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Simultaneous excitations in nucleus-nucleus interaction potential
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The imaginary part of the nucleus-nucleus interaction potential for simultaneous excita-
tions of the target and the projectile has been estimated. For comparatively higher rela-
tive energy, the two-body excitation mechanism seems to be the dominant channel. The
theoretical predictions agree reasonably well with appropriate experimental form factors.

NUCLEAR REACTIONS Calculated the imaginary part of the in-

teraction potential for two colliding nuclei for simultaneous excitations.

For two colliding nuclei, excitations of nuclear
states can be initiated either by the single-particle
field of the projectile exciting the target states
(one-body excitation), or by the two-body nucleon-
nucleon interaction potential inducing simultaneous
excitations in both the colliding nuclei. Transfer
of one or more particles across the neck of the nu-

clei, in proximate touch, can also. lead to excita-
tions; collective degrees of freedom, evidently, can
be excited by any one of the above mentioned
mechanisms. Typically, for the one-body excita-
tion mechanism, particle-hole states are excited in
the target or the projectile, where the single-
particle field remains unaltered; for the two-body
mechanism, particle-hole states are simultaneously
excited in both the nuclei and for transfer, particle
in one and hole in the other nucleus is the typical
characteristic. For peripheral collision of nuclei, as
is the case for elastic and inelastic scattering, it is
expected that the excitation spectrum would be pri-
marily dominated by one-body or two-body excita-
tions, the transfer of particles to a large extent is
blocked out. At low energy, when the energy per
nucleon is relatively small compared to the Fermi
energy, the one-body excitation mechanism would
be the most important channel; with the increase in
energy per nucleon, however, the Pauli blocking
gets relaxed and the two-body mechanism tends to
become rather more important.

The imaginary part of the interaction potential
between two ions is the cumulative signature of all
possible excitations. As mentioned, depending on
the magnitude of the relative energy, either of two

mechanisms would constitute the most likely inter-
mediate states. The traditional format for calculat-
ing the imaginary part of the interaction potential
is the second-order potential in a Feshbach type of
formalism. The pole term corresponding to energy
conserving transitions leads to the imaginary po-
tential, whereas the energy nonconserving virtual
excitations, corresponding to the principal value of
the second-order term, lead to the (real) polariza-
tion term.

Recently, there have been several attempts' to
evaluate the imaginary potential. In a previous
publication the present author attempted to calcu-
late the second-order term when the driving poten-
tial happens to be the single-particle potential of
the projectile. In this paper, I propose to compute
the second-order potential starting from the two-
body efkctive interaction between the interacting
nucleons of the colliding nuclei. It is felt that this
procedure is more fundamental —the one-body and
the two-body components of the potential can be
easily separated; more importantly, the connection
between various components of the two-body in-
teraction and the second-order potential can be es-
tablished with some degree of confidence. It is un-
derstood by now that the second-order potential
corresponding to the simultaneous excitations of
the nuclei can be linked with the two-body dissipa-
tion mechanism for the heavy-ion deep inelastic
collision —the derivation of a proximity form for
such a potential would only be a logical corollary.

The second-order potential in general can be
written as
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m~n~
where the propagator 6 „ is given by
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where plane-wave representation for relative
motion has been implicitly assumed, and
(I /2JM) k~„=E E~—E„,E—being the center of
mass energy for relative motion, E and En being
the energy of the excited states of the target and
the projectile, respectively, P~ and P„being the
corresponding wave functions.

For collisions of two nuclei with moderate rela-
tive energy, the center of mass energy is usually
much larger than the excitation energies, as has

been argued out. ' The assumptions in our calcu-
lation are, therefore, (i) E &&E + E„and (ii) the
energy of excitation Em or En can be approximated
by an average constant value (bE &, the magni-
tude of which would depend on the characteristics
of the entrance phase. %ith these two assump-
tions, one can now perform the integration over the
kinetic energy of the two nuclei in the intermediate
states, yielding

m+0
n+0

In order to evaluate Eq. (4), we shall now add and
subtract the ground states of the target and projec-
tile, i.e., P P„=/gap—, a procedure which allows

one to apply "closure" for the intermediate states

I
mn &, exhausting a complete set. Thus '
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G=G „(p/2M)(e' '/s)k/K,

where

E =(2p/fr )(E —(b,E& —Uz),

k =(2p/h )(E —(bE&),
(4)

U~ being the real part of the interaction potential.
The second-order potential now becomes

There can be four types of leading terms, arising
from the first matrix corresponding to (1) i =i',
j =j ', (2) i+i', jQj', (3) i =i', jQj', and (4) i+i,
j =j'. Inequality either in (i,i') or (j,j ') leads to a
two-body correlation function, ' further, it turns
out that from conditions (3) and (4) one gets back
the second-order potential when the driving poten-
tial is the single-particle field of the target and/or
projectile, as has already been calculated. This
leaves one with the first two conditions which cor-
respond to the two-body interaction v,J exciting
projectile and target states simultaneously, the sub-

ject of the present investigation. In configuration

space, for the latter type of excitation, one gets

Uq(Z, s)=G(s) f p)(r))p2(r2)u(
I
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As is well known, both the central and the ten-
sor components of the two-body interactions would
contribute to Eq. (6). A suitable choice of the

t

two-body interaction is conditioned by the follow-

ing motivations: the interacting nuclei, although in
different nuclei are, however, embedded in the nu-

clear medium of their own nucleus, the "eQective"
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influence of nucleons, surrounding the interacting
nucleons has to be taken into account; a simple
form of u,j such as a Gaussian reduce the integra-
tion to a manageable form. Guided by these two
motivations our Gaussian interaction was matched
with that of Bertsch et al. with the constraints
that the mean square radius and the volume in-

tegral should be the same in both cases. As an op-
timum choice the two-body interaction inclusive of
the tensor component was taken to be
—u(r)=10.25 e ' ". It should be noted that
owing to the nonlocality Of the potential, the tensor
component gives rise to terms such as
S&z(r)S&z(r'), which was estimated as per the
prescriptions of Brown et al. . For the purpose of
estimating the second-order potential for colliding
nuclei the triplet component of the central part of
the two-body interaction is slightly overestimated

by Bertsch et al. , since the tensor component is al-

ready included in the central force in the style of
Kuo and Brown, ' the nominal renormalization was
incorporated in our prescription. Considering the
present state of the art, it is felt that a stringent
test of the two-body interaction is not the primary
purpose, but rather to investigate the efficiency of
the basic physical assumptions in our model. With
a Gaussian two-body interaction, the first integral

—EXPreduces to [u(r)=uoe "],
U2(R)=4m. uo J e '~ G(sj)o(Ks)s ds

—2~(p —p +g)
X p~ ~~ p2~2e

Xd l'~d ~2. (&)

The second integral, evaluated using the Negele-
Vautherin-Campi' approximation for the density
matrix, was found to be less than 5% of the first
integral, expressed in Eq. (7). In transforming the
nonlocal potential Eq. (6) to an equivalent local po-
tential Eq. (7), the Percy-Saxon method was em-

ployed as reported earlier. ' For the evaluation of
G(s), (&E)=—E~+E„was considered to be -20.0
MeV. It turns out that for the kind of relative en-

ergy range (see later text) we are interested in, the
results are not that sensitive to the value chosen
for (,EF.). For the real part of the interaction po-
tential we utilized the results of Sinha and
Moszkowski. "

In Fig. I, the theoretically computed results for
the (' 0,' 0) system have been compared with the

energy dependerit shallow potential form-factors of
Siemssen'; also shown in the diagram is the com-
parison for the recently calculated potential of Izu-
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FIG. 1. The imaginiry part of the interaction poten-
tial for simultaneous excitations in target and projectile
' 0+ ' 0 (Ref. 14)' ' 0+ Ca (Ref. 15).

moto et al. ' for the system (' 0, Ca), who de-
rived the potential using the many-body
Brueckner-Hartree-Fock method. The equivalent
Woods-Saxon potentials, fitted to the theoretical
form factors are presented in Fig. l. Izumoto
et al. ' found the quality of the fits quite excellent.
The polarization term, not shown in the diagram,
was found negligible. The following observations
are worth noting: With the increase in relative en-

ergy the theoretical prediction of the potential sug-
gests an increase in depth, in agreement with ex-
perimental results. The results tend to agree quite
closely with the shallow energy dependent
phenomenological predictions of Siemssen' for the
' 0+ ' 0 system, in effect, substantiating the
author's earlier claim' that simultaneous excita-
tion mechanism gives rise to a shallow but larger
range potential. Although it differs from that of
Izumoto et al. , ' the form factor for the ' 0+ Ca
system inside the nucleus agrees reasonably well at
the all important strong absorption radius R, .
Comparing the present results with the one-body
mechanism, it appears that at low energy the
two-body excitation strength is comparatively
weak; the physical situation is emphatically a one-
body excitation, whereas for higher energy, the
two-body mechanism dominates, since the one-
body potential drops off rather sharply with the in-
crease in energy. This of course is what is antici-
pated.

The not so unimpressive agreement with experi-
mental analysis leads to the following suggestion:
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for the imaginary component of Eq. (7),

Uq(R)=uo (p/2A' )V 2m/a(k/K )[1—e "i ]
—2a(r

&
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(9)

The double folding type of integral' in Eq. (9) has
two advantages: (a) An unambiguous analysis of
scattering data is now plausible (utilizing the abun-

dant experimental data now available), where both
the real (using, say, a double folding model' ) and
the imaginary potential are evaluated microscopi-
cally. A systematic study for the depth, range, and
other properties of the two-body interaction espe-
cially relevant for heavy ion collision is, therefore,
plausible. (b) For the intranuclear distance
R &Ri + R2, it is straightforward to show' that a
proximity type of potential can be written out,
yielding approximately: (s=R —Ri R2. T=—0.5),

U2 ——2m'uo (p/fi )&2m/a(k/K R)[1—e i ]

The form of Eq. (10), although approximate, has
the tremendous advantage of being algebraically
transparent, thus enabling a global study to be
somewhat meaningful. Further, utilizing the esta-
blished relationship between the imaginary poten-
tial and dissipation within the proximity approxi-
mation, ' a comprehensive microscopic understand-
ing of the two-body dissipation mechanism is no
longer unrealistic.

In conclusion, therefore, I would like to suggest
that a simultaneous excitation of two nuclei is the
dominant channel for the imaginary part of the in-
teraction potential when the relative energy is —15
MeV per nucleon or higher. A global analysis us-

ing microscopic form factors for both the real and
the imaginary potential should be carried out.
And finally, the connection between dissipation
and the imaginary potential can be utilized within
the proximity approximation for a detailed under-
standing of both the phenomena.

X eo(s)+ —,Re&(s ) (10)

e„(s)=I y"+'/(ey 1):R—=(R, +R2)/R&Rz .
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