
PHYSICAL REVIEW C VOLUME 25, NUMBER 3 MARCH 1982

Interacting-boson-model and open-shell- Tamm-Dancoff-approximation
interpretations of quadrupole collectivity

A. B.Johnson and C. M. Vincent
Department ofPhysics and Astronomy, University ofPittsburgh,

Pittsburgh, Pennsylvania 15260
(Received 20 July 1981)

The collective S-D states used by Otsuka, Arima, and Iachello in their microscopic
theory of the interacting boson model are reinterpreted in terms of conventional concepts of
collective motion. It is shown that a suitable seniority projected one-body excitation opera-
tor acting on a state composed of S and D pairs excites a new D pair. The excitation opera-
tor can be calculated using an open-shell Tamm-Dancoff method. The S-D states are then

pictured as arising from many-quantum excitations of a single collective mode.

NUCLEAR STRUCTURE IBM shell model subspace constructed;
open-shell TDA excitation operator used. Seniority scheme, pairing,
and quadrupole degrees of freedom for describing low energy collective

motion.

I. INTRODUCTION

The interacting boson model (IBM) introduced by
Arima and Iachello' has had encouraging success in
phenomenological applications to low lying collec-
tive states of even-even nuclei. ' More recently Ot-
suka, Arima, Iachello, and Talmi, and Otsuka,
Arima, and Iachello (OAI), among others, have at-
tempted a microscopic justification of the IBM,
raising the possibility that the boson parameters can
be calculated from the underlying fermion Hamil-
tonian. Here we pursue this question following the
general lines of the OAI program.

The so called S-D basis states mapped by OAI
onto boson states are many-fermion states of even

particle number that span a subspace of the entire
shell model space. This collective subspace contains
pairing and quadrupole degrees of freedom ap-
propriate for describing low energy collective mo-
tion. The S-D states are composed of zero-coupled
(S) and two-coupled (D) fermion pair creation
operators. The attempt to describe quadrupole col-
lective motion in terms of pair creation operators is
one of the most novel features of the OAI ap-
proach. In this picture, a typical collective excita-
tion of a given nucleus is seen as the destruction of
a zero-coupled pair and the creation of a two-
coupled pair. On the other hand, a conventional
picture of collective motion is that an excited state
is generated by a one-body excitation operator.

This is the viewpoint adopted in closed-shell ran-
dom phase approximation (RPA) calculations, for
example, where the excitation operator creates a
particle and a hole. The extent to which these two
types of excitations are equivalent is not obvious.

In the present paper we reconcile the pair picture
of collective motion with the conventional excita-
tion operator picture, through an equivalence
theorem. The theorem shows that there exists a
number conserving operator, which, acting on an
S-D state, simply transforms an S pair into a D
pair. Only one S-D state has seniority zero; if this
state is chosen as a reference state or "vibrational
vacuum, " then any desired state of the S-D type can
be obtained by multiple application of the excitation
operator to the reference state.

The excitation operator used in the equivalence
theorem is composed of a one-body operator with
arbitrary coefficients and seniority projection opera-
tors, such that an excitation of a state of good
seniority increases the seniority by two. We propose
an open-shell Tamm-Dancoff-approximation
(TDA) calculation to determine the coefficients in
the excitation operator and therefore the structure
of the D pair. The method is a simplification of
Nomura's open-shell RPA method. Because of the
correspondence between seniority and quasiparticle
number, the method presented here corresponds to
TDA using quasiparticles (QTDA), just as
Nomura's method corresponds to QRPA. Many
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successful applications of QTDA and QRPA are re-

ported in the literature.
In view of the equivalence theorem, it is reason-

able to interpret the D pair as a collective mode ex-
cited by an operator that generalizes the particle-
hole excitation operators of conventional closed-
shell TDA. In constructing the S-D states, the con-
ventional approach is further extended by allowing
multiple excitations of a single collective mode.

In Sec. II we briefly review the OAI program. In
Sec. III we present some definitions and discuss
some basic aspects of seniority and quasispin. Sec-
tion IV presents the equivalence theorem, which is
proved in the Appendix. We use the equivalence
theorem to construct a collective S-D space, in Sec.
V. In Sec. VI we present an open-shell TDA
method of obtaining the coefficients in the excita-
tion operator. Our conclusions are summarized in
Sec. VII.

II. REVIEW OF THE OAI APPROACH

For orientation, we briefly review the microscop-
ic approach of OAI to the interacting boson model
for even numbers of identical nucleons. OAI begin
by constructing a basis for the S-D subspace by us-

ing operators S+ and Dz. These create specific
types of fermion pairs with positive parity and de-
finite angular momentum L: S+ creates an L = 0
pair, while D& creates an L = 2 pair. Built into D&
is a seniority projection operator such that D& act-
ing on an n-particle state of maximum seniority
(u=n) gives a new state of maximum seniority,
u'=u +2. Beginning with the vacuum (n =0) state,
one applies u/2 Dt operators followed by (n —u)/2

S+ operators. The resulting state has seniority v

and is of the type

corresponding boson and S-D matrix elements are
equal, although in practice the construction is ap-
proximated. Thus all observables, in particular the
energy levels, can be calculated in the boson space.
In lowest nontrivial order, the boson image of the
fermion Hamiltonian has the well known
interacting-boson form.

In one way the theory can be seen as a quite
straightforward extension of the seniority scheme to
include L = 2 pairs. However, the novel applica-
tion of pair creation operators to describe quadru-
pole collective motion is central to the IBM, and is
one of its most original and characteristic features.
It is therefore of interest to relate the D pair to a
more conventional picture of collective excitation.
While it has been pointed out in general terms that
states of the S-D type do contain parts with
particle-hole collectivity, ' it is not obvious that the
IBM picture of collective motion can be reconciled
with the traditional "particle-hole" view, in which
collective motion is generated by a one-body excita-
tion operator. The present paper attempts such a
reconcilation.

The original application of the OAI program was
to identical nucleons in a single shell ' of large j.
More recently calculations have been done involving
many degenerate shells and both protons and neu-
trons. ' In this "degenerate approximation, " the
single particle levels are degenerate, and the S and D
pairs are taken as favored pairs (i.e., the lowest en-

ergy v=0, L=0, and v=2, L=2 eigenstates of the
surface delta interaction in the two particle space)
and states of good total quasispin are constructed.
This approach is generalized somewhat when both
neutrons and protons are included, but the S and D
pairs are still represented by favored pairs. A relat-
ed approach is used by Duval and Barrett in their
nondegenerate j-shell calculations. "

The next stage of the OAI construction is to take
appropriate linear combinations of states of this
form, to get a set of orthonormal states of good an-
gular momentum and seniority which span the col-
lective space. These are then mapped onto
corresponding states of n/2 mathematical bosons
created and destroyed by abstract operators s, d&
and s, dz, whose only nonvanishing commutators
are

III. SENIORITY AND QUASISPIN

We introduce an operator a; that creates a
spherical shell model single particle state with
quantum numbers i =—(y;,j;) and m. The labels j;
and m refer to angular momentum, while y; speci-
fies all other necessary single particle labels, such as
the radial quantum number, the parity, and the
isospin label (n or p). The spherical tensor fermion
destruction operator is

[s,s ]= I, [dp, dq ]=5qq. . (2)

As a result of this mapping the boson image of any
fermion operator can be constructed so that- in terms of a;~ —= (a;~ ) .
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S;+——QQ;/2(a; Xa; )0, S; =(S;+) (4)

1 1
The operators a; and a; are the + —, and ——,

components of a quasispin tensor of rank —,. In the
ith shell the quasispin vector S; has components de-
fined by

Q = QP'izQI. MP'.

Here the orthogonal projection operator P„deletes
all but the seniority v component of a state on
which it acts, and

and
LM

QLM = Q xij Ulj (10)

S.o——(¹—Q. )/2,

where

(5)

Q;=(2j;+1)/2, N; = ga;~~a;~ . (6)

The generators of the quasispin SU(2) group satisfy
commutation relations completely analogous to
those between the angular momentum components
J„J+——J„+iJ&. A state with good quasispin in

2.shell i is by definition an eigenvector of S;; its
eigenvalue is (Q; —v;)/2, where v; is the seniority in
the ith shell. '2

The zero coupled pair operator used in construct-
ing S-D states is

~univ)=(S +)'" "' ~%uv) . (12)

The result can be written as follows:

Q ~%'nu)= ——,(n —u)(S+)'" " ' Dry ~~Puv),

(13)

is an arbitrary one-body operator, which is a linear
combination (with coefficients x,z) of the elementa-

ry one-body tensor operators

(11)

Let Q act on an n particle state of seniority u, of
the form

S~ ——ga;Si+ . (7)

In the special case that all a; are equal, this is a
multiple of the raising operator of the total quasi-
spin operator S=g,.S;.

Each S-D state is required to have good total
seniority. Although seniority and quasispin are
equivalent in a single j shell, good quasispin is a
more restrictive requirement in the multishell case.
Thus the S-D states considered here appropriately
generalize those of OAI, but are not eigenvectors of
S . Instead we define the total seniority to be the
sum of the single shell seniorities,

where

Dlu ——gP„+zg p,z(a; Xaj )srP„,f L (14)

VI.

where v;=0; —2S; is the number of particles in
shell i that are not coupled to zero. States of dif-
ferent v are, of course, orthogonal.

The D pair is so constructed that an n particle
state composed of only D pairs has maximum
seniority, i.e., v =n. A maximum seniority state has
no zero-coupled pairs and is annihilated by (S+)t
for any choice of a;. Since S+ does not change u,

the seniority of an S-D state is twice the number of
D pairs.

IV. EQUIVALENCE THEOREM

Consider a number-conserving excitation opera-
tor of the form:

and

PV xV aj—— (15)

We refer to Eqs. (13)—(15) as the "equivalence
theorem. " Its proof, along with the outline of a
more general version, is given in the Appendix.

As appears in Eq. (13), the action of Q has
changed an S pair to a D pair of the form given in
Eq. (14). Also, the resulting state has seniority
v +2 because of the seniority projection operators in

Q . This D creation operator is a minor formal im-
provement over the D operator of OAI, because it
has bosonlike commutation relations with the S+
operator, i.e.,

[DIM,S+]=0 . (16)

This can be seen by applying the commutator to an
arbitrary n particle state of seniority v, noting that
S+ commutes with the seniority projection opera-
tors contained in DLM, and recalling that simple
pair creation operators commute. While the D
operator of Eq. (14) differs from that of OAI, be-
cause the seniority projection is expressed in a more
general way, there is no practical difference since
OAI already specify that the D operator must act
only on maximum seniority states. In the case
where good total quasispin is required, seniority
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PI( =xiiaI ~'

for i =j, and

P;I x;iai+—( —1) xi;a; (18)

for i &j. Equations (17) and (18) show that given
values for the x's the P's are uniquely determined.
However, the converse is not true. Although x;; is
llIllqucly IclRtcd to p(( y p(j ls R llllcRl comblnRtl oil of
x,J. and xJ,-. Thus a continuous family of excitation
operators exists that all give the same D pair.

To eliminate this ambiguity, a convention can be
chosen that restricts the x,~. In Sec. VI we shall use
the convention x,J

——0 for i ~j. In this case, Eq.
(15) holds and can be solved for x;i in terms of P;j
for i)j. Therefore, this convention results in no

projection can of course be replaced by quasispin
coupling.

An ambiguity in the relation between the coeffi-
cients in Q and DLi(I arises, because terms like

Ui and Ui, in the excitation operator respective-
ly induce terms like (a; &&aj)M and (a )&a; )~f L

=(—I)'-i-L (a,'XaJ')LM in the D operator, and so
do not give independent contributions to DL~. To
explore this further assume that some convenient
ordering of the j shells has been chosen, and that
the D operator has been manipulated so that the
sum in Eq. (14) is restricted to i &j. Then for arbi-

trary x;i, the corresponding P's are

loss of generality, assuming of course that aJ never
vanishes.

V. CONSTRUCTION OF THE CGI.I.ECTIVE SPACE

In this section we show how the S-D states can be
obtained using the equivalence theorem, and investi-

gate the role of seniority projection. We dp not dis-
cuss how to obtain an orthonormal set of collective
basis states of good angular momentum since this is
discussed by GAI. Also we will usually suppress
the angular mom. entum labels of the D pair opera-
tor, as we have done with the Qt operator. For the
description of quadrupole collectivity, Q and D
should have I.=2, although formally any value of
I. is possible. When, for the sake of clarity, the
magnetic quantum number of these operators is
needed, a subscript p will be supplied.

It is assumed that a set of a's and P's have been
obtained so that S+ and Q are fully defined. The
coefficients in Q can be obtained as in Sec. VI or
by any other method, e.g., they may be taken from
the one particle matrix elements of a one-body
operator such as the isoscalar electric quadrupole
operator. We do not consider how the o. s can be
obtained; however, the "number operator approxi-
mation" of Otsuka and Arima seems appropriate. '

The n particle seniority zero S-D state is con-
structed by applying n/2 S+ operators to the vacu-
um state. An S-D state of seniority U is obtained by
applying u/2 Q operators to the seniority zero SD-
state, i.e.,

(Qt . . . Qt )(S )ni21»=«S )(n u)/2(D—t . .

quadrupole excitation of the S pairs. In this picture
any S Dstate can be r-eached by at most n/2 steps
of collect1ve excltat1on starting from the U =0 state.
This last statement extends the RPA or TDA pic-
ture of collective excitations since the reference
state can be excited more than once.

In the excitation operator picture, the simple
pair-product structure of the S-D states arises from
the form of the seniority zero reference state and

the seniority projection operators in Q . It is the
seniority projection that constrains Q to convert S
pairs into D pairs, but leave D pairs unaffected. To
see this, consider the result, which is derived in the
Appendix, of an l.+0 one-body operator acting on
the seniority u state of Eq. (12):

where E is a constant. The equality arises from
successive applications of the equivalence theorem.
The U =0, S-D state is of the form required by the
equivalence theorem, i.e., it is composed of n/2 S
pairs acting on a maximum seniority (u=-n) state.
Tllcll QIt RctlIlg oil tllls stRtc glvcs a u=2 stRtc1"uj'2

with (n —2)/2 S pairs and one D pair, which is also
of the form required by the equivalence theorem.
This process can continue since each application of
a Q operator gives a state with S+ operators acting
on a maximum seniority state, which is composed
of D operators.

Equation (19) shows how any state of the SD-
type can be constructed by means of the excitation
operator Q . This prompts the interpretation of the
I.=2 D pair as the result of a number-conse1ming
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QLM i
Vnu &

= (S+ )'" "' 'Ql.~
~

q'uu &

'
(n u)(S )(n —u —2)/22"

X gxijaz[a; Xaj ]I i
%uu & .

An excitation by Q retains only the u+2 com-
ponent of this equation, and therefore eliminates the
first term of this equation. Thus Q leaves preexist-
ing L+0 pairs (e.g., D pairs) unaffected.

In the second term new L+0 pairs appear. Al-
though the generated pairs have nonzero angular
momentum, the antisymmetry of the state induces
seniority u and u —2 components in addition to the
u+ 2 component. These components, which con-
tain indirectly generated I.=0 pairs, are also elim-

inated, so that the resulting state has separate
monopole and quadrupole (if L =2) degrees of free-
dom.

In contrast to Qt is the excitation operator used

by Nomura in his open-shell RPA method. In ad-
dition to a seniority raising term, Nomura s opera-
tor contains a seniority reducing term; this operator,
acting on an S-D state of seniority u, gives a state
with seniority u+2 and u —2 components. Inspec-
tion of Eq. (20) shows that a state of the SDtype-
does not result.

VI. GENERALIZED TDA CALCULATION

In this section, a generalized TDA calculation is
proposed as a way to determine the coefficients in
the excitation operator Q, and so extend the vibra-
tional interpretation of the collective S-D state
along conventional lines. A Q operator obtained in
this way is clearly analogous to those obtained in
conventional RPA and TDA. The procedure is a
number conserving counterpart to TDA calcula-
tions using quasiparticles. Instead of using the
Bardeen-Cooper-Schrieffer (BCS) ground state, we

incorporate the pairing correlations in the seniority
zero S Ds-tate, and instead of exciting two quasipar-
ticles, Qt raises the seniority by two.

%e use the equations-of-motion formalism of
Rowe. ' In this method one attempts to find the
coefficients in an excitation operator of some as-

sumed form, given a Hamiltonian H and a reference
state

i
0 &. Rowe uses the equation

(o
I [Q Il Q ] I

o& =&,(o
[ [Q Q, ] /

o&,

where the subscript y denotes a particular solution
of Eq. (21) with excitation energy, Er, and Qs
=(Qs) . The symmetrized double commutator is
defined as

(22)

In obtaining Eq. (21) Rowe assumes that

Qs I
o& =o (23)

N =(oi U MtU ~io&'i' (26)

and we have used the convention i &j mentioned in
Sec. IV.

The excited state

which implies that the reference state is a vibration-
al vacuum.

%e take as reference state the seniority zero S-D
state

io&=N -'(s )""~0&.

The excitation operator Qr is that of Eq. (9); how-

ever, we rewrite it in the normalized form

Qr= QP„+,gxf(N;, ) '[a; Xaj]MP„,

(25)

A

Qr i
0& =—, n(S+)'" ' —Qxfjaj(Nii) 'P2(a; )&at)~

i
0& (27)

is a sum over the complete set of orthonormal seniority two states allowed in the S-D space with amplitudes

x;J.. The seniority projection operator is necessary only when I.=0 and i =j since then an I- =0 pair propor-
tional to S;+ has been generated. %e ask that the excited states also be orthonormal so that

(0~ QsQr ~0&= gx; x;.=5s (28)
l )J
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[Note that the sum should be restricted to i &j for L =0 or odd L. The L =0 case has been explained. If L is
odd, the terms with i =j in Eq. (27) are zero since (a; Xa; )sr ——0 for L odd. ]

With the choice of operator (25) and reference state (24), Eq. (23) is identically satisfied, and we have that

(o
I [Q, , Q', ] I

o)=s„. (29)

Inserting Eq. (25) into (21) and using Eq. (29) gives

peg g Xkl ~klij Xij =ay~Sr ~

i pj k&l

where

(30)

~klij (+kl) (01 gpuUkl IU+2 s~t g~u'+2+ij ~U'
~
0)(+ij)

V 0

(31)

The x's form the unitary matrix that diagonalizes
the matrix M defined by (31). Since M is real and
Hermitian, the unitary matrix is real orthogonal
and the excitation energies, E&, are real.

A distinguishing feature of the above calculation
is that the excitation operator, Eq. (25), is not pure-
ly one-body in contrast to those used in standard
RPA and TDA. A related, but more complicated,
excitation operator is used in the open-shell RPA
method of Nomura, which is designed to accom-
modate positive parity multipole excitations of
open-shell nuclei, assuming a general seniority zero
reference state. In that method, Nomura uses an
excitation operator that has, among other features,
an additional seniority reducing term, which is seen
to be analogous to the backward going excitations
of standard RPA. Since we include only a seniority
raising or "forward going" term, the method above
can be called an open-shell TDA calculation.

Another feature of this method is that neither the
A

reference state
~
0) nor the excited state Qr ~

0) is
required to be an approximate eigenstate of the
Hamiltonian, although they may be for vibrational
nuclei. The purpose of the above calculation is to
obtain decoupled collective nuclear modes generated
by Qr. Approximate eigenstates are to result from
a diagonalization of H in the collective space gen-
erated by the excitation operator.

Each of the excitation operators obtained by solv-

ing Eq. (31) generates a distinct D pair and has a
distinct excitation energy. Iri order to construct a
set of S-D states with only one type of D pair, one
solution must be selected. For low energy collective
states, the solution with lowest excitation energy
should be selected. The collective modes are as-
sumed to be weakly coupled so that the inclusion of
other modes should give a small correction to the
approximate eigenstates of H.

VII. CONCLUSIONS

The OAI version of IBM maps the states of the
S-D collective fermion subspace onto states of an
abstract boson space. As a result of the seniority
properties of the S-D basis, the OAI mapping per-
mits one to approximately simulate fermion calcu-
lations across a whole range of nuclei. Despite the
practical advantages of the mapping, we have con-
centrated on the structure of the S-D subspace, in
which the physical content of the OAI approach
must be sought.

The S-D space of OAI has been given a physical
interpretation based on an extension of traditional
concepts of collective excitations. The use of
seniority projection in the excitation operator is cru-
cial in establishing a relation between the TDA pic-
ture and the particle-pair picture of OAI. The rela-
tion is expressed in the equivalence theorem, Eq.
(13), where one sees that a suitably defined number
conserving quadrupole operator simply converts an
S pair into a D pair. This suggests that a D pair can
be interpreted as the result of a number conserving
quadrupole excitation" of the nucleus. The adapta-
tion of existing equations of motion techniques to
obtain the coefficients strengthens this interpreta-
tion.

An unconventional feature of the excitation
operator is that it is not purely one-body, but also
contains seniority projection operators. The seniori-
ty projection constrains the excitation to act on S
pairs without affecting preexisting D pairs. It is
only with this constraint (or truncation) that the
boson-number conservation feature of the IBM re-
sults. The extent to which this seniority truncation
influences the accuracy of the method should be in-
vestigated further.

A more general feature not present in standard
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RpA and TDA calculations is the use of many-
quantum states in a set of basis states. States with
different numbers of quadrupole quanta are allowed
to interact via a diagonalization of the fermion
Hamiltonian in the S-D subspace. However, this
feature is also found in conventional anharmonic vi-

brator models, ' so it cannot be regarded as unique
to the IBA. It seems that the IBM is more closely
related to conventional methods than appears at
first glance.

This material is based upon work supported by
the National Science Foundation under Grant No.
PHY-7920762. ,

APPENDIX: PROOF OF
THE EQUIVALENCE THEOREM

The proof of Eq. (13) employs the commutator of
the S+ operator with an elementary one-body
operator

[S+,(a; XtTJ)M]=al(a; Xaj )st . (Al)

[S,(a; Xa,')M]=O . (A3)

By multiplying Eq. (A2) by x,z and summing over i
and j, one obtains

[(S+),Ql.st ]

=m(S+) 'gxjaJ(a; Xaj )st . (A4)

By iterating this equation, one obtains

[(S+),(a; Xaj)M]=m(S+) 'aj(a; Xtt, )I,
(A2)

where we have also used

Replacing m by (n —v)/2 and applying Eq. (A4) to
a maximum seniority state with seniority U gives,
after some rearrangement,

QLM
~

%nv ) = (S+ )'" "'~
QLM

~

%vv )

v)(S )(n —u —2)/22"

X gx,zaI(a; Xaj )st
~

%vv) . (A5)

The next step is to delete all but the u+ 2 com-
ponent of Eq. (A5). Since the S+ operator does not
affect the seniority of a state, we need only consider
whether QLst

~

'Pvv) and (a; Xaj )M ~%'vv) can
have a seniority 0+2 component. Clearly, the
former cannot have such a component since it is a v

particle state and it is not possible for it to have
U+ 2 particles not coupled to zero. On the other
hand (a; Xa~ )st

~

'Pvv ) is a v+ 2 particle state and
can have a seniority u+ 2 component. Therefore
the seniority projection eliminates the first term of
Eq. (A5) and retains part of the second term. The
result can be expressed as in Eq. (13).

The equivalence theorem can be generalized
slightly by allowing each S operator to have a dif-
ferent structure. Let (S+)" "'~ on the left hand
side of Eq. (13) be replaced by g,S+, where S+ ——

g,.a,'S;+. Then the right hand side of (13) would

be replaced by a sum with (n —v)l2 terms such that
in each term one factor S+ is replaced by a
corresponding factor Dl'M. In this case, the excita-
tion operator generates many different D's because
the S pairs are not identical.
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