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Exact theoretical expressions for calculating the trinucleon S- and D-wave asymptotic

normalization constants, with and without Coulomb effects, are presented. Configura-

tion-space Faddeev-type equations are used to generate the'trinucleon wave functions, and

integral relations for the asymptotic norms are derived within this framework. The defin-

ition of the asymptotic norms in the presence of the Coulomb interaction is emphasized.

Numerical calculations are carried out for the s-wave NN interaction models of Malfliet

and Tjon and the tensor force model of Reid. Comparison with previously published re-

sults is made. The first estimate of Coulomb effects for the D-wave asymptotic norm is

given. All theoretical values are carefully compared with experiment and suggestions are

made for improving the experimental situation. Vfe find that Coulomb effects increase

the He S-wave asymptotic norm by less than 1% relative to that of H, that Coulomb ef-

fects decrease the He D-wave asymptotic norm by approximately 8% relative to that of
'H, and that the distorted-wave Born approximation D-state parameter, D&, is only l%%uo

smaller in magnitude for He than for H due to compensating Coulomb effects.

NUCLEAR STRUCTURE H and 'He, asymptotic normalization
constants, Coulomb effects, Faddeev calculations.

I. INTRODUCTION

Asymptotic normalization constants for the
trinucleon bound states have received considerable
attention in the last ten years both theoretically
and experimentally. It has been proposed that the
H and He asymptotic normalization constants be

accorded the same status as other trinucleon pro-
perties such as the binding energy and the charge
radius. ' The underlying hope is that these quanti-
ties will provide a means for discriminating be-
tween trinucleon wave functions generated from
various "realistic" models of the NN interaction.
As matters stand at present, these goals have yet to
be achieved, essentially because the experimental
determination of these parameters is not complete,
and theoretical predictions of these quantities have
been limited principally to XN interaction models

without including Coulomb effects. The primary
purpose of this paper is to present a complete
theoretical picture of the H and He S- and D-
wave asymptotic normalization constants with spe-
cial emphasis on the treatment of Coulomb effects;
numerical results for the Malfliet-Tjon (s wave)
and the Reid-soft-core (partial-wave-local) potential
models are discussed.

Physically, an asymptotic normalization constant
echoes the internal dynamics present in the wave
function through overall normalization. Asymp-
totic normalization constants are defined such that
their value is unity when the effective nuclear in-
teraction in the asymptotic channel of interest is a
zero-range interaction. This last statement applies
whether there is a Coulomb interaction present or
not. The effect of the Coulomb interaction is to
make the zero-range-comparison wave function an
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exponentially decreasing Whittaker function rather
than a simple exponential. Since the zero-range
limit is never achieved, due to the boundary condi-
tion on the wave function at the origin, asymptotic
normalization constants differ from unity. In fact,
the deuteron S-wave asymptotic normalization con-
stant is greater than one and is determined unique-

ly by its binding energy and the triplet effective
range, while the D-wave asymptotic normalization
is less than one and appears to follow from disper-
sion theory with only one-pion exchange and the
deuteron binding energy as input. At present,
there is no such fundamental understanding of the
trinucleon asymptotic normalization constants that
might shed light on their proper status in nuclear
physics. Currently, we must be content to accept
their basic definition and the relationships that can
be derived between asymptotic normalization con-
stants and vertex constants which arise in disper-
sion theory. In actuality, it is the latter cir-
cumstance that permits extraction of asymptotic
normalization constants from data.

H and He asymptotic normalization constants

have been obtained from experiment by several dif-
ferent means: (1) forward dispersion relation ana-
lyses (FDR); (2) partial-wave dispersion relation
analyses (PWDR); (3) FDR with Coulomb correc-
tions (FDRC); and (4) fits to tensor analyzing
powers for (d, H) and (d, He) reactions. In Table
I, we list what are considered to be the most reli-
able and latest values. Several points should be
noted. Firstly, there does not yet exist a con'-

sensus for the value of Cs( H~n+d). The source
of this problem may lie in the intrinsic difficulty
of neutron experiments. Secondly, the value for
Cs ( He~p+d) does appear to be well determined.
The two values leading to the weighted average are
FDRC analyses of two different reactions. Third-
ly, it is not yet clear whether Cs —-Cs as one might
intuitively expect. Fourthly, the measured value of
D2, which is approximately related to the negative
ratio of Cz to Cs, clearly indicates that Cz is posi-
tive relative to Cs', the same holds for CD relative
to Cs. Finally, the reader should note that P Dz
[with P to be defined in Eq. (6)] is consistent with
the ratio G2/Gu. Specifically for H(p2=0. 2012

TABLE I. Experimental values for the H and He S- and D-wave asymptotic normaliza-

tion constants.

Quantity

extracted Value Method Reference

C 2(3H~nd)

C ~(3H~nd)

(Cs )'('He~pd)

Dz—-— ( H~nd)Cg)

P2C

D2C- — cf(a)(2He~—pd)
O'Cs

6, C~ ,(3H~nd)
Go Cs

2.6+0.3
3.3+0.1

3.24+0.19'

weighted average
of

~

~

3.3+0.4
3.19+0.24

—0.279+0.012 fm2

—0.339

—0.37
—0.22

0.04S+0.007

FDR
PWDR

(Eg and a2 fixed

at experimental

values)

FDRC

(Z, H)

7,5

9
10

'These values have been adjusted to correct for the fact that the Coulomb zero-range com-
parison function is not normalized to unity in Refs. 5 and 7. See Ref. 12 for details.
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fm ) one finds P D2 ———0.0561+0.0024. To
summarize, the experimental situation is not com-
plete and requires some further effort. Neverthe-

less, already adequate data exist to challenge the
theorist.

In Table II, we summarize the theoretical situa-
tion with respect to work involving realistic models
of the NN interaction and Faddeev calculations.
Scanning the table, we see several interesting
points. Perhaps the most striking is that the
Reid-soft-. core results for Cs( H +n+t—I) are mutu-

ally consistent and agree with the PWDR result in
Table I, whereas the one-boson-exchange model
(OBE) yields a smaller result consistent with the
FDR value. Next, we see for the only calculation
which includes the Coulomb interaction that
Cs -=Cs. Moreover, a quick estimate of D2 from
the Cs and CD values given and the theoretical
model values of p indicates consistency with ex-
periment. Lastly, it is evident that further Cou-
lomb work is needed.

With the above background at hand, the objec-
tives of this paper are threefold: (1).To give a
careful presentation of the formalism for calculat-
ing the trinucleon S- and D-wave asymptotic nor-
malization constants in configuration space, from
integral relations, and with or without the Cou-
lomb interaction; (2) to present complete results
for the 3H and He asymptotic normalization
constants for the Malfliet-Tjon (MT) and Reid-
soft-core (RSC) models of the NN interaction; and

(3) to carry out a complete comparison with exper-
iment.

To achieve the stated objectives, the text is laid
out as follows: Sec. II contains the formalism, Sec.
III comprises our numerical results, the compari-
son with experiment is made in Sec. IV, and Sec. V
closes the main body with a brief discussion and

our conclusions. Two appendices follow Sec. V,
the first of which demonstrates the equivalence of
various decompositions of the Schrodinger equa-
tion containing the Coulomb interaction in corn-

puting asymptotic norms, and the second gives a
useful formula for calculating the Coulomb factor
in the Whittaker norm. Those interested only in
numerical results and comparison with experiment
should skip to Sec. III.

II. FORMALISM

Integral relations for calculation of the triton
asymptotic normalization constant were first de-
rived in Ref. 17 (see also Ref. 18). In this section,
we generalize that work to include the Coulomb in-
teraction and thus obtain integral relations for the
asymptotic normalization of He. ' Our objectives
are to carefully define the asymptotic normaliza-
tion constant of He—especially with respect to
Coulomb factors that enter, to outline the deriva-
tion of the integral relations that follows from the
definition, and to apply the procedure to the
configuration-space, five-channel equations ob-
taining integral relations for the S- and D-wave
He asymptotic normalization constants. For clari-

ty, we divide this section into two parts: Subsec-
tion A contains a derivation of the "He" asymp-
totic-normalization integral relation where three
equal mass, spinless particles interact by means of
a pairwise s-wave short-range interaction, and two
of which carry charge e & 0. In this way we can
emphasize the aspects arising from the Coulomb
interaction without complications due to angular-
momentum coupling. Subsection B contains the
results for the configuration-space, five-channel,
local-potential equations.

TABLE II. Theoretical values for the H and He S- and D-wave asymptotic normalization constants (Faddeev cal-
culations).

Quantity
calculated Value Model B3 (Mev) Reference

Cs( H~nd)
CD( H~nd)
Cs( H~nd)
C ('H nd)
Cs( He~pd)
Cs('H~nd)
CD( H~nd)

1.776+0.003
0.065+0.002
1.612
1.706
1.765
1.76
0.065

RSC5
RSC5
OBE
RSC3
RSC3
RSC5
RSC5

6.96

7.38
6.40
5.78
7.1

13

14
15
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A. Spin independent, s-wave derivation

Consider the case of three identical mass, spin-
less particles, where particle 3 is uncharged and
particles 1 and 2 are positively charged. Assume
that each pair (ij ) experiences the same short-range
s-wave interaction VJ that, in the absence of any
Coulomb interaction V, supports a single two-
body bound state, but that in the presence of the
Coulomb interaction is not strong enough to pro-
duce a two-body bound state. Also, assume that
the three-body system has a single bound state
with these interactions. This shall be our model of
He.

The three-body Hamiltonian can be written as

H =Hp+ V+ V12,

where the subscripts p and d represent "proton"
and "deuteron, " respectively. The overscore in Eq.
(5) indicates that pair (12) is symmetric under in-
terchange. The two-body binding energy for the
bound state of a charged and uncharged particle is
B~ y /——M, whereas B~ 313——/4M represents the
binding energy of the proton to the deuteron in
He. The ground-state wave function can be

decomposed as

%'(12,3)=X(1,23)+X(2,31)

+i)(3,12)

=—X1+X2+g,

where the components satisfy the coupled (Fad-
deev) equations

2 ~ 2
px py —=Hp +Hp
&Px 2'

3

X Vii ~

(2)

(3)

[E Hp —V—gs
—Vi2]Xi = V2s(Xi+'9) ~

C

[E—Hp —Vsi —Vu]X2= V31(Xi+rl) &

c

[E Ho Vi2 V121 )= Viz(Xi+X&) .c
(9b)

(9c)

c a
V12=

X3
(4)

with

Hql(12, 3)=Eel(12,3)

E=——y2 3P2

M 4M

where p„and py are the momenta conjugate to the
Jacobi coordinates x; = rj —rk and y; =
r; ——, (rj+ rk) with i, j, and k taken in cyclic
permutation (see Fig. 1), p„=M/2, p„=2M/3, M
is the mass of a nucleon, and a is the fine struc-
ture constant. The J =0+ ground-state wave
function is determined from

From Eqs. (9), it is clear that as yi =
~ y i ~~ ao (y2 ~ oo ), X,(X2) describes the asymptotic

behavior of %(12,3}as charged particle 1(2}is re-
moved from the bound pair 23 (31). Likewise, as

y3 —+ 00, q describes the asymptotic behavior of
%(12,3) as the neutral particle is removed from the
unbound, charged pair. The operators on the left-
hand side of Eqs. (9) tell us that in these respective
limits, Xi(X2) behaves asymptotically as a decaying
Whittaker function and rl as a decaying exponen-
tial. Within this framework, the asymptotic nor-
malization constant can be precisely defined.

In defining the asymptotic normalization con-
stant for He, we first treat the triton to remind
the reader of details and to make it available for
reference. The triton asymptotic normalization
constant C, is defined from Eqs. (9) with Vi2 =0:

—Pyi

lim %(yi xi)~C~Nzii Yoo(yi)@d(xi),
y&-+ oo

(10)

where

and

[Ho +V(xi )]Ad(xi) = Bd'4(x i), —
1

I d xi@g(xi)@g(xi}=1, (12)

FIG. 1. Example of Jacobi coordinates as used in the
text. The shaded particles are taken to be charged.

&zii =V2P

obtained from

(13)
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(14)

lim %(yi, xi)~ lim X(yi, xi)
y)~ce y)~ oo

W—,1/2(2py i }

ao 2py
Nzz = dydee0

Analogously, when Viz+0 in Eqs. (9), we define
the He asymptotic normalization constant, C, (su-

perscript indicating Coulomb}, as follows:

obtained from

Ns I——dyi [W, 1/2(2Pyi )]

In Eq. (17), I (z) is the gamma function and 3' is
a hypergeometric function. Clearly, when ~~0,
Ãw~Ãzz, and

yi

X FPO(y 1 )@d(x 1 ), (15)

—Py)e —Py)lim W „1/2(2Py, )~ ~e
y)~oo (2Py 1

)"«~0

where W „1/2(2pyi ) is the Whittaker function
that goes logarithmically to a constant at the ori-
gin and decays exponentially for y& ~ oo,

Py& 2MaK= = +0,
P 3P

and
1/2I'(3+~)I'(2+ a )

23F2(a 2 1&+&a;3+~&2+a;1)

(19)

We caution the reader that it is not correct, nor is
it a valid approximation, to use the asymptotic
form of the Whittaker function in Eq. (15). '

Derivation of the integral relation for C, follows
from its definition in Eq. (15) and by use of Eq.
(9a). We project from the left in Eq. (9a) with the
bra & e d y, I

to write

—&~'d yi I (&~+~0,+ I'»}
I &1 &

—&@dyi I (&d+~0„+I'»}I&1 & = &@dyi I

I'» I»+n & (20)

but from Eq. (11) the second term on the left-hand
side vanishes. Therefore,

&@dyi I (&~+~0,+ ~12 }
I &1 &

mass, but on the charged particle. We now con-
vert Eq. (23) into an integral equation

c
3 id31G(31,31)

3 0

=&@d71 I V23 le'2+v& (»)
Proceeding further we define
& (yi) =yi &@dyi IX1& and subtract

&«&@dy I I
~» l&2+v&

4gy) — X) (24}

@dy 1 &1 = & @dy 1 I &1 & (22)
with Green's function

from each side of Eq. (21) to obtain

2d p2 2lcP c( )
dy~

4M» &~dyil v» I»+~&
3

+ 4gy) — P) . 23

The last term on the right-hand side—a matrix ele-
ment of the "polarization" potential —arises be-
cause the charge associated with the bound pair of
particles does not reside at the pair's center-of-

I'(1+~)
M „1/g(2pyi ) W—«', 1/2(2pyi)»

(25}

where M „1/2(2pyi ) is the Whittaker function
that vanishes at the origin and diverges exponen-
tially as yi ~ 00. From Eq. (15), we know that

lim ~ (yi) C, Na W „,1/2(2Py, )I'oo(yi)
y)~oo

(26)

and, therefore, the integral relation for C, becomes
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c 4M vs I (1+a)
3 Ns 2P

X Jo yidyiM ~ in(2Pyi)

x (@,yi I
I'» l&2+g}

there are infinitely many decompositions between
that given above and that of Sasakawa and Sawa-
da, where, in the latter case, the formula for C,
does not contain an explicit polarization term. We
prove that all these representations for C, are
equivalent. This point is important, because in the
next subsection we use the Sasakawa-Sawada
decomposition.

+ 4gy] — X) B.S- and D-eave five-channel derivation

(27)
We note that as a~0 (and therefore ~—+0), Eq.
(27) reduces to the non-Coulomb result of Ref. 17
[Eq. (24}] since M „in(2py, ) ~2sinh(pyi) in
this limit.

Two points should be made about Eq. (27) be-
fore closing this subsection. Firstly, we emphasize
again the importance of Ns in Eq. (27} as de-
fined '

by Eq. (17). Secondly, the polarization
term (the second term within the brackets) is not
unique and depends on the particular decomposi-
tion of Schrodinger s equation into equivalent cou-
pled Faddeev equations for the three components
of %(12,3). In fact, in Appendix A, we show that

After the rather detailed derivation given in the
previous subsection for the spin independent, s-
wave case, the five-channel, configuration-space
derivation for the S- and D-wave asymptotic-
normalization integral relations for H and He
will be more abbreviated. Only essential aspects
will be presented. For notational details beyond
the immediate needs of this paper, we refer the
reader to the Appendix of Payne et al.

We begin by defining the S- and D-wave asymp-
totic normalization constants for H and He. The
H and He bound states have J =—, and the

deuteron has J =1+. Therefore, the H asymptot-
ic normalization constants are defined as

—Py)

[[&o(y" ) XX'n(1)](' lx@(')(,)](' ') "

e
—Pyj

+CD&z~ 1+ + [[& ( )XX (1)]( )Xe( l(x )]( ~ ) (28)p p2 2 2yi I

wh~~~ ~s and Ca are the triton S- and D-wave asymptotic normalization constants, respectively, I'&(y ) is a
spherical harmonic (I suppressed due to coupling), X'~ is a spin- —, state, 4"' is the deuteron wave func-
tion, and i) is the isospin- —, function for three particles, where particles 2 and 3 (the deuteron) are coupled
to isospin 0. Similarly, the He S- and D-wave asymptotic normalization constants C~ and Cz, respectively,
are defined as

»m q'(i' "(y x )~&sNii. ' [[& (y)XX' '(1)]' 'Xe'"(x )]"""I

2

+&/'&$y '
[[&2(yi)XX'n(1)]"n'X@"'(x )]""'"II' .sn(2Pyi)

2
(29)

We can now proceed with the derivation of the Cq
and Cz integral relations and recover the tritium
ones by letting v—+0.

We begin from

where

5

v=1
(31)

(yi, xi)=(1+P +P+)g (yi, xi), (30) and the orbital-spin angular momentum-isospin
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0'(y2 x2)=P 0'(yi, xi),
0'(yi x3)=P+0'(yi xi»

(33)

(34)

and

Vg(yq }=Pcj'yJ

5

V(x, )= g ~
v}V,(x, )(v~ +Pc'

v=1 X&
(36)

The projection operator P& is the product of the
proton projection operators for the particles i and

j. In Eq. (35) the subscript i reminds us that the
actual Coulomb force is between particles i and j,
and that asymptotically

V;(yj)~Pcjalxk (i,j,k cyclic) .

Therefore, asymptotically,

P~' alx, P~' aly3~—0(xi );23 23 —2 (37)

i.e., it is "short" ranged. The V„(xi) represents

the nuclear interaction appropriate to the quantum
numbers v. In conjunction with this three-body

states
~
v) are defined in Table III. The

Schrodinger equation is decomposed such that the
Faddeev components, g ( y i, x i ), satisfy Saskawa-
Sawada-type equations

[HO+ V(xl)+ V2(3 1)+V30 i )—EN"(y i, xi)

[V( 1) V3(32)] P (y2 x2)

—[V(x, ) —V2(y )]1t (y, x ), (32)

where

formalism, we complete our starting point with the
deuteron wave function defined as

4g(xi)= iS}+ iD},us(xi) uD(xi)

X) X)
(3&)

where ~S} and ~D} represent the standard S- and
D-state orbital-spin angular momentum-isospin
functions.

The asymptotic-normalization-constant integral
relations are now derived by coupling the third nu-

cleon to the deuteron to form the two states

and

/Sd = [2 + /3
us(x, ) un(x, )

xi xi
(39)

X& X)
(40)

d L (L+1) 2 2Kp

4M
y i (d,L;y i

~

V(xi)
3

X(P +P+)
~

1(c(1,23)), (41)

respectively (see Table III). The states
~
v} contain

the isospin, spin, and orbital angular momentum
wave functions for the spectator (y i } and the in-

teracting pair (xi). Therefore, following the same
procedure as in subsection A above, we project
from the left with (d,L

~

(L =S or D) on Eq. (32)
and obtain

TABLE III. The 5 states in J„—j„coupling' which compose the three-nucleon wave
function when the N-N interaction is limited to 'So and 'S1 —'D1. J=J„ I9j„=—,the total

angular momentum of the triton. T=T„ t„=—,the total isospin of the three-nucleon

system, where t„ is the total isospin of particles 2 and 3; the small isospin- —component, is

neglected. In the MT models inclusion of this component has been found to have a negligi-

ble effect on C&.

(I„,S„)j„ (I.„,S„)J„ (t„,T„)T

(0,0)0

(0,1)1

(2,1)1

(0,1)1

(2,1)1

(0 —)—1 1

'2 2

(0 —)—1 1

'2 2

(0 —)—1 1

'2 2

(2 —)—1 3
P2 2

(2 —)—1 3
'2 2

(1 —)—1 1

'2 2

(0 —)—1 1

'2 2

(0 —)—1 1

P2 2

(0 —)—1 1

P2 2

(0-)-1 1

'2 2

'Note that the coupling order is reversed compared to Ref. 20.
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where 0 (yi, xi)=&yi xi lf (1»3)& (43)

and

~L (y i ) =y i & d L y i I
P'( 1 23 }& (42}

The equivalent of Eq. (24) then follows directly
from the Green's function

Specifically,

4 oo

~L(yi}=—
3 I, yidyiGL(yi yI)&d L'yi

I
I'(xi)(P +P+)

I 0 (1»3}& .

From Eq. (42), in combination with Eq. (29), we know that

»m ~L, (yi)~CL, Ns ~ «,L, ~i/2(2Ppi) ~

p)~oo

Therefore,

(45)

(46)

L
g(1+Krii) I (1+K)

Ce 4M

Np 2 +'P(2L+1)!! f y, dy,l «,l.+i/2(213yi)&d L'yi
I
I'(xi)(P +P+) ~1(c(1,23)& .

(47)

The non-Coulomb integral relations follow immediately by letting a~0. Since

(2L+1}!
~O,L+i/2(2Iyi ) V 2npViIL+i/2(A i } (48}

where I,(z) is a modified Bessel function, we obtain

CL, =— y&
'

y&I&+&&2 y&,L;y& V x& P-+P+ 1,23
3 P o

(49)

Equations (47) and (49) are used to calculate the results given in the next section. This is a straightforward
numerical task, because the terms represented by &d,L;y i ~

V(xi)(P +P+ }
~
f(1,23) & (excluding the deu-

teron spatial function) with or without the Coulomb interaction are the same terms that appear in the cou-

pled equations that are solved to obtain the components f„or f„

III. NUMERICAL RESULTS

The results of our numerical calculations are
given in Tables IV —VI. They are broken apart ac-
cording to increasing complexity. The results for
the s-wave models of Malfliet and Tjonz4 (MT II-
IV and MT I-III) are given in Table IV, the RSC
three channel (RSC3) in Table V, and the RSC five
channel (RSCS) in Table VI. In what follows NC,
PC, and FC denote no Coulomb, point Coulomb,
and finite-size (proton dipole charge distribution )

Coulomb interaction in the proton-proton poten-
tial.

One of the main results of this work is clear al-
ready from the simple s-wave MT model results in
Table IV. Coulomb effects increase the S-wave

l

trinucleon asymptotic normalization constant by
only approximately one percent. Thus, to a very

good approximation, the H and He S-wave
asymptotic normalization constants are the s~e.
Introduction of the nucleon finite size through use
of a dipole form factor in constructing the Cou-
lomb potential leads to only a slight change in the
Coulomb predictions ( & 0.2%). The more signifi-
cant effect on the values of the S-wave asymptotic
norms evident in the table is due to the presence of
repulsion in the NN interactions, which pushes
probability into the exterior of the wave function.
The MT II-IV model has no repulsion, whereas
MT I-III does possess short-range repulsion; Com-
parison of asymptotic norms for these two models
indicates that repulsion leads to an increase of
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TABLE IV. S-wave asymptotic normalization constant values for the triplet-singlet
models of Malfliet and Tjon.

B3 (MeV) (Cs or Cs)'

NC
PC
FC

11.880
10.849
11.030

8.535
7.870
7.903

[MT II-IV (By=2.2110 MeV)]
0

0.043 925
0.043 473

[MT I-III (Bq =2.2306 MeV)]
0

0.054 364
0.054207

1.873
1.890
1.894

1.959
1.974
1.976

3.508
3.572
3.587

3.838
3.897
3.904

'NC:—no Coulomb; PC —=point Coulomb; FC =—finite Coulomb (dipole proton form factor).

& 5% in the S-wave asymptotic norm value. Fi-
nally, our MT I-III (NC) value of 1.959 is in good
agreement with the value 1.97 quoted in Ref. 16,
indicating consistency with previous work.

Further aspects of the asymptotic normalization
not apparent in Table IV but substantiated by nu-

merical calculations are worthwhile pointing out.
Firstly, an increase in the binding energy due to an
increase in the strength of either the triplet or the
singlet central force interaction leads to an increase
in C&. Increasing the binding draws both the wave
function and the zero range comparison function
in toward the origin; the zero range function is
drawn in more because it is singular at the origin.
The probability of the wave function adjacent to
the asymptotic region is enhanced with respect to
the comparison function, leading to the increase in

Cs. Alternatively this is equivalent to an increase
in the 3H~n+d coupling constant, since the resi-

due at the H pole in the nd scattering amplitude is
directly proportional to Cs (see Ref. 4). Secondly,
the repulsive Coulomb interaction modifies both
the zero-range comparison function and the
asymptotic behavior of the physical wave function.
At the same time it pushes probability away from

the origin into the asymptotic region in the case of
the physical wave function; this increases Cs com-
pared to Cs when the binding energies are identi-
cal.

The values of Cs and Cs for the RSC3 model
given in Table V show the same behavior with
respect to Coulomb effects as the MT models: a
& 1% enhancement. (There is no Cn in this model
since there is no L„=2, as is clear from Table III.)
The most striking difference compared with the
MT models is the lower values of Cs and Cs,
about 11 or 12% smaller than the MT I-III model
results attributable to the introduction of the tensor
force in the triplet interaction. (The S-state proba-
bility is only 92%, which accounts for =-8% of
this decrease. ) Compared to the work of Sasakawa
et al. ' (see Table II), we predict only a 0.5% in-
crease in going from Cs to Cs (PC), whereas they
predict a 3.4% increase. 5

Completing the picture of our calculations are
the RSC5 results given in Table VI which lead to
both the S- and D-wave asymptotic normalization
constants. The RSC5 results for the S-wave values
do not differ greatly from the RSC3 case, being
only slightly larger (&2%). This increase is con-

TABLE V. S-wave asymptotic normalization constant values for the RSC ('So, S,- D, )
potential model in the truncated three-channel approximation.

Case B3 (MeV) Cs or Cs (Cs or Cs)

NC
PC
FC
Bg——2.2245 MeV.

6.384
5.775
5.797

0
0.068 514
0.068 300

1.736
1.744
1.746

3.014
3.042
3.048
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TABLE VI. S- and D-wave asymptotic normalization constant values for the RSC ('So, 'S&-'D&) potential model in
the full five-channel calculation.

Case B3 (MeV) Cs or Cs {Cs or Cs) Ca or C~ Di or Di {fm ) f{a) P {fm ')

NC
PC
FC
PC/NC'
NC/PC
Bd =2.2245 MeV

7.022
6.390
6.414
6.390
7.022

0
0.063 259
0.063 077
0
0.058 938

1.758
1.771
1.773
1.713
1.823

3.090
3.136
3.144
2.934
3.323

0.0658
0.0609
0.0614
0.0561
0.0715

—0.243
—0.2404
—0.2407
—0.245
—0.239

1

0.9354
0.9356
1

0.9396

0.1541
0.1338
0.1346
0.1338
0.1541

'PC/NC=point Coulomb wave function treated as non-Coulomb in extracting asymptotic normalization constants;
NC/PC=non-Coulomb wave function treated as having Coulomb present in extracting asymptotic normalization con-
stants.

sistent with the increase in binding. Moreover, the
Coulomb effects are similar, & 1% increase, and
our non-Coulomb results are in agreement with
those of Refs. 13 and 16 (See Table II). The most
striking prediction of the RSC5 model is that the
D-wave asymptotic norm is lowered by -7—8%
due to Coulomb effects. It should be emphasized
that our calculations for the RSC5 model with
Coulomb constitute the first predictions of Cs and

Cn for this model. When the Coulomb interaction
is absent, our RSC5 value for Cn again agrees with
the results of Refs. 13 and 16 (see Table II). We
predict that CD(CD) is positive relative to Cs(Cs ).
Also, as a check on various possible approxima-
tions, we have calculated the asymptotic norms
with the integral relation for no Coulomb, Eq. (49),
but the RSC5 wave function generated with Cou-
lomb, and vice versa. Clearly, neither represents a
good approximation for computing Coulomb ef-
fects (see PC/NC and NC/PC lines in Table VI).

From the physics viewpoint, several aspects
stand out in the above: (1) Cs & 1, (2) Cs -=Cs, (3)
Cn « 1, and (4) Cii & Cii. Qualitatively, these re-
sults can be understood as follows: (1) The S-wave
asymptotic norm is greater than unity because the
effective nucleon-deuteron wave function is not
singular at the origin like the zero-range compari-
son function and the excess probability appears in
the tail of the wave function. Therefore, even
under their respective normalization constraints,
the nucleon-deuteron wave function turns out to be
larger (by the factor C, ) in the asymptotic region.
(2) The fact that Cs -=Cs is a reflection of the
nearly complete cancellation of the increase in Cs
due to Coulomb repulsion (at fixed binding energy}
and the decrease in Cq due to the reduced binding
energy in the presence of the Coulomb interaction.
(3) The fact that Co « 1 simply reflects the rela-

tive sizes of the S- and D-wave nucleon-deuteron
wave functions. Recall that the D wave a-symptot-

ic norm is defined relative to the S-wave zero-

range function [see Eq. (28}]. (4) The fact that

Cii & CD follows from the same explanation as
given for Cs -=Cs, but in the present D-wave case
the centrifugal barrier lessens the effectiveness of
the Coulomb repulsion in "pushing-out" the max-
imum of the proton-deuteron wave function (rela-

tive to the neutron-deuteron wave function}. Thus

C~ must be less than C~ due to the dominant
binding energy effect.

IV. COMPARISON WITH EXPERIMENT

First, we compare the S-wave asym. ptotic nor-
malization values for the triplet-singlet models of
Malfliet and Tjon (Table IV) with the experimental
values (Table I). We see immediately that the MT
values all lie outside the experimental limits, even
though the MT I-III model is as realistic an S-
wave model as one might want to construct. This
can be attributed to the absence of the tensor force
in the NN interaction. When the tensor force is
present, as in the RSC3 model (Table V), the
values of Cs or Cs are considerably reduced rela-
tive to those of the MT models. Both the S-state
wave function probability and the three-body bind-

ing energy are smaller. Moreover, within present
experimental precision, the RSC3 predictions are
consistent with the measurements. The improved
treatment of the tensor force in the RSC5 model
(Table VI) results in only slightly larger S-wave
asymptotic norm values compared to the RSC3
model; therefore, they are also in agreement with
experiment. Overall, the RSC models are con-
sistent with present experimental data, and they
predict that Coulomb effects are & 1% for the S-
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wave asymptotic normalization constants. This
latter aspect emphasizes the importance of increas-
ing the precision iri determining asymptotic norms
and the accuracy of the triton value.

So far, the trinucleon D-wave asymptotic nor-
malization constants have not been directly extract-
ed from experiment, only their ratio with the re-
spective S-wave asymptotic norms. This is
achieved by choosing the parameter Di (which is
approximately related to the CDICs ratio ) to give

optimal fits to tensor analyzing powers for (d, H)
and (d, He} reactions. The parameter D2 is de-
fined as27

00
4, dyiyi u2(yl)0

15 f dyiyi u0(yi)
' (50)

where the effective nucleon-deuteron wave func-
tions are defined through the overlap (isospin pro-
jections suppressed)

& yi&~„'(1)&'~,'
~

qI~"'«) ) =u0(y 1)~ 2 mn lmD
~

—,
'

m ) Y00(y", )

+u2(yi ) g ( —,mIv lmD
~ , M ) g—(2mI—,M

~

—,m ) Y2 (yi ) .
M m(

(51)

This definition applies to both H and He, i.e.,
i= H or He. ' ' The H and He cases are dis-
tinguished through the asymptotic behaviors of the
ul(y 1 }

(i= H),

where

iFI(2&K 2&5+K& ——1}
f(K)=6

(4+K)(3+K)2FI (2&K&3+K&—1)

—+ 1 .
z~o

(58)

and

e
uo(yi } ~ CSNZR

g)~ao

e
—Py)

u2(yi ) CDNzR
y&~~

3 3

(i= He)

~ „,in(2Pyi)
uo(yi } ~ Cs Nw

p)~ co

(52)

(53)

D2 =-D2 (59)

Clearly, within the limits of the approximations
leading to Eq. (56) and the approximations in ex-
tracting Di experimentally, the RSC5 value of
Dz —0.243 fm——is in agreement with the experi-
mentally extracted value of —0.279+0.012 fm2.

Especially significant is the overall sign. Unfor-
tunately, the experimental values of D2 are not as
well determined as Dz (see Table I), so all that we
can say is that our theoretical values are not incon-
sistent with experiment at this stage. Perhaps
more important is the theoretical prediction that

~—,Sn(2A'1}
uz(yi ) ~ CDNs

P)~ ao 3'i
(55)

Cg)D2=-
0'&s

(56)

C

D2=-—2 cf(K),
Cg)

13'Cs
(57)

Then, to the extent that the yi in the integrand of
the numerator and the yi in the integrand of the
denominator justify replacing the uI(yi ) by their
asymptotic forms, we can derive

to better than 1.1%. Furthermore, it is interesting
to see how compensating Coulomb factors lead to
this result: The reduction in binding energy in-
creases ~D2

~

over ~Di
~

by 15%, but f(K) re-
duces the ratio by -7% and the ratio is reduced
another -8% due to Cz & CD. Thus, the approxi-
mate equality in Eq. (59) results.

The above discussion emphasizes the importance
of the need for further experimental work on the
various asymptotic norm parameters. At the same
time, we cannot expect to find significant Coulomb
effects in Cq or D2 measurements; only Cz is pre-
dicted to exhibit any measurable (-8%) Coulomb
effects. It would be especially valuable to have
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direct extractions of Cii and Cn from experiment.
We also note that realistic force models underbind
the triton and, in accordance with our previous dis-
cussion, correcting this deficiency may lead to an
increase in the calculated values of Cs and Cs.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have presented the theory of
the trinucleon asymptotic normalization constants,
both S- and D-wave, with and without Coulomb
effects. Special emphasis is placed on the impor-
tance of defining these constants relative to nor
malized zero-range comparison functions, especial-

ly in the Coulomb case where up to now this has
not been done. This is particularly important
since, otherwise, incorrect conclusions about the re-
lative importance of Coulomb effects can be
reached. In addition, through a complete com-
parison of our five-channel Reid-soft-core (RSC)
model results with the "best" available experimen-
tal results, it is clear that higher precision measure-
ments of the S-wave asymptotic norms are needed

along with an accurate measurement of the H
—+n+d S-wave value to resolve the present con-
fiict between values. Moreover, it would be ex-
tremely valuable to have a direct extraction of the
D-wave asymptotic normalization constants for
both H and He, since Coulomb effects are
predicted to be largest in this wave. Besides the
above general comments, the main conclusions of
this work can be summarized as follows:

(1) S-wave asymptotic norms: Coulomb effects
lead to less than a 1% increase of the sHe asymp-
totic norm relative to that of H. Both the three-
and five-channel RSC results are consistent with

existing experimental values; in particular, excellent
agreement occurs for He where the data are most
reliable.

(2) D-wave asymptotic norms: Coulomb effects
lead to an approximately 8% reduction of the He
asymptotic norm relative to that of H. No data
exist.

(3) DWBA D-state parameter D2: D2 is pre-
dicted to be negative for the five-channel RSC

model in agreement with experiment. It is approx-
imately equal to the negative ratio of the D-wave
to S-wave asymptotic norms divided by the mass
times the nucleon-deuteron separation energy in
fm . Therefore, the D wa-ve asymptotic norm is
positive relative to the S wave. The predicted
values of D2 are consistent with experiment; espe-
cially for H, where the experimental value is best
known, the agreement is excellent within the ap-
proximations involved. Due to compensating fac-
tors, we predict that D2 for He is reduced in mag-
nitude by only approximately 1% compared to that
of 3H.
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APPENDIX A: EQUIVALENCE OF COULOMB
FORMALISMS IN THE DERIVATION OF INTEGRAL

RELATIONS FOR iHe ASYMPTOTIC
NORMALIZATION CONSTANTS

As mentioned near the end of Sec. IA, there are
infinitely many decompositions of the Schrodinger
equation leading to equivalent coupled equations
for the three Faddeev components of f(12,3) when

the Coulomb interaction is present. They can be
viewed as lying between the extremes of Eqs. (9)
and the Sasakawa-Sawada form as given in Eq.
(32) with Eqs. (9) being the Coulomb formulation
without distortion, the Sasakawa-Sawada form be-

ing full distortion, and the intermediate cases being
partial distortion. Specifically, we introduce a
parameter p, 0&p & 1, and write

(Al)

where

~0 ~23, 1~12 (1 P) ~1 ~23(~3+i) (A2a)

If0 I 31 PI 12 (1 P) ~2 I 31(~1+ri )
3'2

(A2b)
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[E Hp ~12 ~12% ~12(X1+X2)+( p) ~12 X1+( p) 1 12 X2 ~

3'2
(A2c)

Clearly, Eqs. (9) are recovered when p = 1 and the Sasakawa-Sawada equations correspond to p =0. Further-
rnore, it is clear from Eq. (A2a) that we would expect

4M V4n I (1+v) P~ d M (2P )
3 + 2p J p

3 1 3 1 K l/d2 yl

X 1+dVi
l

&23 l&1+v'&+dd (@dpi — &'i) (A3)

Thus, in the Sasakawa-Sawada formulation there is
no polarization term in the integral relation for
C, . This last statement hinges on the assumption
that it is sufficient to consider only the X1 equation

(p =0) in deriving C, . This is not obvious for

p & 1 due to the presence of the polarization terms
on the right-hand side of the 2)I' equation. The
purpose of this appendix is to prove that Eq. (A3)
is the correct expression for C, when 0&p &1.
The proof is equivalent to showing that the two
polarization terms on the right-hand side of the 2)

equation go to zero faster than y~
' in the limit

y1~ 00, i.e., the X1 and X$ functions are critical to
the discussion.

The correctness of Eq. (A3) will be demonstrated

by starting from the p =1 expression and showing
that it can be transformed into the p =0 case. For
the p =1 case, we use Xi' ——Xi, etc., as in Sec. IA,
and for the p =0 case X~ ——Xi, etc. Then, by com-
paring Eqs. (A2) with Eqs. (9), we get

1Xi=Xi+ XiE Hp a/x3 ——xs y1

—Hp +8~+ g(y1), (A5)

where

g(y1)=(@'~y1IX1 Xl& (A6)

1 a a
dye 1E Hp —a/x2 —x3

1 a a
E Hp a ly1 —x 3

—y1

(A7)

x,)
(A8)

Equations (A4) permit us to derive

1~dV| l ~dd l&d+n&+(~'dry — &1)

=(4„y i
V iX +rj&

1 a a
X2—X2+ X2E Hp a lx 3 x—2 y—2

(A4a)

(A4b)

The equivalence of the p =1 and p =0 equations is
proved by showing that the integral

I= I, y1dy1M ., 1/2(2Py1)

1 a a
7l —7l E Hp a/x3 x3—y1—

X Hp +~pg+ g (y1) (A9)

X2 . (A4c)E—Ho —a/x3. x3 y2

vanishes.

By transferring the Hamiltonian operator onto
the Whittaker function, we obtain

3 00 d 2 2aP
2

—p — M a, 1/2(2Py1) g (3'1)

dg(y1) ",d M ., 1/2(2Py )
+3 1M „,1/2(2py1) —y1 (A10)



25 TRINUCLEON ASYMPTOTIC NORMALIZATION CONSTANTS. . . 1629

The integral term on the right-hand side of Eq.
(A10) vanishes identically, because the expression
in square brackets is the Whittaker-function dif-
ferential equation and thus [. ]—=0. The two
boundary terms are the key to the proof. Now it is
known that

Q 00
yi —O

e
g(yi) ~ constantX

y& ~ao

(A16)

(A17)

M «, in(2Pyi) ~ 2Pyi,
yi -+0

~2Pa,
y) 0

(2Pyi)" @,M, 1/2(2Py 1 )
y, ~~ I 1+@

d[M „i(2(2Pyi)lyi]
31

(Al 1)

(A12)

(A13)

and

e—P Xconstant X &2, (A 1g)
dy) y, ~~

where P&P and explicitly P =2@~(Bd+B~).
With the facts given in the last eight equations,
clearly the boundary terms vanish and

and I—:0. (A19)

d[M «, in(2Pyi)/yi] p(2p)"e

y, ~~ I'(1+s)yi
(A14)

g(0) & ce, (A15)

Furthermore, it is possible to show by means of
Eq. (AS) and the explicit form of the Coulomb
Green's function for the operator
(E—Ho —a/yi) ' that

Therefore, the p = 1 and p =0 expressions for C,
in Eq. (A3) are equivalent. This obviously general-
izes for any p K [0,1] and our proof is complete.

Physically, the equivalence of the undistorted
decomposition and distorted decomposition means
that more and more of the polarization term is im-
bedded in the first term of Eq. (A3) through the
functions X$ and rl until p =0; then all of the po-
larization contribution is "hidden" in the first
term.

APPENDIX 8: COMPUTATION OF Ng

The following series approximation is useful in computing Nw/Xza.

~c =&w/&zz =
1/2

I (3+a)1 (2+a)
2 iF2(a', 2, 1+le;3+@,2+@;1)

(81)

K=1+(1—C)a+ [6(1—C)' —m'+ l2]
12

+ (1—C)[2(1—C) —ir +12]—40+20((3)+.16
12

(82)

R~ ——1.027499 66 exact, (83a)

where C is Euler's constant (=0.577215 6649. . .)

and g is the zeta function [g(3)
=1.2020569031. . .]. The exact value of Rc com-
pared to the 2-term (through a2) and 3-term
(through s ) series approximations are given for a

1

representative value of «( = «) by

—=1.02746662 2-term, (83b)

=-1.02749947 3-term . (83c)

Clearly (82) is an adequate approximation under

virtually all circumstances, while the 2-term ap-
proximation is adequate for most applications.
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