data from two isotopically-mixed targets were
used in conjunction with data from the Be' 0 tar-

get. From the data gathered using the Be' 0 target
elastic cross sections for ' 0 (oi6) and for Be (n9)
were extracted. From each of the other two targets
the Be cross section and the products of the indivi-

dual oxygen-isotope cross sections (cr„} and the
corresponding abundances (vP) were extracted (the
m denotes the target used for the measurement and
n denotes the isotope). The overall accuracy of
these measurements is limited by uncertainties in (1}
the beam-current monitoring, (2) the target
thicknesses and uniformities, and (3) the dead-time
corrections. These uncertainties were removed by

oM ——[(n/2EO) cos (8/2)/sin (8/2)]

is the Mott cross section,

g = [1+(2EO/M)sin (8/2)]

is the recoil factor, Z is the atomic number of the
target nucleus, Eo is the incident electron energy, 0
is the scattering angle, a is the fine-structure con-
stant, and M is the mass of the target nucleus.

The second column of each table (see Tables
IV —VIII) contains the effective momentum
transfer for elastic scattering. It is defined by
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TABLE IV. Form factors for 0+ states measured at 90'.

Ep
(MeV)

Jeff
(fm ')

~F(02+)
~

'
(3.63 MeV)

Error
(%%uo)

(F(O3+&12

(5.33 MeV)
Error
(%)

90.29
111.65
120.46
125.65
131.49
132.59
135.50
148.26
150.54
152.20
154.92
161.22
162.46
168.22
170.42
175.16
194.41
199.90
207.06
209.85
213.11
221.05
224.70
229.59
234.25
236.80
241.18
258.83
261.92
269.50
275.26
280.43
291.14
294.35
300.54
309.57
315.80
325.09
349.25

0.676
0.826
0.888
0.925
0.965
0.973
0.993
1.082
1.098
1.110
1.129
1.172
1.181
1.222
1.237
1.269
1.403
1.441
1.491
1.510
1.532
1.588
1.612
1.646
1.678
1.695
1.726
1.847
1.867
1.920
1.959
1.994
2.067
2.089
2.131
2.192
2.234
2.297
2.461

5.14(—4)
5.60(—4)
4.97(—4)
4.10(—4)
3.65{—4)
3.91(—4)
4.15(—4)
2.55(—4)
1.95(—4)
2.05{—4)
1.79(—4)
1.19(—4)
1.04(—4)
8.42(—5)
5.61(—5)
5.09(—5)

& 1.60(—6)
5.00(—6)
1.07(—5)
1.18(—5)
1.56(—5)
2.8S(—5)
3.69(—5)
4.30(—5)
4.99(—5)
5.50(—5)
5.64(—5)
6.28{—5)
6.18(—5)
6.19(—5)
6.31(—5)
5.44(—5)
4.72(—5)
4.12(—5)
3 47(—5)
2.96(—5)
2.16(—5)
1.70{—5)
5.87(—6)

10
4

10
4
5
5

15
4
5
3
5
4
5
5

10
8

20
30
10
17
10
7
4
6
8
6
4
6
8
5
4

12
4
8
5
6
5
9

& 5.00(—5)

2.00(—5)

2.oo(—s)
3.05(—5)

1.68(—5)
& 6.00(—5)

2.oo(—s)

2.oo(—s)

& 1.00(—5)

& 4.00(—6)

& 4.00(—6)

2.00(—6)
& 4.00(—6)

&4.00{—6)

& 4.00(—6)

70
30

30

50

80

80

normalizing the oxygen cross sections to that
beryllium as measured during the same exposure

of The data from the three targets can be reduced to
seven independent quantities:

(yltl Nl Nl y~Nl ~ltly )

This was possible because the oxygen and beryllium
atoms are known to exist in a one-to-one ratio in
each target.

X$/' ——0.998(7]6'/09' ——0.998X]6 y

~16 916 ~16 ~ ~17 917 ~17 & ~18 f18 ~18 &

2

~16 /16 ~16 ~ ~17 917 ~17 ~ ~18 918 ~18 '3 3
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TABLE V. Form factors for 2+ states measured at 90'.

Eo
(MeV)

jeff
(fm ')

/+(2g ) f'
{1.98 MeV)

Error
(%) (3.92 MeV)

Error
{%)

~F(Z3+)
~

'
(5.25 MeV)

Error
(%)

90.29
91.35

111.65
120.46
125.65
131.49
132.S9
135.50
148.26
a so.s4
152.20
154.92
161.22
162.46
16S.08
168.22
170.42
175.16
185.75
194.41
199.90
207.06
209.85
213.11
221.05
224.70
229.59
234.25
236.80
241.18
254.69
258.83
261.92
269.50
275.26
280.43
291.14
294.3S
300.S4
309.57
315.80
325.09
349.25
369.16

0.676
0.683
0.826
0.888
0.925
0.965
0.973
0.993
1.082
1.098
1.110
1.129
1.172
1.181
a.20o
1.222
1.237
1.269
1.344
1.403
1.441
1.491
1.510
1.532
1.588
1.612
1.646
1.678
1.695
1.726
1.818
1.847
1.867
1.920
1.959
1.994
2.067
2.089
2.131
2.192
2.343
2.297
2.461
2.594

2.96(—3)
2.84(—3)
3.74(—3)
3.74(—3)
3.76(—3}
3.78{—3)
3.98(—3)
3.58(—3)
3.36(—3)
3.25(—3)
3.24( —3)
3.22(—3)
2.74(—3)
2.66(—3)
2.53(—3)
2.37(—3}
2.28(—3)
2.09(—3)

1.17(—3)
1.01(—3)
7.29(—4)
6.50(—4)

3.77(—4)
2.84(—4)
2.09(—4)
1.52(—4)
1.24( —4)
9.17(—5)
1.91(—5)
1.06(—5)
6.91(—6)
8.50(—7)

4.08(—6)
1.44( —5)
1.39(—5)
1.80(—5)
2.34(—5)
2.35(—5)
2.29(—S)
1.67(—5)
1.12(—5)

4
2

11

3
4
3
4
6
5
4
7
9

100

11
11
4

10
4
6

20

1.12(—3)

1.40(—3)
1.31(—3)
1.25(—3)
1.17(—3)

1.13(—3)

8.87(—4)
8.80(—4)

6.00(—4)
4.96(—4)
4.78(—4)
3.96(—4)
2.12(—4)
1.56{—4)
9.75(—5)
4.97(—5)
3.3O( —S)
2.18(—5)
6.55(—6)
2.00(—6)

7.38(—6)
2.16(—5)

3.32(—5)
3.81(—5)
3.75{—5)
3.83(—5)
3.69(—5)

3.24(—5)
2.76(—5)
2.37(—5)
1.12(—5)
4.83(—6)

6
5
6
7
7

11
9

14
30
45

11
6

5
5
5
8

15

1.50{—3)

1.79(—3)
1.74(—3)

1.63(—3)
1.37(—3)
1.26{—3)
1.31(—3)
1.27( —3)
9.86(—4)
9.28( —4)

8.71(—4)
8.37(—4)
6.68(—4)
4.40(—4)
2.96(—4)
2.11{—4)
1.10{—4)
9.64(—5)
8.55(—5)

1.55(—5)

4.12(—6)

6.30(—6)
1.29(—5)

1.74(—5)
1.89{—5)
1.93(—5)

1.50(—5)
1.24(—5)
1.11(—5)
6.18(—6)
2.78(—6)

5
4
5
5
6
5

12
10
15

35

32
18

9
15
8

12
10
6

25

Furthermore,

916 + 917 + 918
2 2 2

3 3 3
116 + 917 + 918

Thus, the problem is completely determined. Solv-

ing for the desired g„'s yields:

'916 =~16 /~162 2
I16 ~16 /~16 ~

3

(1—vl]6 )X)7 /X]7 —(1—
v1 )6 )X]8 /Xts

1 —Xig /X
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TABLE VI. Form factors for 4+ states measured at 90.

&0
(MeV)

q~
(fm-')

ip(4+)
i

2

(3.55 MeV)
Error
(%)

i+(4+)
~

'
(7.11 meV)

Error
(%)

IF(4+)
I

(7.85 MeV)
Error
(%)

120.46
135.50
148.26
150.54
152.20
154.92
161.22
162.46
165.08
168.22
175.16
185.75
194.41
199.90
207.06
209.85
213.11
221.05
224.70
229.59
234.25
236.80
241.18
254.69
258.83
261.92
269.50
275.26
280.43
291.14
294.35
300.54
309.57
315.80
325.09
349.25
369.16

0.888
0.993
1.082
1.098
1.110
1.129
1.172
1.181
1.200
1.222
1.269
1.344
1.403
1.441
1.491
1.510
1.532
1.588
1.612
1.646
1.678
1.695
1.726
1.818
1.847
1.867
1.920
1.959
1.994
2.067
2.089
2.131
2.192
2.234
2.297
2.461
2.594

3.55(—5)
3.10(—5)
4.30(—5)
3.90(—5)
4.30(—5)

5.29(—5)
5.67(—5)
6.80(—5)
7.00(—5)
6.92(—5)
8.04(—5)
7.28(—5)
7.24(—5)
5.90(—5)
6.93(—5)
6.s7(—5)
.6.28(—5)
5.50(—5)
5.56(—5)
5.41(—5)
3.95(—5)
3.46(—5)
3.43(—5)
2.88(—5)
2.30(—5)
2.16(—5)
1.62{—5)
1.60(—5)
1.22(—S)
1.07(—5)
7.85(—6)
5.35(—6)
2.60(—6)

(1.00(—6)

13
14

8
18

8

8
7

10
15
7
5

11
10
14
6
5
4
6
8
6
4
4
7
9
8
6

23
6

14
8

11
11
26

1.70(—4)
2.94(—4)
4.33(—4)
4.35(—4)

5.16(—4)

7.00(—4)

7.81(—4)

5.23(—4)
6.06(—4)
6.32(—4)
5.24(—4)
5.02(—4)

3.20(—4)
2.86(—4)
2.58(—4)
2.48(—4)
1.86(—4)
1.60(—4)

9.11(—5)
8.24(—5)
5.14(—5)
3.94(—5)
2.16{—5)

11
7
3
5

10

14
4
5

3
5

1.35(—5)

3.60(—5)

5.61(—5)

4.38(—5)

4.10(—5)

3.52(—5)
5.72(—5)

5.29(—5)
7.00(—5)
6.70(—5)
6.79(—5)

5.91(—5)
6.31(—5)
5.00(—5)
4.74{—5)
3.61(—5)
3.67(—5)

3.06(—5)

2.10(—5)
2.10(—5)

80

20

15

20

25
10

6
20
10
7

10
13
20
10
6
8

14

20
25

TABLE VII. Form factors for 0& and 4+ states measured at 160'.

&o
{MeV)

qeff
{fm ')

IF(4,+)
I

(3.55 MeV)
Error
(%)

(o,')
I

'
(3.63 MeV)

Error
(%)

I+(4~')
I

'
(7.11 MeV)

Error
(%)

125.58
133.78
142.39
151.34
171.22
208.59
234.18
245.23

1.278
1.357
1.440
1.527
1.717
2.074
2.317
2.422

6.50(—5)
7.46(—5)
9.03(—5)
7.20(—5)

1.87(—5)
9.00(—5)

24
25
13
20

84
35

6.40(—5)

6.29(—5)
1.29(—5)

30

27
38

5.33(—4)
3.17(—4)

& 2.00(—5)

14
13
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TABLE VIII. Form factors for 2+ states measured at 160'.

Eo
(MeV)

Jeff
(fm ')

~+(2&+)
~

'
(1.98 MeV)

Error
(%)

~+(2") ~'

(3.92 MeV)
Error
(%)

~F(2+) ~'

(5.25 MeV)
Error
(%)

125.38
125.58
133.78
142.39
151.34
208.59
234.18
245.23
255.00
256.23
275.23

1.275
1.278
1.313
1.440
1.527
2.074
2.317
2.422
2.513
2.525
2.703

2.08(—3)
2.17(—3)

9.15(—4)
5.60(—4)
1.33(—5)
3.05(—5)
2.30(—5)
2.02(—5)
2.17(—5)
8.50(—6)

5

7
33
15
16
27
20
57

4.45(—4)
2.56(—4)

1.48(—5)
3.90(—5)
2.76(—5)

14
20

35
15
22 9.59(—6) 38

( l —7l16')X18'/X18' —(l —7116'»17'/X17
g1S

l —X17 /X17

916 )X17 /X17 ( /16 )X18 /X18
717

l —X1s'/X1s'

7116 )Xls /Xls ( l 916 )X17 /X17

l —X /X

where each 7l„ is a function of seven statistically in-

dependent measurements. The uncertainty in each
was computed by adding in quadrature the

changes that resulted from a change of one standard

deviation in each X„.
It may be noted that the use of the Be' 0 target

was not strictly necessary. Any set of three
beryllium-oxide targets with differing isotopic com-
positions could have been used. However, the use
of one well understood target helped to reduce the
uncertainties in the extracted abundances.

APPENDIX C: GROUND STATE
CHARGE DENSITIES

Following Ref. 37, a ground state charge density
is represented by

TABLE IX. Ground state charge density parameters.

Nucleus
Coefficient

16O

C„(fm ~))&10

17O

C„(fm ) X 10

18O

C„(fm ) )& 10

1.80+0.66
2.04+1.30

—0.99+0.44
—4.14+0.53

—15.56+0.40
—13.06+0.21
—3.85+0.27

0.92+0.78
—3.63+ 1.20
—9.39+0.74
—1.58+0.74
—0.01+1.20

—14.33+0.38
—46.84+0.69
—26.17+0.33

9.46+0.43
13.94+0.49
4.75+1.40

po 3pF

6.0
p~ = 1.039 fm
C=2.608 fm
Z=0.513 fm
8 = —0.051

6.5

'60 (Col. 1)

6.5

' 0 (Col. 1)
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TABLE X. ' 0 transition charge density parameters.

Excitation
Coefficient

2~+ (1.98 MeV)
a„(fm )~ 10

22+ (3.92 MeV)
a„(fm ) X 10

23+ (5.25 MeV)
a„{fm ) )& 10

4+ (3.55 MeV)
a„(fm )X 10

42+ (7.11 MeV)
a„(fm ) &(10'

1

2
3
4
5
6
7
8
9

10
11

9.809+0.266
18.340+0.768
10.014+0.228

—0.668+0.031
—2.883+0.085
—1.127+0.246
—0.276+0.321

0.047+0.203
0.062+0.069
0.016+0.048
0.004+0.037

6.324+0.448
9.320+ 1.339
1.782+0.073

—3.370+0.117
—2.517+0.108
—0.805+0.300
—0.603+0.566
—0.060+0.510

0.203+0.236
0.004+0.179

—0.014+0.171

7.265+0.266
11.327+0.671
3.538+0.149

—2.063+0.109
—1.751+0.087
—0.589+0.221
—0.283+0.251

0.049+0.164
0.058+0.060
0.012+0.050
0.006+0.035

1.334+0.168
2.818+0.418
2.273+0.160
0.999+0.083
0.508+0.116
0.390+0.107
0.062+0.109

—0.056+0.064
0.006+0.033

—0.004+0.027
—0.001+0.021

4.610+0.242
8.679+0.596
6.002+0.182
1.686+0.088
0.171+0.217
0.339+0.152
0.019+0.145

—0.016+0.076
0.025+0.021
0.004+0.012

—0.002+0.009

R (fm) 7.0 7.0 7.0 7.0 7.0

Cn . nm. r
p(r)=pe(r)+ g sin; r &R

r R

=pc(r); r &R,

where pc(r) is an initial estimate of p(r), and R is
the radius beyond which is adequately described by
pc(r). A common form for po(r) is the three param-
eter Fermi (3pF) distribution

'r
po(r) =pN

r —C1+e

Table IX contains the parameters which describe

the ground state charge densities of ' 0, ' 0 (spher-

ical component only), and ' 0. The errors quoted

are statistical only.

APPENDIX D: TRANSITION CHARGE
DENSITIES

Following Ref. 36, a 2-pole transition charge
density is represented by

N

p«(r) = g a„X„'jz(X„'r/R)8(R r), —
n=1

where X„' is the nth zero of the spherical Bessel
function jJ t(x) and R is the radius beyond which

p„(r) is assumed to be zero.
Table X contains the parameters which describe

the charge densities associated with transitions from
the ground state of ' 0 to the lowest three 2+ states
(2&+—1.982 MeV, 22+—3.919 MeV, 23+—5.250
MeV), and the lowest two 4+ states (4&+—3.553
MeV, 42+—7.114 MeV). The uncertainties in these
densities are shown by the error bands in Figs. 11
and 12.
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