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Proton radiative capture reactions on "8 targets are calculated assuming a direct capture
mechanism. This is used to predict (p, y) transitions leading to the ground state of ' C, and

to high-lying excited states at about 19 MeV excitation in ' C. The results are compared

with recent experimental data. The theoretical cross sections are the same magnitude as
the data, but do not properly reproduce the energy dependence of the capture cross sec-

tions. There appears to be an important "semidirect" component to the (p, y) reaction lead-

ing to high-lying states in ' C. %'e have also applied the same theory to calculate
' C(y,po) "8and ' C(y, no) "C transitions which have been previously measured.

NUCLEAR REACTIONS(p, y) and (y,p) reactions at medium energies; '

direct capture; states of high excitation energy in ' C; photodisintegra-

tion of "C.

I. INTRODUCTION

Proton radiative capture measurements (or the
time-reversed photodisintegration cross sections)
have been very useful both in reaction mechanism
studies and in elucidating aspects of nuclear struc-
ture. Historically, low energy measurements (up to
about 30 MeV proton energy) have been studied in

detail in both experiment and theory. Measurement
of tT(8) and nucleon analyzing power leads to a
rather complete knowledge of capture amplitudes
and can be used to map out strength functions in

low-energy nucleon-nucleus scattering. Recent re-

views of this area are given in Refs. 1 —4. The role
of giant multipole resonances (GDR) built on the
ground state of a nuclear target is relatively well un-

derstood. The original direct-capture calculations
of Lane and Lynn failed to reproduce experimental
data in the GDR region. The theoretical basis for
this process was first provided by Brown, Clement,
Lane, and Rook, and Lushnikov and Zaretsky,
and this picture has been supported by numerous
continuum coupled-channel models of these reac-
tions. ' Several groups have used doorway-state
models' ' to describe these reactions. In many
cases, a detailed understanding of the structure in
this energy region has required extensive experimen-
tal effort —this is particularly true in ' C, which we

discuss in this paper' ' ' —where we now have a
fairly complete set of data regarding the ground
state transitions (p, yo).

At higher energies the situation is less clear due
to the paucity of experimental data. Consider-
able theoretical effort is presently devoted to inves-

tigating the relative importance of direct-reaction
processes and exchange-current terms at these ener-

gies. Although this question is not yet
resolved, it is clear that any satisfactory theory of
the (y,p) reaction must simultaneously be able to ex-
plain the existing (y, no) data.

An extensive set of proton radiative capture ex-
periments has been carried out on several nuclei at
the Indiana University Cyclotron Facility (IUCF),
for proton energies 25 —80 MeV. These data
provide cross sections as well as asymmetries, for
radiative capture to the ground state and discrete
low-lying states of the residual nucleus. One of the
most striking features of the data was the observa-
tion that a great deal of the total capture strength in
these reactions was concentrated in (p, y) transitions
to a relatively highly-excited state, or groups of
states, in the residual nucleus.

This is illustrated in Fig. 1, which shows the pho-
ton spectrum from the (p, y) reaction on "B at a
photon angle of 60' relative to the incident proton
(E~,b ——23.7 MeV). ' The higher y energies
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FIG. 2. The spectrum of photons resulting from the
' C(p, y) reaction. E& ——28.5 MeV and g&——60'. Photon
energy vs photon cross section d cr/dQdE& in arbitrary
units.

FIG. 1. The spectrum of photons from the "B(p,y) re-
action measured at IUCF by Blatt et al. , Refs. 41 and 42.
Photon energy vs photon cross section d cr/dQdE~, in

arbitrary units, resulting from E~ =23.7 MeV at a photon
angle 6}& of 60'. Also shown is the excitation energy in
the A = 12 system corresponding to each photon energy.

correspond to lower excitation energy in the residu-
al 3=12 nucleus. Distinct peaks can be seen lead-

ing to the ground state and first excited states in
' C. A prominent feature of this excitation spec-
trum is the large photon yield to a state or states in
the 2=12 system corresponding to excitation ener-

gy of about 19 MeV relative to the ' C ground state.
Although these energies are above particle emission
threshold, in a simple shell model particle-hole ap-
proach the (ld —,) single-particle strength is expected

to be concentrated in this region.
In Fig. 2, we show a '

C(p, y) photon spectrum,
also at 60, for E~,b ——28.5 MeV. Again, the photon
spectrum leading to the ' N ground state and first
excited state are visible. In this case there is a
strong peak leading to states in the vicinity of the
J =(—, + ) state of ' N at 3.6 MeV excitation ener-

gy. These (p, y) data provide the radiative capture
transitions to discrete low-lying states in the residu-
al nucleus, however, they also show that the bulk of
the capture strength is going to a concentrated
group of particle-unbound states in the residual nu-

cleus. This raises the question of whether such
strong transitions may be understood as a direct

capture process, or if more complicated structure or
reaction mechanism effects are necessary to explain
these data.

We present calculations which represent an at-
tempt to analyze the (p, y) reaction leading to excit-
ed nuclear states by a direct reaction mechanism.
An earlier calculation by Tsai and Londergan
(hereafter referred to as TL) investigated the contri-
bution to these reactions using an effective interac-
tion plus a residual interaction. In that model, the
major contribution to the cross sections came from
the two-body currents mediated by the residual in-
teraction. The proton-nucleus interaction was writ-
ten as the sum of a shell-model one-body potential
and a residual two-particle interaction. The "shell-
model" potential used was a Woods-Saxon potential
whose strength had been adjusted by Birkholz" to
reproduce the binding energy of the Is and lp
single-particle wave functions. This potential is
much stronger than conventional optical potentials
and has no absorption. Fink etal. have shown
that photodisintegration reactions are very sensitive
to the strength of the proton-nucleus interaction,
and that the calculated (y,po) cross section tends to
increase as the strength of the nucleon-nucleus in-
teraction decreases.

In this paper we examine whether the direct-
reaction spectator model for the (p, y) reactions can
correctly predict the observed (p, y) behavior, partic-
ularly the transitions to states at 19 MeV in ' C.
We assume that the incident proton radiates a pho-
ton and makes a transition from the incident con-
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tinuum state to a (bound or unbound) single-particle
final state relative to the initial target nucleus. For
the nuclear current operator, the proton convection
current and spin magnetization current are used.
An optical potential is used to describe the nuclear
interaction of the incident proton and target. Final-
ly, we calculate the final nucleon shell-model state
using a single-particle potential which has been used
to treat (p, y) reactions an ' C in the vicinity of the
giant dipole resonance.

Section II describes the theoretical formulation of
this model. In Sec. III we present our results and
discuss the application to the reactions "B(p,yo)' C
and "B(p,y,9)' C" (by this we mean transitions
leading to the observed final state leaving the resi-

dual ' C nucleus at an excitation energy between
18.4—20.6 MeV). We also extend our calculations
upward in energy to analyze the existing
'

C(y,po)"B and ' C(y, no) "C data. In Sec. IV we

review our results and present our conclusions.

II. RADIATIVE CAPTURE IN A
DIRECT-CAPTURE SPECTATOR MODEL

For nucleon radiative capture reactions, we must
evaluate the transition amplitude

Mf' '= —I ~r & Pf I i ( r } Ai, ( r }
I 4 & .

(2.1)

In Eq. (2.1), f; is the nuclear wave function, which
is composed of an incident proton of momentum k;
and the ground state of the target nucleus. Ai(r ) is
the electromagnetic potential for creation of a pho-
non with momentum k& and helicity A,, and has the
orm

capture reaction.
This model is shown graphicallg in Fig. 3. The

incident nucleon of momentum k; is distorted in
the field of the target nucleus, which is initially in
state A;. The nucleon radiates a photon of momen-
tum kz and makes a transition to the single particle
state f relative to the target. The "spectator" ap-
proach involves the following two assumptions:

(i) The incident and final wave functions can be
factored into a single-particle wave function times
an internal wave function for the residual nucleus;

(ii) The residual nucleus remains in the same
internal state throughout the reaction. The specta-
tor approximation assumes that the (A —1) particle
core remains in its ground state throughout the re-
action.

In our calculation, we look at proton or neutron
transitions leading to final states in ' C, for "8 or
"C targets, respectively (or the time-reversed reac-
tions where the initial state is ' C}. We assume that
the ground state of "B may be represented by a

3
(lp —,) hole state, and that the final states populated
in this reaction are the ground state of '2C (assumed

3
to be a closed lp —, shell), and particle-hole states in
'2C with a (lp —,) hole. In the calculation of Tsai
and Londergan the "B(p,y)' C transitions were
estimated using the particle-hole amplitudes of Qjl
let and Vinh Mau for states in ' C.

In Sec. III we review the qualitative features of
the full (p, y) spectrum predicted from TL. In this

(2.2)
N&

Here, cor= ~kr~ is the photon energy, and e~(kr) is
the photon polarization vector of helicity A, . All
equations are presented in the radiation gauge and
we use units in which iri=c= l. The final state of
the nuclear system is denoted by gf.

We calculate the transition amplitudes in a spec-
tator farmalism; that is, the incident nucleon is as-
sumed to radiate a photon in the presence of the
strong field of the target, and the final state of the
system can be factorized into the product of a wave
function for the target nucleus in its original state
and the incident nucleon in a single-particle (shell
model) state relative to the target. The direct-
reaction model for the (p, y} process neglects the
coupling of excited target states in the radiative

FIG. 3. Schematic picture of the direct-reaction
model of radiative capture. An incident nucleon of
momentum k; interacts with the target nucleus in state

The nucleon emits a photon of momentum kz and
is captured into a single-particle shell model state f
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work, we concentrate on the transitions leading to
the ground state of ' C and to high lying transitions
in ' C with excitation energies 18.4—20.6 MeV
(since these correspond to cross sections obtained by
Blatt et al. at IUCF). ' From particle-hole cal-
culations in the 2=12 system we expect the (ld —,)-

(lp —,)
' particle-hole strength to be concentrated in

this excitation energy region in ' C. Inelastic
scattering experiments have shown that both T=O
and T=1, 4 states in ' C appear at about
19.2—19.6 MeV excitation energy. As Donnelly
and Walker have stressed, the "stretched"
particle-hole states built upon closed-shell nuclei are
well represented by pure one particle-one hole con-

figurations. We expect to see much of the (p, y) re-

action strength at these excitation energies leading
to these stretched pure particle-hole configurations.

At the same time, however, we also expect to find
a concentration of 1,2, and 3 excited states in
' C in this energy region. When we discuss our cal-
culations of the radiative capture transitions and
compare with the experimental data in Sec. III, we
will examine two different simple estimates of the
composition of the capture strength expected at
these energies.

For the nuclear current operator j(r) in Eq.
(2.1), we take the one-body convection and spin
magnetic currents, of the form

j(r)=e g
a=1

2 [5(r~—r) V —V~5(r~ —r)]+ 5(r~ —r) 0 (a) && V
2M N

(2.3)

In Eq. (2.6), pg is the nucleon magnetic moment in
nuclear magnetons

1+r3(a) 1 —r3(a)
P =

2 PP+ 2 Pn (2.4)

where pp
——2.79, p„=—1.91. With the spectator

model for the nuclear states, using the one-body

currents then involves taking the matrix element of
the one-body current between an initial nucleon

scattering state and a final single-particle nucleon
wave function. We have written out the txluations

for these transition matrix elements and the mul-

tipole expansion of the electromagnetic potential in

the Appendix. Performing an integration by parts
for the electric multipole operator and using
Siegert's theorem, we replace the divergence of the
one-body current by the matrix element of a one-

body operator between initial and final nuclear
wave functions. The magnetic multipole contribu-
tions are added separately to the electric multipole
amplitudes.

For the relative wave function of a proton with
the target nucleus, we used optical potentials
relevant for the scattering of a nucleon from ' C
(due to the scarcity of p+ "Boptical potentials in
this energy region). The nucleon-nucleus potential
is of the form

d
U(r)= Vc(r) —Vpf(r)+4aIVD f(r)

+ 2 V» — f(r)L c7.1 1 d (2.5)

Vc(r) is the Coulomb potential (the nuclear
Coulomb potential is taken to be that due to a uni-

form sphere of charge of radius re', where

rc ——1.25 fm). The parameters Vo, IVD, and V„are
taken from a potential used by Halderson and Phil-

pott to fit proton scattering from ' C in this ener-

gy region; they are listed in Table I. The form fac-
tor f(r) was a Woods-Saxon form, with radius

ro 1.25 fm and —d—iffuseness a=0.55 fm. For the
final proton shell model state, we calculated the
single-particle wave functions in a potential found

by Birkholz" to be a good representation for
describing the photodisintegration of ' C in a con-
tinuum shell model calculation around the giant di-

pole resonance region. The shell-model potential of
Birkholz had the form of Eq. (2.8), with IVD ——0.
The values of Vo and Vso are given in Table I.

The 19 MeV excited state in ' C is particle un-
5

bound, and the 1d—, wave functions calculated with
the Birkholz potential are not bound. As a result
we should calculate the (p, y~9) reaction using a con-
tinuum wave function for the final proton single-
particle state. In the calculation reported here, we
used the Birkholz single-particle potential but we
confined the wave function in a spherical box of ra-



J. T. LONDERGAN AND L. D. LUDEKING

TABLE I. Parameters for optical potentials used in this work. All strengths are in MeV,
and radius and diffuseness parameters are in fm. The parameter 8' specified for the potential
of Abdul-Jalil and Jackson is given by 8'=10+ 0.14E, —2)(10 E, . For the value of
8'v with that potential, the value specified was 8'v ——1.29678' —7.538 or 8'v ——0, whichever
was larger.

Halderson and Philpott

(Ref. 48)

Birkholz

(Ref. 11)
Abdul-Jalil and Jackson

(Ref. 52)

~o

Q]
'v

Wg)

r2

Q2

V„
r3
Q3

W„
r4

Q4

46—0.2 EL
1.25
0.55

3.19
1.25
0.55
6.26
1.25
0.55

70
1.151
0.57

5.5
1.151
0.57

24.13—0.0866 E,
1.454
0.554
1.296—7.538 (or zero)
8' —8'v
0.932
0.612
3.81—0.019 EL
0.583 + 0.00274 EI
0.225
—4.0+ 10.8S exp( —0.020S E )

1.83—0.0064S E
o.594+ 0.000616 E,

dius 10 fm. For these single particle states, the
wave functions we use do not have the correct con-
tinuum behavior at large distances. This is a poten-
tially serious deficiency in calculating radiative cap-
ture matrix elements, however, as we shall see in
Sec. III, our results seem to agree with estimates of
(p, y) transitions which use more realistic continuum
wave functions for the unbound final-state pro-
ton 48,49

III. RESULTS AND DISCUSSION

The proton radiative capture measurements of
Kovash etal. showed large transitions to states in
' C with excitation energy around 19 MeV. It was

suggested by Arnold that this might be the result
of direct capture leading to particle-hole states in
the residual nucleus. This was investigated by TL,
who used bound and scattering states for a nucleon
calculated with the shell model potential and residu-
al interaction used by Birkholz. In Tl., the final
states were assumed to be one-particle one-hole

3
states relative to a closed 1p —, shell; the energies and

particle-hole amplitudes for these states were taken
from the random phase approximation (RPA) cal-
culation of Gillet and Vinh Mau.

If we restrict ourselves to the shell model wave
function (i.e., wave functions calculated from the
shell model potential only), then we obtain a spec-
trum of radiative capture strength corresponding to

each particle-hole excited state in ' C. In Fig. 4, we
show the calculated transitions for "B(p,y)' C vs
the experimental data of Kovash etal. ' ' for a
proton incident energy of 40 MeV and a photon an-
gle of 60'. In Fig. 4, the solid lines represent those

5 3
states which are predominantly 1d—, particle-1p —,

hole states (i.e., the coefficient for that state in the
Gillet-Vinh Mau calculation is greater than 0.75).
%e see that the observed concentration of strength
at about 19 MeV coincides with a concentration of
1d—, single particle strength in a particle-hole pic-
ture.

Averaging the TL shell model results over the
photon response of the detectors yielded a spectrum
very similar to the experimental data, except that
the magnitude (the dashed curve in Fig. 4) was

1

only about —, as large as the data. The shell model
calculation corresponds to calculating the proton
scattering waves in a purely real and quite deep
(U= 70 MeV) central potential. Radiative capture
(or photodisintegration) cross sections depend
strongly on the depth of the distorting potential,
thus increasing the depth of the potential decreases
the predicted (p, y) cross section.

The observed (p, y) strength is consistent with ra-
diative capture transitions to a group of particle-
unbound excited particle-hole states in ' C which
are predominantly 1d—,-( lp —, )

' in character.
These results suggest that a direct-reaction calcula-
tion with a conventional optical potential, which de-
scribes the elastic scattering of a proton from "8,
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FIG. 4. The spectrum of photons emitted from
"B(p,y)' C for E~=40 MeV and 0=60'. Differential
cross section (d o./dQdE~) (pb/sr/MeV) vs excitation
energy in ' C. Solid curve: data of K.ovash et a/. , Ref.
39. Dashed curve: theory of Tsai and Londergan (TL),
Ref. 43 including only the "shell model" or direct reac-
tion term. Vertical lines show the excitation energies and
relative magnitudes of the ' C particle-hole states used in
the direct reaction (p, y) cross sections of TL. The solid
vertical lines represent those states which are predom-
inantly (1d

2
)-( 1p 2 )

' states in ' C.

may reproduce both the magnitude and energy
dependence of the experimental (p, y) transitions.
We investigate this possibility in this paper.

We have calculated the transitions "B(p,yo)' C
and what we call "B(p,yi9)' C. We evaluate the
ground state transition amplitude using an incident
proton distorted wave, and a 1p —, single-particle

ground state calculated with the Birkholz shell
model potential. " In Fig. 5 we show the differen-
tial cross section for the (p, yo) reaction versus pro-
ton laboratory energy Ez and the scattering angle 0
of the photon relative to the proton. To show the
qualitative features of the (p, y») reaction, we have
calculated a (p, y) transition from a continuum pro-
ton to a id —single-particle final state, assuming2

5
that all of the 1d—, strength is concentrated at 19.2
MeV excitation energy. This cross section is shown
in Fig. 6.

The theoretical curves are given in 10 MeV inter-
vals from 10—80 MeV proton energy. For the
ground state transition, the 10 MeV cross section is
dominated by E 1 transitions (the giant dipole reso-
nance energy for the ground state occurs at E~-7
MeV). All multipole transitions up to L=6 are in-

80~
0 8 90 (deg) 150

FIG. 5. Calculated differential cross section
"B(p,yo)' C leading to the ground state of ' C.
(do/dQ) (pb/sr) vs proton laboratory energy E~, from
10—80 MeV and vs the scattering angle 0 of the photon
relative to the incident proton direction. Curves are
given every 10 MeV.

eluded to insure convergence at all energies. At
higher energies the higher electric multipoles and
the spin magnetization current contributions make
the cross sections increasingly forward peaked in
angle.

For the radiative capture transition to the 1d—,

single particle (lp —, hole) state in ' C, the calculated

cross section exhibits a large peak at Ez -21 MeV.
This peak is due primarily to E1 transitions. At
higher energies, the cross section decreases in mag-
nitude and develops a strongly forward-peaked an-

gular distribution, due to interference between E 1

and the higher electric multipole amplitudes.
Excitation functions have been obtained for a

scattering angle of 60', for both the ground state
and "19 MeV" transitions, by Blatt et al. ' The
normalizations of these data have been checked by
comparing with similar radiative capture data taken

by Weller et al. at TUNI. . ' In Fig. 7, we compare
our calculated excitation functions with the data.
The "(p,yi9)" data shown in Fig. 7 represent the
sum of (p, y) capture transitions leading to final
states in ' C from excitation energy 18.4—20.6
MeV. As can be seen from Fig. 4, this excitation
energy region contains several 2, 3, and 4 excit-
ed states which are predicted to be dominated by
1d—, single particle strength.

The theoretical (p, y») capture strength was cal-
culated in two ways. First, we assumed that the ex-
periment was measuring only transitions to the 1d—,

proton final state. This is just the capture cross sec-
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FIG. 6. Calculated differential cross section for
"B(p,y»)' C. The final states are the 1d—', -(1p—,)

particle-hole states in ' C, assumed to be degenerate at
excitation energy 19. 2 MeV. Notation is that of Fig. 4.

tion shown in Fig. 6. However, this will overesti-
mate the experimental cross section since the resi-
dual interaction will fragment the ld —, strength into

many states, and some of this strength would not be
seen in the experimental energy range 18.4—20.6
MeV. As a simple estimate of the effects of frag-
mentation of the single-particle strength, we have
multiplied our theoretical cross section by 0.8 (from

5
TL, we estimate that almost 80% of the ld —, radi-

ative capture strength is found in this range of exci-
tation energy in ' C). This is shown as the solid
curve in Fig. 7. As a second approximation, we
took all of the particle-hole states in ' C from
18.4—20.6 MeV excitation as predicted by Gillet
and Vinh Mau (a mixture of ld —,, ld —,, and 2s —,

3

particles states coupled to a lp —, hole), calculated the
direct reaction (p, y) amplitudes to each state, and
summed over all the states. This result is the
dotted-dashed curve in Fig. 7.

The two predicted (p, yl9) curves are quite similar;
the slightly different energy dependence reflects the
fact that the dotted-dashed curves contain contribu-

3 1

tions from ld —, and 2s —, single-particle wave

functions, in addition to ld —, strength.
lation correctly predicts a much larger (p, y&9) cross
section than the (p, yo) result, although the (p, y~9}
theoretical curves overestimate the radiative capture
strengths for Ez )50 MeV. The direct-capture cal-
culations fail to produce the energy dependence of
the experimental excitation functions. The (p, yo)
cross section underestimates the data at low ener-
gies the (p yl9) theoretical cross section is smaller
than the experimental data below 50 MeV and

I

20 40 60 80
E, (Mev)

FIG. 7. Cross sections for "B(p yo) C and
"B(p,y»)' C vs proton energy Ep for scattering angle
0~=60. Data is from Blatt eta/. , Refs. 41 and 42.
Open circles: "B(p,yo) cross section. Solid circles:
"B(p,y~9)' C cross section. Dashed curve: direct reac-
tion calculation of "B(p,yo)' C. Solid curve: theoretical
"B(p,y»)' C cross section assuming the entire transition
is to a 1d—single-particle state at 19.2 MeV excitation.
Dotted-dashed curve: "B(p,y»)' C cross section to sum-
med particle-hole states in ' C between 18.4—20.6 MeV
excitation using the ' C excitation energies and particle-
hole amplitudes of Gillet and Vinh Mau, Ref. 45.

peaks at about 21 MeV, whereas the data has a
maximum near 30 MeV.

One reason that our (p, yo} result is too small is
that we have not included the important "semi-
direct" amplitudes which virtually excite the
coherent set of particle-hole states which make up
the giant dipole resonance (GDR) in ' C. "Semi-
direct" amplitudes of the type shown in Fig. 8(b)
are important in reproducing the location and shape
of the giant dipole resonance. Consequently, we ex-
pect the direct reaction calculation to underestimate
somewhat the (p, yo) cross section, particularly in
the vicinity of the GDR [E~=7 MeV for the (p, yo)
transition].

For the (p, yl9) cross section, our calculation
predicts neither the magnitude nor the shape of the
60' excitation function. There are several possible
reasons for the disagreement between theory and ex-
periment: (a) inadequacy of the optical potential
used for the p+ "8 distortions; (b) the use of a
bound state wave function to represent the unbound
ld —, proton state; (c) overall normalization effmts
(either of the data or in the calculation); or (d) a
more complicated reaction mechanism than we em-
ployed.

The shape of our (p, y~9) excitation function
may be a result of using a 1d—, single-particle wave
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(a) (b)
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U D

(c)

FIG. 8. Schematic diagram of important contribu-
tions to (p, y) reactions in the vicinity of the giant dipole
resonance region. (a) Direct reaction contribution; (b)
and (c) "semidirect" reactions involving virtual excita-
tion, via the residual interaction, of the coherent
particle-hole states which make up the giant dipole reso-
nance (GDR). This resonant state is then coupled to the
photon. Diagram (b) dominates in the GDR region.

function confined to a spherical box of radius 10
fm, rather than using a continuum wave function
for this state. This is unlikely, as we can compare
our result with the energy dependence obtained by
Halderson and Philpott, ' who used continuum
wave functions for the proton in particle-unbound
final states. In Fig. 9 we plot the energy depen-
dence of our results against the ld —, continuum re-

sults of Halderson and Philpott. Both calcula-
tions agree quite well, and both give a maximum
in the 1d—, strength at an energy 8 or 9 MeV below
the experimental peak; our approximation for the
ld —, single-particle wave function gives a reasonable
estimate of the shape of the (p, yi9) excitation func-
tion in this energy region.

Our theoretical (p, yi9) cross sections fail to repro-
duce the experimental 60' excitation functions. The
peak occurs too low in energy and the magnitude of
the (p, yi9) cross section is incorrect. This situation
is similar to that which exists for direct-reaction
(p, yo) calculations in the GDR region. The experi-
mental (p, yo) peak occurs at a higher energy than
that predicted by the direct capture model; the mag-
nitude of the cross section at the resonance peak is
larger than the prediction (in many nuclei, the ex-
perimental cross section is an order of magnitude
larger than the direct-capture result). The energy

1

50
I I I I

20 30 40
Eii(MeV}

FIG. 9. Calculated energy dependence of the "B(p,y)
reaction for 8&——60' leading to the (1d—) final proton

state. Solid curve: our calculation using a d —, single

particle wave function confined in a 10-fm spherical
box. Dashed curve: 1d—strength obtained by Halder-

son and Philpott {Refs. 48 and 49) using a continuum

d—wave function.
2

60

Mesa(E1) -Mp(E1) 1+ iI gE —Eg+r 2

(3.1)

Here, MzzD is the electric dipole amplitude in-
cluding both the direct-capture part and the semi-
direct capture part and Mz is the direct-capture
amplitude alone; b,E is the shift in energy of the di-

dependence of the GDR also differs from the pre-
dictions of the direct-capture model.

This is understood as being due primarily to the
coupling of the incident nuclear state to the GDR
coherent particle-hole states, followed by radiative
E 1 decay of the GDR state. Brown first gave a
simple schematic explanation of this effect, and it
has since been corroborated by detailed calculations
of the nuclear shell model in the continuum. '

The situation is shown schematically in Fig. 8,
where Fig. 8(a) represents the direct-capture
mechanism and Fig. 8(b) gives the semidirect con-
tribution for (p, y) reactions. Assuming that all of
the electric dipole strength is concentrated in a sin-
gle state at lhco excitation, then the qualitative ef-
fect of coupling to the giant dipole state can be tak-
en into account by multiplying the E1 contribution
to the direct-capture amplitude by an enhancement
factor
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pole state from the average unperturbed particle-

hole energy; Ez and I z are the energy and width of
the GDR; and E~ is the photon energy.

Equation (3.1) gives a qualitative estimate of the
effect of a concentration of E 1 strength at the exci-
tation energy of EIi above the final state with a
width I ii, in terms of an enhancement of the E 1

direct-capture amplitude. We have used Eq. (3.1) to
see what enhancement of our E 1 direct-capture am-
plitude for the (p, y, 9) reaction is necessary to make
the 60' excitation function agree with the data. We
have multiplied our calculated E1 direct capture
amplitudes for (p, yi9) by the direct-semidirect
schematic model factor of Eq. (3.1) with DE=4
MeV, I ii

——12 MeV, and E~ ——23 MeV (i.e., Ez
corresponds to an excitation energy of about 42
MeV relative to the ground state of ' C). We have
left all other multipole amplitudes unchanged. In
Fig. 10, we show the 60' excitation function both
with and without this enhancement factor. The
theoretical excitation function is now in very good
agreement with the experimental data for incident
proton energies below 50 MeV.

The angular distribution for Ez ——28 MeV is
shown in Fig. 11. The solid curve is the theoretical
angular distribution as calculated with no enhance-
ment of the E 1 amplitude, and the dashed curve is

~ ~

I

60 90 l20 l50 l80
e (deg)

FIG. 11. Theoretical angular distributions for (p, y)
transitions on "B,for proton incident energy 28.7 MeV.
Dotted-dashed curve: "B(p,yo)' C. Solid and dashed
curves: "B(p,y~9)' C, same notation as Fig. 10. The dot-
ted curves are the cross sections calculated with the elec-
tric multipoles only, and show the size of the effects of
the spin magnetization current on the (p, y) cross sections
at this energy. Data are from Refs. 41 and 42.

bC','a 'a

IO
I

20
I I

50 40
Ep (MeV)

I

50
I

60

FIG. 10. Effect on the "B(p,y~9)' C 60' excitation
function of enhancing the theoretical transition ampli-
tude. Circles: data of Refs. 41 and 42. Solid curve:
theoretical calculation assuming transition to 1d—,

single-proton state at 19.2 MeV excitation. Bashed
curve: result of enhancing the E1 transition amplitude,

via Eq. (3.1), using EE=4 MeV, E& ——23 MeV, and

I g ——12 MeV.

the result when we enhance our (p, y») E 1 ampli-
tude. The angular distribution is noticeably altered
by enhancing the E1 amplitude. This is because the
El-E2 interference is primarily responsible for
changing the shape of the observed angular distri-
bution, and is strongly affected by increasing the re-
lative strength of the E1 contribution. The dots are
the experimental data. The fits to both the 60' ex-
citation function and the angular distribution at
28.7 MeV are noticeably improved when we in-
crease the theoretical E 1 amplitude by this factor.

To show that the contributions from magnetic
multipole transitions are relatively unimportant, we
have also calculated the differential cross sections
neglecting the spin magnetization current contribu-
tions and the magnetic multipole part of the con-
vection current. These are shown as the dotted
curves in Fig. 11. We see that at a proton energy of
28.7 MeV, the magnetic contributions are rather
small at all angles. %e have included the theoreti-
cal angular dependence of the (p, yo) cross section in
Fig. 11 (the dotted-dashed curve).

At somewhat higher energies, we compare the
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direct capture model results with the cross sections
of the time-reversed reaction ' C(y,po) "8 as meas-
ured at Glasgow by Matthews et al. (Fig. 12). For
a photon incident energy E„of60 MeV, our calcu-
lated forward-angle cross sections are smaller than
the data but agree with the experimental cross sec-
tions for 8)90'. At Er ——80 MeV, the forward-
angle cross sections agree with the data, but the
back-angle cross sections tend to be too high. As
with the (p, y) transitions, our calculations are quali-
tatively correct but do not reproduce the energy
dependence of der/d 0 for fixed scattering angle.

As the energy increases, the spin magnetization
currents play an increasingly important role in the
photonuclear reaction. The dotted-dashed line in

Fig. 12 gives the result of neglecting the one-body
spin-magnetization current in these reactions. At
forward and backward scattering angles, the spin
magnetization current accounts for about —, of the

total (y,po) transition.
We have calculated the radiative capture transi-

tions using a different potential to describe the pro-
ton scattering wave, in order to estimate the depen-

dence of our results upon the description of the con-
tinuum proton wave function. We used the optical
potential of Abdul-Jalil and Jackson which was
obtained by fitting proton scattering and polariza-
tion data from light nuclei in the energy range
50—160 MeV. The optical potential of Abdul-Jalil
and Jackson had the form

I l

rrr

IO—

80

O.I—

I I I I I

50 60 90 l20 l50 I80
e (deg)

FIG. 12. Photodisintegration reaction ' C(y,po) "B vs
proton scattering angle 0, for incident proton energies 60
and 80 MeV. Data is that of Matthews et al., Ref. 28.
Solid curve: theoretical calculation; dotted-dashed curve:
theoretical calculation using convection current only

'

(neglecting spin magnetization current). Dashed curve:
calculation using the optical potential of Abdul-Jalil and
Jackson (Ref. 52) to describe the proton scattering.

V(r) = Vz(r) Vo(r)fi(r) —i Wv—fz(r) 4az WD —fz(r) + z V„ f3(r)+iW„ f4(r) 1 o .
d 1 d . d

Sod sod 4

(3.2)

f;(r)= 1+exp
a;

(3.3)

The values of the strengths, radii, and diffuseness
for the 13 parameters in these potentials are given
in Table I. With these potentials, the real and ima-

ginary spin-orbit potentials have quite different
shapes.

The results are shown versus the ' C(y,po)"8
data in Fig. 11; the dashed line gives the photonu-
clear transitions calculated using the Abdul-Jalil

In Eq. (3.2), Vc(r) is the Coulomb potential, and
each f; (r) is a Woods-Saxon potential

and Jackson potential for the p+ "B scattering.
The cross sections calculated with this potential
tend to be larger at forward scattering angles than
those using the Halderson-Philpott potential; at
some angles the difference is as large as a factor of
2. Although both potentials give results which are
in qualitative- agreement with the data, neither po-
tential reproduces the quantitative behavior of the
photonuclear cross sections at both energies (al-
though the Abdul Jalil-Jackson potential gives good
agreement with the data at Er 60 MeV). ——

We find that the (y,po) cross sections calculated
with two different optical potentials but the same
bound-state wave functions produce results which
differ by as much as a factor of 2 at some angles.
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Our results are similar to those of Boffi et al. ,
who used various combinations of optical potentials
and bound state wave functions in direct reaction
calculations of (y,po) reactions on light closed shell
nuclei. They found even larger variations (some-
times greater than a factor of 5) in the (y,po) cross
sections calculated with different combinations of
bound state and scattering wave functions. Fink,
Hebach, and Kummel first pointed out the strong
sensitivity of the photonuclear reactions to the
choice of bound state and scattering single-particle
wave functions in a direct-reaction calculation.

We have also calculated the ' C(y, no)"C cross
sections in the same direct-reaction model. We use
the effective charges for the neutron in the Ith elec-

tric multipole amplitude
' Iz

e„(l)=e (3.4)

CO

l0—

0.l 1 I I I II 60 90 I20 I50 l80
{deg)

FIG. 13. Photoneutron reaction ' C(y, n 0 )"C vs neu-

tron scattering angle 8, for incident photon energies 63
and 79 MeV. Data is that of Schier and Schoch, Ref.
32.

For A = 12, this c.m. effective charge is negligible
for all but the E 1 multipoles. In addition, we have
the contribution from the neutron spin magnetiza-
tion current. Our results are shown in Fig. 13 for y
energies 63 and 79 MeV. The data are those of
Schier and Schoch. At large scattering angles, our
results are of the same magnitude as the data; how-

ever, the direct-reaction calculation completely fails

to reproduce the large forward-angle (y, no) cross
sections observed by Schier and Schoch. Neither
the magnitude nor the shape of the (y, no) cross sec-
tion is reproduced by the direct-reaction model.

We emphasize this because the failure of the
direct-reaction picture to adequately explain the

(y, no) results implies that an important nondirect
reaction mechanism is present in both the (y,p) and

(y, n) reactions (at least for photon energies of 50
MeV or greater). This casts doubt on the direct-
reaction analyses of (y,po) reactions, ' and even

(e,e'p) reactions at these energies. Such analyses
have attempted to connect the (y,po) reactions to
the proton single-particle momentum density via
the direct-reaction picture. In this light, the large
and forward-peaked (y, n) measurements on ' C and
' 0 provide a persuasive argument for the impor-
tance of semidirect contributions to the (y, N) reac-
tion at intermediate energies. This has been em-

phasized by Hebach, Wortberg, and Qari. 3

IV. CONCLUSIONS

We have examined a direct-reaction model for
nucleon radiative capture and the time-reversed
photonuclear reaction. In this model, the nucleon
radiates a photon in the presence of the strong nu-
clear field, and we take the matrix elements of the
one-body convective current and spin magnetization
operators between a distorted wave for the incident
nucleon and a single-particle shell model state for
the captured nucleon. We have applied this model
to the proton radiative capture transitions on "8,
leading either to the ground state of ' C or to a
band of excited states in ' C between 18.4 and 20.6
MeV excitation. Particle-hole calculations of sim-

ple excited states in A = 12 show that this excitation
region should be populated by a number of excited
states which are predominantly (ld —,)-(1p—, )

' in

character. We have calculated the proton radiative
capture cross sections using two different simple
models for the excited states being populated in the
(p, yI9) reaction. We have also examined the validity
of this model for describing photoproton and pho-
toneutron decays of ' C [i.e., ' C(y,po)"8 and
"C(y n )"C]

This model does reproduce the qualitative
features of these transitions, but it does fail in some

respects:

(i) The quantitative behavior of the excitation
functions is not well reproduced. For the (p, yI9)
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transitions in "8, the direct reaction model predicts
a peak in the 60' cross section at Ez-21 MeV,
whereas the experimental result peaks at about 29
MeV. For our calculation, we showed that the
discrepancy between our result and the data seems
to be consistent with the existence of additional E 1

5
strength (relative to the 1d —, component of
particle-hole excited states in ' C) at an excitation
energy of about 42 MeV in ' C. This additional
strength would not have been included in our
direct-reaction calculation.

(ii) The magnitude and shape of the ' C(y, no) "C
cross sections cannot be reproduced by the direct-
reaction model. The calculated cross sections are
too small by a factor of 4—5 in the forward direc-
tion.

The large experimental (y, no) cross sections pro-
vide strong evidence for the importance of semi-
direct processes in radiative capture transitions.
Hebach et al. have pursued this idea; they sug-
gest that the two-body current amplitudes are large
and can explain the (y,po) and (y, no} data in a rath-
er natural way. It would be very useful to obtain
(n, y) data in the region of the IUCF measurements
(20—60 MeV), leading both to the ground state of
the residual nuclei but also to the important excited
particle-unbound states analogous to the (p, y) tran-
sition observed on a "8 target. Above the GDR
energy region, theoretical direct reaction calcula-
tions tend to predict that (n, y) cross sections should
be dramatically different from (p, y) in both magni-
tude and angular distribution; consequently, com-
paring (p, y) and (n, y) measurements could be very
useful in determining the adequacy of a direct-
reaction treatment of radiative capture.

The theoretical (p, y) direct reaction cross sections
are of the same magnitude as the experimental data,
so the direct amplitude must be an important part
of the full radiative capture process in light nuclei.
Our calculations suggest that the (p, y) and (y,p) am-
plitudes have variations of roughly a factor of 2 be-
tween different realistic bound and scattering wave
functions for the proton.
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APPENDIX: EVALUATION OF
ELECTROMAGNETIC TRANSITION

AMPLITUDES

The photon electromagnetic potential A~(r) for
helicity A, , defined in Eq. (2.2), can be separated into
electric and magnetic multipole operators. The po-
tential can then be written as

In Eq. (Al), DM ~ is the rotation operator (we use
the phase convention of Brink and Satchler, and
Messiah ), and the Euler angles (8,$) are the angles
of the photon momentum k~ relative to the axis of
quantization. We use L =(2L +1)'r .

The multipole operators Mq~ and Ez~ are de-
fined by

MMr w =Js(krr)Y.zr&(r ), . (A2)

M
ErM kV X [j——r, (krr)Yrr. i(r )] .

InEqs. (A2) and (A3), Ypr ~ are the vector spherical
harmonics. In order to evaluate the matrix ele-
ments of the electric multipole operator, it is useful
to split the electric multipole operator into two
parts. We write

(A3)

j,'1) (2)
~LM =~LM +~ LM ~ (A4)

VlQr. «rr) I'z,M(r )1v'L (L +1)
A5)

Ega = krrjr, (krr)&g~(r),v'L (L +1)

g~(x}= 1+x j~(x) .
dx

(A6)

For the energies which we are interested in, the
contribution to the radiative capture amplitudes
from Er',s'r is typically only a few percent of the to-
tal (p, y} cross section.

For (p, y) reactions, we want to evaluate the tran-
sition amplitude of Eq. (2.1).,

(A7)

In Eq. (A7),
l fy} is the final nuclear state (as-

Ag(r)= — g ( i) L—( —1) Dsr, —g( P~ 8~$)
COy L,M

y(E~~ —A,Mg~) .

(Al)
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sumed to be a proton in a single-particle shell model
state relative to the initial core) and ~]t]; ) is a wave
function describing a continuum proton scattering
from the initial nuclear target. We used the one-

body convection current and spin magnetization
I

current

j(r)= j,(r)+ j (r),

where
(A8)

1+re(a)j,(r)=e g -[5(r —r)V —V 5(r —r)],
a=1 2tM

A

j (r)=e g 5(r —r) o(a)XV .
a=1 2MN

(A9)

(Alo)

Since the operator EL~ is the gradient of the func-
tion QL(krr)YLM(r ), we integrate Eq. (A7) by parts
and use the current conservation identity

Bp(r)
V j (r)=-

at
i [H—]v,p( r )] (Al 1)

1+F3(a)
p&,(r)=e g 5(r —r ).

a=1 2
(A13)

The matrix elements of the operators EL~ and(2)

ML~ are then calculated directly and added to the
matrix elements of ELM calculated as described
here.

In our direct reaction model, we have assumed
that the target nucleus acts as a spectator during the
interaction, and we have used only the matrix ele-

ments of the one-body convection and magnetic
currents. Consequently, we need to evaluate the
transition amplitude between an initial scattering
state for the relative proton-nucleus wave function
and a final single particle shell model state (as-
sumed to be bound in a Woods-Saxon potential).

l

—2]re M- L
]/2 X ( ) eLDM, —i, (ky)

i y LM

2L, +1

as was used by Siegert.
In Eq. (All), p(r) is the nuclear charge density

and HN is the nuclear Hamiltonian. In evaluating
Eq. (All), we use the fact that ~1i;) and ~1if } are
eigenfunctions of the nuclear Hamiltonian with
eigenenergies related by

Eg ——Ef +ky,
for the nuclear charge density p(r) we use the point
charge density

(A14)

In Eq. (A14), the axis of quantization has been tak-
en to be the incident momentum k;. Similarly, we
can write the wave function for a single-particle
shell model state with total angular momentum
(J,M), orbital angular momentum i, and additional
quantum numbers a as

&f«) =&njl(r)[Y](r)~1/2]JM .

In our calculation, the 1d—, single particle states are
actually unbound, but we normalized them in a 10-
fm spherical box in order to fac]litate calculations.
With these definitions for the scattering and bound
state wave function, we can then straightforwardly
calculate the matrix elements of the one-body con-
vection and spin-magnetization currents. We
divide the convection current up into its electric and
magnetic multipole moments, and we further divide
the electric multipole operator into two parts via
Eqs. (A4) —(A6). The largest piece is the operator
EI~, which we evaluate by using the current con-
servation identity and the point charge density as
described in Eqs. (A8) —(A13). This leads to the
following expression for the matrix elements of the
one body convection current

(A15)

(A16)

l

The scattering wave function for the initial state is
expanded in partial waves to give the relative @-
nucleus wave function

+'(r) =.v 4~+i'/ J( 1)'—
I;jM

U

1

R]J(r)
X () k [Yl( )~]/2]Jp0 p —p k p
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In Eq. (A16), Ipj represents the quantum numbers

(n», l»jz, tn») of the single-particle proton final state,
and u» =u„ i ~ (r). The coefficient pr, represents the

PPP
spin-isospin coupling from the initial nuclear target,
with spin and isospin (J;,M~) and (T;,T3;), respec-
tively, to the final state of proton plus nucleus with
total spin and isotopic spin (Jy,MJ) and (TJ T3f):

1+F3
2

1
1 —— 1+Z

(A20)

corrected effective charge for the Lth electric mul-
tipole

pr, (p)=( —)
' '~z&f

Go is a geometric factor defined by

Go —( i) +j'pi—»(2J+1)(21+ 1)

(A17)

l —, J J L
X Op —p pM

P

jp J
—mp. . p

L jp
1

I2

(A18)

The radial matrix element I""is given by

F'"(p,lJ L)= f dr ru»(r)gt (kyar)Rtt{r) . (A19)

Note that in Eq. (A16), we have used the c.m. -

for a nucleus with charge Z and atomic number A,
and ~3= + 1 for a proton and ( —1) for a neutron.
The effective charge eq has been derived from long
wavelength arguments and may not be adequate for
the energies examined in this work. For comparis-
on with other work, Halderson and Philpott do
not use an effective charge but instead replace the
convection contribution from the proton and a
coherent contribution from the nuclear target (with
charge Z and mass A). This allows them to use
physical charges for both projectile and target but
replaces the sum over target proton coordinates
with a coherent convective contribution from the
target. Boffi etal. simply use the proton charge
(—e) for all multipoles (they are interested in higher
energies than we consider). For our case (p+ "8),
our approximation of using effective charges is
essentially identical to that of Boffi etal for all.
multipoles except for E 1 amplitude.

The remaining electric and magnetic matrix ele-
ments of the convection current can be calculated

Mr, ,(E' ')=,
~2 g( —) ei&M x(kr)

k;[k,l'" LM

&( g pr(p)GO [C+F'+'(p, lJ,L)+C F' '(p, lJ,L)] . {A21)

Here we define the quantities

F+ (p, lJ,L)= f drr V+(rj)L(kyar)R~(r)

with

Ql»+ 1 l»
+

ZIp+ I r dr

(A22)

r + Qpr

(A23)

&2L +1
G i i (l»,L, l) G i i (l»,L,l),+
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G~ „(Le,Lb,L, )=+2Le+2p+1+2Lb+2v+1
La+I Lb+v Lc La+I Lb+v Lc

0 0 0 Lb L, j.

Mq, (~)=
k.rk 1&/2 lid + ) LDM, A(kr)—(2L. +1)

y&

I'+ = f —r drV+(rj)L (krr)RtJ(r) .

X Pf (P)Go( t)[P'+—'G~ o(l~,L,l)++' 'G, (lp, IJ lp0 pp (A24)

(A25)

Finally, the spin magnetization current contributions can be written

2%8 k
&(2 &( 3) X ( —) Dbt z(kr) g Pg;(P)GoFs(P, /JL')

k, [k ]r LNL' (p ),IJ
(A26)

where

I' s(P~IJ~L ):—I «ru~(rj)1.(krr)Rtz(r),

and.

Go =(—1) r (i)t+~ (2L +1)(2L'+1)(21+1)(2J+1)l~j~

(A27)

1 L'L l
2 J JL jP /PL'

0 0P —P P~ —~p 0 0

T

1

2

lp

Jp

1

12

I L'

J L
(A28)
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