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In order to facilitate the comparison of the time-dependent Hartree-Fock approximation
with other classical theories and to help guide our intuition in understanding the underlying

physics, we study the time-dependent Hartree-Fock approximation from a classical
viewpoint. We show that the time-dependent Hartree-Fock approximation is approximate-

ly equivalent to a purely classical pseudoparticle simulation. In this simulation, a collection

of pseudoparticles is introduced to discretize the phase space of spatial and momentum

coordinates. The dynamics is completely determined by following the pseudoparticle tra-
jectories which are the same as the trajectories of real particles moving in the self-consistent
field. As an application of the concept of the pseudoparticle simulation, we study the ori-

gin of the nonfusion events in nearly-head-on heavy-ion collisions as obtained in the time-

dependent Hartree-Fock approximation. It is argued that for these nearly-head-on colli-

sions, the emergence of the most energetic pseudonucleons of one nucleus outside the far
surface of the other nucleus initiates a coherent flow-through motion because of self-

consistency and leads to the breakup of the composite system. Based on this picture, we

obtain quantitative estimates of the threshold energies and the low-l fusion window which

agree quite well with the time-dependent Hartree-Fock results.

NUCLEAR REACTIONS Time-dependent Hartree-Fock approxima-
tion. Vlasov equation. Pseudoparticle simulation. Low-I fusion win-

dow in heavy-ion collisions.

I. INTRODUCTION

This is one of a series of articles dealing with the
dynamics of nuclear fluid. Other studies concern
themselves with the equations governing the
dynamics starting with time-dependent Hartree-
Fock approximations (TDHF), ' the generalization
to include spin and isospin degrees of freedom, the
kinetic theory of quantum fluids, and the extension
of the time-dependent Hartree-Fock approximation
to include particle collisions. We present here a
study of the time-dependent Hartree-Fock approxi-
mation from a classical viewpoint and shall show
the approximate equivalence of the TDHF approxi-
mation and a classical pseudoparticle simulation in
which the dynamics is described in terms of pseu-
doparticles following classical collisionless trajec-
tories in their self-consistent potential.

Recent renewed interest in the time-dependent
Hartree-Fock approximation (TDHF) for the mi-
croscopic description of the dynamics of nuclear
systems was pioneered by Bonche, Koonin, and

Negele. Since then, many TDHF calculations were
carried out " and many different theoretical in-
vestigations were initiated. ' ' In the TDHF
approximation, the fermions are assumed to interact
only through the mean field and the collisions be-
tween particles due to residual interactions are
negelected. The knowledge of the initial wave func-
tions of the fermions allows one to trace the subse-
quent behavior of the nuclear system. Numerical
solutions " of the TDHF equations provide in-
teresting insight into the dynamics of the interact-
ing fermion systems.

It is of interest to examine the time-dependent
Hartree-Pock approximation from a classical
viewpoint. The approximate transcription of the
time-dependent Hartree-Fock approximation into a
purely classical model helps guide our intuition and
provides a deeper understanding of the underlying
physics involved. In fact, we shall later see that
such a classical picture helps us understand the ori-
gin of the low-l nonfusion events in the TDHF cal-
culations of heavy-ion collisions.
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Recently, a simple classical model ' was put forth
for the discussion of low-energy fermion dynamics.
The theory of one-body dissipation makes simple
assumptions concerning the trajectories of nucleons
and the dissipation of collective energies. Much
progress has been made in justifying the theory
from the linear response theory. A numerical
comparison with the TDHF results has also been
made. " Comparison of the similarities and differ-
ences between the TDHF approximation and the
theory of one-body dissipation can be facilitated
with a classically-equivalent description of the
TDHF approximation.

Classical many-body theory has also been used
recently to investigate the collision of two nuclei at
high energies. ' The theoretical justification of
such an approach usually starts from a classical
description of the dynamics from the beginning.
Comparison of the classical transcription of the
TDHF approximation with these models will be of
use in revealing ways in which these models can be
modified to include the effects of the mean field.

The approximate equivalence of the TDHF ap-
proximation and a classical pseudoparticle simula-

tion can be made by going to the Wigner space. It
has long been known that in the Wigner space, if
one interprets the Wigner function as a classical dis-
tribution function and takes the limit of fi~, then
one obtains from quantum mechanical equations of
motion purely classical equations of motion.
By following a similar procedure for the TDHF ap-
proximation, we are guaranteed to obtain classical
equations of motion for the dynamics, which in this
case is the Vlasov equation involving the mean-field
potential. The next crucial step is to decompose the
phase space in terms of a collection of pseudoparti-
cles having definite phase space coordinates. The
equations of motion of these pseudoparticles are
then the classical Newtonian equations of motion
involving the self-consistent potential. The approxi-
mate equivalence of the TDHF approximation and
the pseudoparticle simulation is thus exhibited.

Although the equation of motion can be purely
classical, there are quantum effects which exert a
great inQuence on the dynamics. With the classical
equations of motion, the dynamics is completely
determined by the initial conditions. It is in the ini-
tial conditions where important quantum effects
can be introduced. In the TDHF approximation,
the Pauli exclusion principle for the occupation of
single-particle states leads to an equilibrium phase
space distribution nearly uniform in a phase space
region. In the classical pseudoparticle simulation, a

collection of pseudoparticles with a similar phase
space distribution will lead to an equilibrium.
However, because of the nonlinear nature of the
dynamics, other types of equilibrium distribution
are also possible. The adherence to the Pauli princi-
ple requires that we choose the equilibrium distribu-
tion as the one close to that obtained from the
Hartree-Fock calculations. Once such an equilibri-
um distribution is chosen, the incompressibility of
the phase space fluid guarantees that the Pauli prin-
ciple will not be later violated in the subsequent
stages of the dynamical motion.

Although particle simulation models have been
used extensively in molecular dynamics, nuclear
collisions, ' and plasma physics, the ones
which come closest to the TDHF approximation are
those in plasma physics where the mean-free paths
of the constituent particles are so large that the
dynamics can be well approximated to be collision-
less. Much progress in using particle simulation
models to study plasma dynamics has been made re-
cently; three-dimensional codes have been developed
to trace the trajectories of about one-half million
particles in order to study the detailed dynamics of
electrons and ions in controlled fusion devices.
Similar techniques may perhaps be applied to the
dynamics of nucleons in heavy-ion collisions, al-
though the need to trace the trajectory of a large
number of the pseudoparticles may make the calcu-

lation infeasible.
The pseudoparticle simulation of nuclear dynam-

ics can be readily utilized to understand some spe-
cial features of the TDHF results. Recent TDHF
calculations ' indicate that for nearly-head-on
collisions above the Coulomb barrier, there is a
threshold energy above which no fusion of the com-
posite system takes place. By following the trajec-
tories of the nucleons, we argue that for these
nearly-head-on collisions, the emergence of the
most energetic pseudonucleons outside of the far
surface of the other nucleus initiates a flow-through
motion because of the self-consistent effects and
leads to the breakup of the composite system.
Based on such a simple picture, estimates of the
threshold energies and l window are obtained and
found to agree well with the TDHF calculations, in-
dicating the approximate validity of such a picture.
The condition for the onset of fast particle emission
in a fusion reaction is also determined.

This paper is organized as follows: In Sec. II, we
start with the TDHF approximation and show how
it can lead to the pseudoparticle simulation. The
important approximations and the difference be-
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tween pseudoparticles and real particles are spelled
out. In Sec. III, a numerical example of pseudopar-
ticle simulation is carried out and compared with
the TDHF approximation. In Sec. IV, we discuss
the low-l fusion window and fast particle emission
in TDHF calculations. We suggest that a flow-
through motion, due to the emergence of the most
energetic pseudonucleons at the far side of the other
nucleus, may be the origin of the breakup of the
composite system. Quantitative estimates based on
this picture give good agreement with the TDHF
results. Section V summarizes and concludes the
present discussion.

II. PSEUDOPARTICLE SIMULATION
AS A CLASSICAL APPROXIMATION

OF TDHF

The equation of motion for a single-particle state
in the TDHF approximation is given by

i' f~(r,—t)= — V +W(p(r, t)) P~(r, t) .8
Bt

'
2m

(2.1)

Here, m is the mass of a nucleon, and for simplici-
ty, we have averaged out the spin and isospin de-
grees of freedom. The mean-field potential
W(p(r, t)) is

W(p(r, t))= f d rz[u, (r —rz)

+ui(r —rq)]p(rp), (2.2)

where the short-range effective potential u, is densi-
I

ty dependent and given, for example, by

u, ( r —rq) =[—,to+ —„t3p( r )]6(r —rq), (2.3)

and U~ is the long-range Coulomb and Yukawa in-
teraction

2

ul(r —rz) =P +
41r —~z

I

The density is given by

OCC

p(r)= 2 I
A(r) I'

(2.4)

(2.5)

OCC

f(r p, t)= f dse' ''
"+PAL(r —s/2, t)

&&/~(r+ s/2, t), (2.6)

where the summation over A, extends over the occu-
pied states. The equation of motion for the Wigner
function in the TDHF approximation is

The set of parameters to, t3, P, and a can be found,
for example, in the work of Bonche et al.

In order to study the TDHF approximation from
a classical viewpoint, we go to the Wigner space
(r, p) where the correspondence between classical
mechanics and quantum mechanics can be readily
made. The procedure to accomplish this is well

known. ' We shall briefly review the pertinent
results and introduce the Lagrangian picture of the
phase space fluid elements as our main tool to dis-
cuss the dynamics.

The (reduced one-body) Wigner function for a
system of independent particles is given by

(r p, t)+(p/m) V,f(r p, t) ——sin —7„"Vz~ P"(p(r, t))f(r p, t)=0, (2.7)

where the superscripts u and f refer to the functions on which the gradient operators apply.
Given the Wigner function f (ropo, to) at time to, we wish to develop a Lagrangian picture for the Wigner

function f(r p, t) at a slightly later time t =to+5t. We write the solution in the form

f(r p, t)= f drodpo exp{i s.[p —P(ropos, t)]/R]5[r —R(ropo, t)]f(ropo, to) .
(2W)

The equations of motion for P and R are then

(2.8)

aR
Bt m'

ap s ~ ss- =W R———/ R+-
Bt 2 2

(2.9)

(2.10)
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For small increments of time, we have

f(r p, t)= dpp expi s.(p —pp)+ 7" R+— PR——— 5t /fi f(r —p5t, pp tp),
(2irirt)

(2.11)

where the right hand side involves only known functions and can be integrated, in principle, at the least.
When terms up to the fifth-order derivatives of are neglected, we have

f(rp, t) = f drodpp5[r (rp+—p5t)]AI p —[pp+VP (r)] )f (rppp, t)

where the packet in momentum 6 is given by

h(x)= i exp i s x+ —, gs;sjskV;VJVt, F Ifids
(2m%) tjk

(2.12)

(2.13)

In the special case when & depends locally only on
one of the coordinates r; and not on rq, the packet
6 becomes a product of a two-dimensional delta
function and an Airy function

I

only up to the first spatial derivative in Eqs. (2.7)
and (2.11). Equation (2.7) then becomes the well-

known Vlasov equation and the Lagrangian picture
of the Wigner function as given by Eq. (2.11) be-

comes

and

X)
b, ( x ) =5(xi) Ai

2~(3a)' (3a)' irt
(2.14) f(r p, t) = f d rod pp5[r —R( rpppt)]

&&5[p —P(ropot)lf (ropp to)

a =
~
V; P"(r)

~

5t . (2.15)

The results of Eq. (2.15) are not of practical use
as the 6 packet is not simple in the general case.
The oscillatory nature of 5 also leads to negative
values of f(rp, t) in the tail region of the Wigner
function.

A direct numerical solution of the time depen-
dence of the Wigner function can be obtained by
first solving the TDHF equation (2.1) and then con-
structing the Wigner function afterwards. This
procedure appears simpler than solving Eq. (2.7)
directly. The study of the time dependence of
f(r p, t) with Eq. (2.7) and its approximation serves
a different purpose. Our objective, however, is to
have an understanding of the underlying physics in-
volved in a TDHF approximation. As classical
physics is very useful in guiding our intuition, we
seek a classical approximation of Eq. (2.7).

As is well known, the Wigner function is analo-

gous with, but not identical to, the distribution
function in classical mechanics. In order to provide
greater insight and to guide our intuition in the
dynamics of the fermion system, we shall go to the
classical limit and adopt the interpretation of the
Wigner function as the classical distribution func-
tion. ' This can be achieved by expanding P

(2.16)

where R and P satisfy the classical equation of mo-

tion

and

dR P
dt m

(2.17)

with

dp
dt

= —Vg ~(p) (2.18)

d P
p(R)= f -f(RP, t) .

(2m%)'
(2.19)

The above results allow us to formulate a pseu-
doparticle simulation as an approximation of the
TDHF approximation. Our first task is to discre-
tize the Wigner space into cells (pseudoparticles).
The total number Nz of cells (pseudoparticles)
depends on the fineness of discretization and need

not relate directly to the actual number of real con-
stituent particles. Each cell element A, is character-
ized by initial coordinates r; and p; at time to with
a weight of f(r;p;, tp). Our next task is to obtain
solutions of the trajectory functions R and P by
solving the classical equation of motion Eqs. (2.17)
and (2.18). The density function p can then be
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evaluated with Eq. (2.19) from the distribution
function to generate the self-consistent potential at
the new time coordinate. In this step-wise manner,
the distribution function can be obtained as a func-
tion of time in terms of trajectories of pseudoparti-
cles.

It is important to realize that the time develop-
ment of the point (R,P) is exactly identical to that
of a single particle of mass m traversing in the po-
tential &. Because of such identity, it is convenient
to refer to these cells in the Wigner space as pseu-
doparticles. However, these pseudoparticles are in-
troduced in the discretization of the Wigner space.
The density and sizes of pseudoparticles depends on
the fineness of discretization. In contrast, the den-

sity of real particles are obtained by integrating the
distribution function over the momentum coordi-
nates. These two densities are clearly different; so
are the numbers of real and pseudoparticles.

III. A NUMERICAL EXAMPLE

In order to assess the pseudoparticle simulation
as a useful concept, we wish to carry out some nu-
merical calculations and compare them with the
TDHF calculations. They allow us to bring out the
peculiar characteristics of the pseudoparticle simu-
lation which can help guide our intuition in nuclear
dynamics.

The numerical calculation can be readily made
for the collision of two nuclear slabs. We use the
same force and parameters as those of Bonche,
Koonin, and Negele. We examine the collision of
two slabs each of which has a "total mass" of
MI ——Mz ——1.4 fm . The initial trial distribution
function f(z,k„,k„,k, ) is taken to be a Fermi distri-
bution with a width of kk =0.01 fm

f(z, k„,k», k, ) = 1

1+expI [(k„+k» +.k, )+2m(P"(p) ef)/A ]/—bk
(3.1)

Following Bonche et al., we shall freeze the momentum in the transverse direction. It is only necessary to
consider the distribution function f (z, k, ) after integrating f over k„and k»

b,kf (z, k, ) = ln(1+exp[ [2m(P'(p) —ef )/R —k, ]/b, k I ), (3.2)

which is normalized according to

I (dk, /2~)f (z, k, ) =p(z)

and

f dz(dk, /2m)f (z, k, )=W=M)+W2 .

(3 3)

N (z zI ]2»/2g 2
» e

(3.5)

Using Eq. (3.1) and an assumed p(z) and ef, we
decompose the distribution into X& pseudoparticles
each of which occupies a volume of W/Xz in the
(z, k, ) space. After the decomposition, the pseu-
doparticle number and coordinates, P"(p) and ef,
are readjusted by iteration until a self-consistent set
of pseudoparticles characterized by coordinates
(z;,k») is obtained as the starting point of the
dynamical calculation. Each pseudonucleon is then
given an additional velocity to bring the slabs to-
wards each other. At each time step, the density is
evaluated by giving a Gaussian distribution in space
to each pseudoparticle so that the density is

where o. is taken to be the size of the mesh. From
the density, the potential is obtained as in Eq. (2.2).
The forces acting on the pseudoparticles are calcu-
lated and the new pseudoparticle coordinates
(z;,k») are determined by solving Eqs. (2.17) and
(2.18). The densities are then obtained again to
start a new time cycle of the dynamics.

In our calculations, we use about X& ——7200 pseu-
doparticles to describe the dynamics. We employ
the fast Fourier transform method to calculate the
potentials. In order to compare our results with the
time-dependent Hartree-Fock calculations, the
high-frequency Fourier components need to be trun-
cated as they correspond to the inclusion of very
high-lying single-particle basis states or alternative-
ly the inclusion of higher-order spatial finite differ-
ences. Accordingly, we keep in the potential only
those Fourier components corresponding to an ener-

gy less than twice the Fermi energy. ' While this
may give a good comparison with the TDHF re-
sults, the solutions of the Vlasov equation involves
many more degrees of freedom and may otherwise
produce very fine spatial density oscillations which
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FIG. 1. The density profile in the pseudoparticle simu-
lation for the collision of two slabs with Wg ——Mg ——1.4
fm at the center-of-mass bombarding energy of
E/A =3.5 MeV. The time scale is in units of 10 sec.
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FIG. 2. The time dependence of the fragment separa-
tion coordinate d for the collision of two slabs at the
center-of-mass bombarding energies of E/A =0.5 MeV
and E/A =3.5 MeV. The results of the pseudoparticle
simulation is given by the dashed line, while the TDHF
results (from Fig. 8 of Ref. 6) are given by the solid line.

d= f lx le(»« (3.6)

and plot d as a function of time in Fig. 2. One
finds that d(t) for the two different calculations
follow each other quite closely. For the other case
when E/A =0.5 MeV, the two slabs fuse together

are not physical for finite nucleon systems.
We shall examine the dynamics at two different

energies: E/A =3.5 MeV and E/A =0.5 MeV in
the center-of-mass system. Figure 1 shows the den-

sity profile for the case of E/A =3.5 MeV. The
slabs are initially separated at 16 fm. At
t=0.24&(10 ' sec, the system reaches its max-
imum density of about 0.19 nucleons/fm . The
density drops rapidly afterwards as the system
stretches outward. At about t =0.48X10 ' sec, a
density depression begins to develop around z =0.
The two slabs rapidly separate into two different
pieces and move away from each other with a speed
much less than the incident speed. Upon compar-
ing the dynamics with those of the TDHF at the
same energy, one finds that the density profile is
quite similar to those in the TDHF calculations.
There, density maximum is also reached at
t=0.24)&19 ' sec and the slabs begin to separate
with respect to each other at t 0.48)&10 ' sec.
In fact, we can define a separation distance d as

to form a combined system. The gross features of
the density profiles in the pseudoparticle simulation
are similar to those of the TDHF calculation. The
separation distance d as a function of time t is also
displayed in Fig. 2. One finds that for this energy
of E/A =0.5 MeV, the dynamics from the two dif-
ferent calculations are very similar.

In spite of the close similarity of the results of
the two different calculations, there are nevertheless
small differences. For example, the compression
for E/A =3.5 MeV at t=0.24&& 10 ' sec is slight-

ly greater for the pseudoparticle simulation than it
is for the TDHF calculation (Fig. 2). The oscilla-
tions of the density are slightly more pronounced in
the pseudoparticle simulation than in the TDHF
calculation. The phases of the oscillations are also
slightly different which may affect the locations of
the "resonance-type" behavior between 1 and 2
MeV.

An important peculiar characteristic of the pseu-
doparticle simulation is to allow one to exhibit the
trajectories of some typical pseudonucleons so as to
gain a clear insight into the dynamics of nuclear
systems in heavy-ion dynamics. We plot in Fig. 3
the trajectories of six pseudonucleons of the left slab
in the collision of E/A =3.5 MeV. They are initial-
ly located at the far side (relative to the other slab)
in Figs. 3(a) and (d), the central region in Figs. 3(b)
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FIG. 3. The trajectories of six selected pseudonucleons for the collision of two slabs at a center-of-mass bombarding

energy of E/A =3.5 MeV. The trajectories are linked by straight lines. The positions at time steps 0, 5, 10, 15, . . . are

given by solid points and their time step numbers are also indicated. The time step At is 0.0267&10 ' sec. Pseudonu-

cleons in (a), (b), and (c) initially have the greatest momenta in their corresponding locations, while the pseudonucleons in

(d), (e), and (f) initially have the smallest momenta. Pseudonucleons at (a) and (d) are initially located at the far side of the

left slab, pseudonucleons at (b) and (e) in the central region, and pseudonucleons at (c) and (f) at the inner edge.

and (e) and at the inner edge in Figs. 3(c) and (f).
The pseudonucleons in Figs. 3(a), (b), and (c) initial-

ly have the greatest momenta at their corresponding
locations, while the pseudonucleons in Figs. 3(d), -

(e), and (f) initially have the smallest momenta. In
Fig. 3, the time sequences are labeled by the time-

step numbers, each step being 0.0267&10 ' sec.
At about the fifth time step, the boundary between
the two slabs begins to disappear, and at about the
nineteenth step, the two slabs separate.

We shall describe in some detail the trajectories
of the pseudonucleons. The pseudonucleon in Fig.
3(a) starts at the far side of the left slab and has the

greatest momentum among pseudonucleons at that
point. At the fifth time step, it reaches the inner

boundary. As the boundary has already disap-

peared, the pseudonucleon goes from the left slab

into the right slab instead of returning to the right
slab to replenish pseudonucleons in the left slab. It
arrives at the wall of the far side of the right slab at
the seventh step and begins to slow down. Howev-

er, the momentum of this pseudonucleon (the lead-

ing particle) is so large that it goes over the poten-
tial well at the eleventh step and begins to emerge
outside the far side of the right slab. As it emerges,
it lowers the potential at the far side and allows
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more and more pseudonucleons to come out. It
reaches the new wall formed by the spilled pseu-
donucleons at the twenty-second step and bounces
back from the wall.

The pseudoparticle in Fig. 3(b) starts initially in
the middle of the left slab. At the fourth step, it
hits the wall and is on its way to bouncing back
when the boundary between the two slabs disap-
pears. It goes to the right slab with a diminished
velocity. When it hits the wall at the far side of the
other slab at the seventh step, its momentum is not
high enough to overcome the potential well. It
bounces back but is trapped into traveling to the
right when a new inner wall develops at the
nineteenth step.

The pseudonucleon in Fig. 3(c) starts initially in
the inner edge with a large momentum. After hit-

ting the wall, it travels in the negative z direction.
It hits the far side wall of the left slab and goes to
the positive z direction at the eighth step. The
disappearance of the boundary allows it to go from
the left slab to the right slab at the twelfth step. At
the twentieth step, it reaches the new wall formed
by the pseudonucleons which spilled over the poten-
tial well at the far side of the right slab. Thereafter,
it travels from the right slab towards the left slab
but is trapped in the right slab by the new wall
formed when the two slabs separate.

The pseudoparticle in Fig. 3(d) is initially at the
far edge of the left slab and has the smallest
momentum. It goes from the left slab to the right
slab at the seventh step. Because its energy is not
sufficiently high, it is bounced from the far side of
the left slab at the thirteenth step and proceeds to
move to the left slab. However, it is trapped in the
right slab as a new wall is formed in the boundary
region at the nineteenth step.

The pseudoparticle in Fig. 3(e) is initially at the
center of the left slab. Its small momentum allows
it to move only a short distance when a high density
region is formed in the region of z-0 at the tenth
step. The high-density region gives rise to a repul-
sive local potential which sends the pseudonucleon
backward to the negative z direction. When the sys-
tem separates at the nineteenth step, this pseudonu-
cleon stays in the left slab.

The pseduonucleon in Fig. 3(f) is initially at the
inner edge and moves with a small momentum. It
is moving to the negative z direction when the
boundary disappears. When the inner walls between
the slabs are formed at the nineteenth step, they are
still in the left slab and remain there.

They dynamics of the pseudoparticles has many

interesting features. First, the flow-through motion
is indeed initiated by the leading pseudonucleons
which overcome the potential and spill over the far
side of the other slab.

Second, the trajectories of the fast particles are
such that they go from one slab and emerge in the
other slab, whereas the slow pseudonucleons are
often trapped in their original slab. In other words,
the fast pseudonucleons are mainly the ones which
are exchanged, while the slow ones are not. This
conclusion is consistent with the evolution of the
single-particle wave functions as depicted in Fig. 19
of Ref. 6. Such an exchange is the mechanism of
the dissipation of the relative momentum of collec-
tive translation. For the left slab to exchange a fast
pseudonucleon with a momentum p, pointing in
the positive z direction in return for a pseudonu-
cleon with a p, pointing in the opposite direction,
there is a loss of momentum of 2p, . Hence, the
resultant separating system moves with a much
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FIG. 4. Same as in Fig. 3 except that the center-of-

mass bombarding energy is E/A =0.5 MeV and the time

step ht is 0.0417)& 10 ' sec.



1468 CHEUK- YIN WONG 25

slower speed compared to the initial speed.
The trajectories of some typical pseudonuclmns

in the left slab for the E/A =0.5 MeV collisions are
shown in Fig. 4. Here, the time step in the time se-

quences is Et=0.0147)(10 ' sec. The dynamics
of the pseudonucleons are quite different from those
of the 3.5 MeV case. One observes that even

though the fastest pseudonucleons are not much
slowed down after traversing from one slab to the
other, they do not have enough energy to emerge
outside of the potential well at the far side of the
other slab. As a result, they are trapped by the
outer wall of the slab and follow a confined motion.

IV. THE LOW-l FUSION WINDOW
IN TDHF CALCULATIONS

The possibility that nearly-head-on nuclear colli-
sions above the Coulomb barrier may not lead to fu-
sion has been speculated for some time, both from
the hydrodynamical viewpoint and the dynamics
obtained from TDHF calculations. ' Although
the outcome of an absence of fusion is the same, the
physical processes involved in this so-called "low-l-
fusion window" or simply "Iwindow" in the hydro-
dynamical description and in the TDHF descrip-
tions are different. In the hydrodynamical picture,
the low-l fusion window arises when the composite
system returns from an extremely pancake shape
back to an extremely prolate shape. The predom-
inant source of instability is the Rayleigh instability
governed by the ratio of the major to minor radii of
the prolate composite system at the moment of
maximum stretching. On the other hand, in a
TDHF calculation, there is no prominent oc-
currence of flow in the transverse direction, and
thus no formation of pancake shapes at the moment
of maximum impact. The occurrence of the break-
up appears to follow a flow-through motion in
which nuclear matter from one nucleus flows past
the nuclear matter of the other nucleus and emerges
at the far surface of the other nucleus. ' ' The
occurrence of the I window is governed by very dif-
ferent considerations such as the Fermi motion of
the nucleons and the depth of the mean-field poten-
tial as we shall soon see.

From the TDHF results, we know that the l win-
dow occurs at a threshold energy of E~,b ——54 MeV
for the ' 0+' 0 system and that the I window can
be specified by ' an absence of fusion when

1/2

l&
2pRg E) g —E h

(4.1)

where p is the reduced mass, R~ is the interaction
barrier radius, and E,h is the threshold energy in the
laboratory system. For the Ca + Ca systems,
no l window has been observed up to an energy of
E~,b ——200 MeV, although other and later calcula-
tions indicate a threshold energy at E~,b ——195
MeV. Other TDHF calculations for the low-l fu-
sjon wjndow jn the Sj+ Sj and 0+ ~Ca sys-
tems have also been performed recently. ' It would
be desirable to put this information concerning the I
window in the TDHF calculations in a coherent
picture, making use of the concepts of pseudoparti-
cle dynamics uncovered in the last section.

Before we proceed to discuss the l window in the
case of colliding nuclei, it is worth reviewing the
dynamics of the pseudonucleons in a single self-
bound fermion system and in colliding nuclei.
Understanding the salient features of the pseudonu-
cleon dynamics then allows one to comprehend the
physics involved in the occurrence of the l window.

The dynamical motion of the pseudonucleons in-
side a nucleus is well known and can be easily sum-
marized. The pseudonucleo»s are distributed in an
approximately uniform way in the phase space
within the domain e/&p /2m +I {p(r)}. Each of
these pseduonucleons traverses in nearly straight
line trajectories in the interior of the nucleus and
suffers an elastic reflection at the surface. If the in-
itial spatial and momentum radii are properly
chosen (e.g., approximately the same as those ob-
tained in the Hartree-Fock calculation), the subse-
quent dynamics of these pseudonucleons will lead to
the same distribution function and leaves the distri-
bution function time independent. The motion is
such that for every group of pseudonucleons leaving
a phase space cell, it is replenished by another group
from some other location. In the early stages of the
collision of two nuclei, the dynamics of the collision
are sufficiently complicated that we limit our atten-
tion to the pseudonucleons at selected spatial points
along the symmetry axis in conjunction with the
whole momentum space points. In the configura-
tion space we choose the points A, 8, C, D, E, and E
(Fig. 5} which are fixed in space. The velocity of
the left nucleus is represented by v, while the velo-
city of the right nucleus by —v. The initial distri-
bution function f ( r p ) at points A, B, C, ..., F in the
momentum space are shown in Fig. 5(a). They are
Fermi spheres with uniform density shifted by m v
and —m v for the left and the right nucleus, respec-
tively.

There are two effects on the dynamics when the
common boundary disappears. First, those pseu-
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donucleons originating from point C of the left nu-

cleus and coming to the boundary points will follow
a straight line trajectory and proceed to the right
nucleus. Second, in the absence of the boundary
and the subsequent change of the trajectories of
these pseudonucleons, the left part of the original
Fermi sphere at C is not replenished by pseudonu-
cleons from the left nucleus. In place of these va-
cated phase space points now arrive the nucleons

8 C 031)
FIG. 5. Spatial and momentum distribution of pseu-

donucleons in a head-on collision of two equal nuclei.
{a') Distribution of spatial density before contact. Points
A, B, C, D, E, and Fare points fixed in space which we
wish to examine. (a) The initial momentum distributions
at the sampling points. For points A, B, and C they are
Fermi spheres displaced to the right, For points D, E,
and F, they are Fermi spheres displaced to the left. (b')
The distribution of spatial density at a time when the
boundary between the two nuclei disappears. (b) The
momentum distribution at the sampling points shortly
after the disappearance of the boundary. Pseudonucleons
originally from the left nucleus are represented by the
dotted region, while pseudonucleons originally from the
right nucleus are represented by the shaded region. (c)
The momentum distribution at the sampling points at a
time -Ro/vf after the boundary between the two nuclei
disappears. (d) The momentum distribution at the sam-
pling points at a time -2RO/vf after the boundary be-
tween the two nuclei disappears. The most energetic
pseudonucleons of one nucleus now reach the far surface
of the other nucleus.

from the right nucleus, the most energetic ones be-

ing the first to arrive. The distribution of pseu-
donucleons at point C is no longer a Fermi sphere.
It consists of a cap of the most energetic pseudonu-
cleons from the right nucleus and a Fermi sphere of
the original left pseudonucleons shaved at the left
side [Fig. 5(b)].

At an even later time after the removal of the
boundary (t-2ro/vf), the most energetic pseu-
donucleons from the right nucleus reach the far sur-
face point A of the left nucleus. Similarly, the most
energetic pseudonucleons from the left nucleus
reach the far surface point F of the right nucleus

[Fig. 5(d)]. They are not expected to suffer much
loss of energy in arriving at these surface points.
They are now ready to give an assault to the "walls"
at points A and F. Whether or not the wall can con-
tain these most energetic pseudonucleons depends
on the "height" of the wall and the energy of these
pseudonucleons. Furthermore, besides these pseu-
donucleons that have just arrived, a large array of
energetic pseudonucleons originally from the other
nucleus have positioned themselves at more distant
points (e.g., B and C) to prepare for an assault of
the wall at a later time. Such a "collective"
behavior of the pseudonucleons is a consequence of
the initial condition (of colliding nuclei).

The wall of the composite system corresponds to
the boundary of the mean-field potential. A very
important characteristic of the "wall" is the depth
of the potential well. The motion of the most ener-

getic pseudonucleons depends on whether their
kinetic energy (measured relative to a wall at rest) is
such that they are bound or unbound with respect
to the mean-field potential well. If these nucleons
are bound inside the potential, they are then reflect-
ed backward by the potential after proceeding to the
classical turning point and are therefore contained
in the nuclear system. The containment of these
pseudonucleons will eventually lead to a fused com-
pound system. On the other hand, if the energy is
such that they are unbound in the mean-field poten-
tial, they will proceed forward and emerge outside
of the surface point. When this happens, the pseu-
donucleons which emerge outside will lower the po-
tential well at the new points because of the self-
consistency effect. The turning points of many of
the other pseudonucleons are shifted in the direc-
tion of the emerging nucleons so that more pseu-
donucleons emerge out of the far side of the sur-
face. This will lower the potential even more to al-
low more and more pseudonucleons to emerge out-
ward. It is reasonable to expect from the results of
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the last section that such a coherent flow-through
motion will continue on and give rise to the nonfu-
sion (breakup) events in the low-l fusion window of
the TDHF calculations. Whether such a flow-

through motion of pseudonucleons emerging at the
far side of the other nucleus is indeed the origin of
this low-l fusion window can be inferred by com-
paring the threshold energies for flow-through mo-
tion and the l windows obtained in the TDHF cal-
culations. Good agreement between these quantities
will indicate that the coherent flow-through motion
is likely the origin of the I window.

We can estimate the threshold energy for the oc-
currence of the flow-through motion. The momen-
tum of the most energetic pseudonucleons has the
magnitude A'k~+mvo where uo is the initial speed
of one of the nuclei in the center-of-mass system.
The momentum relative to the potential at the far
surface points is A'kI+m (Uo —v~) where U~ is the
velocity of the surface point and is taken to be
directing in the same direction as the initial velocity
Uo. The flow-through motion occurs when these
most energetic pseudonucleons become unbound.
That is, when

—,m(up —U )'&[(1+B/F)' ' 1]'&/, —(4.3)

where e+ is the Fermi energy fi k~ /2m. The velo-

city at the surface point v~ when the most energetic
pseudonucleons arrive there is difficult to estimate.
However, in the range of about 1 MeV per nucleon

[kf +m (Uo —u )/A'] & kI +B, (4.2)
2m 2m

where 8 is the separation energy of the ground-state
nucleons. Equation (4.2) leads to

which is the range of the threshold energy we are
considering for the l window, the nuclear systems
are not much compressed. Because of the near in-
compressibility of the nuclear matter, the outer
walls of the colliding nuclei are brought to a near
halt in the center-of-mass system soon after contact.
The velocities U when the most energetic nucleons
arrive are expected to be small in the center-of-mass
system and can therefore be neglected there. Ac-
cordingly, in the center-of-mass system, the thres-
hold kinetic energy per nucleon for the flow-
through motion is roughly

—,mvo & [(1+B/e/)'~~ —1] e~ . (4 4)

Upon using a separation energy of 8 =8 MeV and
eF ——35 MeV, one finds the threshold energy per nu-
cleon in the center-of-mass system given by

—,mUO )0.411 MeV. (4 5)

The foregoing consideration can be generalized to
non-head-on collisions in the presence of Coulomb
repulsion. As part of the energy is expended in
overcoming the Coulomb and centrifugal barriers,
the Fermi spheres are displaced in the radial direc-
tion by an amount mu, given by

, p(2u„) =E—,
@gal~ Z i Zge

(4.6)
2pRg

where p, is the reduced mass of the two nuclei and

R~ the separation between the two nuclei at the in-
teraction barrier. All the considerations concerning
the emergence of the most energetic pseudonucleons
remain the same as in the head-on collision. Thus,
flow-through motion of the two will take place
when

A' l
pmUr = Ec.m.

—
2pRg

Z e
2A) & [(1+B/EF)'~ 1] e~, —

B
(4.7)

where we have neglected the velocity of the surface points. Thus, for the case of a collision of two equal nu-
clei each with mass number Ai and atomic number ZI, flow-through motion takes place when the energy
exceeds the threshold value

2 2

E, (threshold) = +[(1+B/e/)' ' 1]'e~ X2& ~
.—

Rg
(4 g)

When this energy is exceeded, there is an l window for the flow-through motion leading to the breakup of the
nuclei when l satisfies

l & E,
2pRg 2 2Zi e —[(1+B/e/) —1] 2A, ep . .1/2 2

Rg,
(4.9)
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which agrees with the expression Eq. (4.1) obtained for I from TDHF calculations. '

For unequal nuclei, we focus our attention again on the center-of-mass system. The displacements of the
Fermi spheres are now different for the points in either nuclei, being greater for the lighter nuclei. The most
energetic pseudonucleons in the lighter nucleus have energies different from the most energetic pseudonu-
cleons in the heavier nucleus. Again, the emergence of pseudonucleons at the far surfaces of both nuclei will

occur and lead to the flow-through motion when the energies of these most energetic pseudonucleons of both
nuclei are such that they become unbound. Using arguments similar to those given previously, one finds that
flow-through motion occurs when

A I Z&Zze

/
A~(A, +A2)E,

2pRg Rg A )

' 1/2

1+ (4.10)

where A2 &A &. This inequality leads to the threshold energy as given by

Z)Zge2 A2(A )+A2)
E, (threshold) = + [(1+B/eF)' —1] &r

Rg

and the I window below which no fusion occurs as

(4.11)

Z)Z2e A2(A )+A~) [(1+B/ep)'/ 1] eF—
8 1

(4.12)

E, m (threshold) =28.40 MeV, (4.13)

How good are the above estimates of the thres-
hold energies compared with the results from the
TDHF calculations? Clearly, the estimates we
presented are obtained in a much simplified picture
of the dynamics; thus, only a qualitative agreement
is expected. This is especially so in view of the
neglect of the surface velocity at the moment when
the most energetic pseudonucleons make an assault
on the surface. We can examine the ' 0+' 0 sys-
tem. Using B =8 MeV, e~ ——35 MeV, and a radius
parameter ro 1.2 fm, we fi——nd

which is close to what is obtained in the TDHF cal-
culation (Table I). Furthermore, the relation be-
tween E, and I, as given by Eq. (4.9), is the same
as what was given previously by Eq. (4.1).

For Si + Si, '0 + Ca, and also Ca +
Ca, we use the same binding energy B and eF and

obtain the threshold energies as given in Table I.
They compare favorably with those obtained from
the TDHF calculations. For the ' C + ' C sys-
tem, a different interaction was used' and the im-
portant parameters of B and ef which are interac-
tion dependent and enter into the estimates of the
threshold energies should rather be B-12 MeV and

TABLE I. Threshold energies for the onset of no fusion in head-on collisions.

Systems

Threshold energy

E, in MeV from
our model [Eqs.
(4.8) and (4.11)]

Threshold energy
E, in MeV from

TDHF

16Q + 16Q

28S1 + 28

'0 + Ca
Ca+ Ca

12C + 12C

28.40
61.76
89.86

103.08
36.5d

27'
ssb

100"
97.5'
35.0'

'Reference 9.
"Reference 41.
'Reference 7.
We use a different set of 8 and ef as different interactions are used in Ref. 10.

'Reference 10.
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g&-23 MeV. When this set of parameters is used
in Eq (4. .8), one obtains the threshold energy which
agrees well with the results from TDHF calcgla-
tions. ' Such agreement between the threshold ener-

gies for the onset of flow-through motion and the
TDHF results for the onset of no fusion events indi-
cates the approximate validity of the simple picture
that the emergence of the most energetic nucleons
of one nucleus at the far surface of the other nu-

cleus initiates a coherent flow-through motion lead-

ing to the breakup of the composite system.
It is worth pointing out that the picture that a

fiow-through motion leads to the breakup of the
composite system is good only for the "first chance"
breakup events which are presumably what have
been reported in the TDHF calculations discussed
in this section. It is known that some colliding sys-
tems which appear to be separated after the colli-
sion subsequently recombine again when the TDHF
dynamics are allowed to proceed further (see Fig. 10
of Ref. 6). The occurrence of a recombination is a
result of having the phases of different types of mo-
tion properly matched. Therefore, a recombination
after a flow-through motion is expected to be rather
localized in energy and angular momentum space.
An investigation of these recombinations and the

subsequent ("second chance"} breakup events clear-
ly requires a relation concerning the flow-through
motion and the final fusion or breakup of the com-
posite system different from what is presented here.

With regard to the experimental search of the
low-I fusion window, there is the observation of two
components of fragments in the deep-inelastic
scattering of S + Al which differ by 20 MeV in

Q value. This observation gave possible indirect
evidence for the existence of the low-I fusion win-

dow, although another explanation of the phe-
nomena is also possible. There is also another ex-
perimental observation in the energy loss in the col-
lision of ' 0 on ' 0 which suggests the presence of
the I window. On the other hand, preliminary re-
sults on the direct-measurement of the total fusion
cross secton of ' 0 + Ca appear to give no indi-
cation of the onset of the I window.

It is of interest to note that the low-I fusion win-

dow can be well utilized to provide an experimental
test on the validity of the TDHF approximation.
The threshold energy and the l dependence are now
understood as depending on the emergence of the
most energetic nucleons from the far surface. In
the mean-field collisionless approximation, the most
energetic nucleons suffer little energy loss in reach-
ing the far surface. It is thus easy to understand

A i(A ) +A2) +(2 Z)Z2eEp(E,

A2(A |+A2)(
1

(4.14)

where A2 &A~, and

Ep =[(1 +B/Ep) —1 ] eI

that if the collision of nucleons is allowed, as, for
example formulated in the extended TDHF approxi-
mation, there is a finite probability for the most
energetic nucleons to suffer a loss of radial kinetic
energy before reaching the far surface because of
particle collisions. The loss of radial kinetic energy
may be sufficient to cause this group of nucleons to
be trapped inside the potential wall when the wall is
attacked. In such a case, what in the collisionless
TDHF case will lead to the flow-through motion
and the subsequent breakup may become a case of
fusion in the presence of particle collisions. One ex-
pects therefore that with the inclusion of the parti-
cLe collisions, the onset of the occurrence of no fu-
sion in a head-on collision will move to a higher en-

ergy. A careful search for the I window for various
systems and. a subsequent comparison with the re-
sults from TDHF calculations will indicate either
the validity of the TDHF approximation or the
need to introduce particle collisions.

It is worth noting that although the procedures
used in estimating the threshold energy for the oc-
currence of the l window bear some resemblance to
those used in estimating the onset of the "Fermi
jet," ' there are important differences. In our con-
sideration of the l window, we assume that the wall
speeds are negligible in the center of mass -sys-tem

and that the self-consistency leads to the flow-
through motion when the potential well is sur-
passed. These assumptions are different from those
in the usual consideration of the "Fermi jet." '

In the case of two unequal nuclei, the most ener-
getic leading pseudonucleons from the lighter nu-
cleus has a greater energy than the most energetic
leading pseudoriucleon from the heavier nucleus be-
cause of the difference in the speeds of the two nu-
clei in the center-of-mass system. The results
(4.10)—(4.12) are obtained for the flow-through mo-
tion when the most energetic pseudonucleons from
both nuclei become unbound. What happens when
only the most energetic leading nucleons of one of
the nuclei (the lighter nucleus) become unbound?
This happens when
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It is reasonable to expect that as the most energetic
leading pseudonucleon from the heavier nucleus
cannot escape the potential at the far side of the
light nucleus, a fused system will result. However,
because the energetic pseudonucleons from the light
nucleus become unbound when they reach the far
side of the heavier nucleus, there is a substantial
emission at the far side of the heavier nucleus.
Based on such a picture, particle emission accom-
panying fusion is expected (1}to occur in the energy
range given by Eq. (4.14), (2) to be found in the
direction of motion of the lighter nucleus but not in
the direction of motion of the heavier nucleus, and
(3} to be absent in the collision of two equal nuclei
where the occurrence of particle emission is im-
mediately followed by the flow-through motion.
Recent theoretical and experimental results do
indicate the occurrence of preequilibrium particle
emission accompanying fusion reactions. It will be
of interest to examine whether the systematics ob-
tained there follow Eq. (4.14) given above.

There is, however, another explanation given for
the low-l fusion window in the TDHF calculations
in terms of the tensile strength of nuclear matter.
It is argued that the breakup occurs when the ten-
sile strength of nuclear matter is exceeded. Such an
explanation focuses its attention at the late stages of
the dynamics before breakup, while the explanation
we have given focuses its attention at the initial
stage of the flow-through motion. So far, the latter
consideration appears to be sufficient to allow an
estimate of the low-l fusion threshold in light sys-
tems. Whether the tensile strength consideration
needs to enter in heavy systems remains to be seen.

V. SUMMARY AND CONCLUSIONS

We undertake a study of the time-dependent
Hartree-Fock approximation from a classical
viewpoint in order to facilitate comparison of the
time-dependent Hartree-Fock approximation with
other classical theories and to help guide our intui-
tion in understanding the underlying physics. The
path we take in going from the TDHF approxima-
tion to a classical description is a very well-known
one. Instead of using either the density matrix or
the single-particle wave functions, we employ the
Wigner function which is analogous with, but not
identical to, the classical distribution function of
spatial and momentum coordinates. Upon making
the approximate interpretation of the Wigner func-
tion as indeed the classical distribution and expand

the equation of motion to the lowest-order term of
inhomogeneity in the force field, we obtain the
main result that the time-dependent Hartree-Fock
approximation is approximately equivalent to a
purely classical pseudoparticle simulation. In this
simulation, a collection of pseudoparticles is intro-
duced to discretize the phase space. The dynamics
are completely determined by following the pseu-
doparticle trajectories which turn out to be exactly
the same as the classical collisionless trajectories of
real particles moving in the self-consistent field.

We next apply the pseudoparticle simulation to a
concrete one-dimensional numerical example to
bring out the salient features of the pseudoparticle
dynamics. Pseudoparticle trajectories are traced to
see their motion in a fusion and a breakup reaction.

The dynamical motion of the pseudonucleons in-

side a nucleus can be easily inferred. The pseu-
donucleons are distributed in an approximately uni-
form way in the phase space within a finite domain,
the uniformity being a consequence of the Pauli ex-
clusion principle. Each pseudonucleon traverses in
nearly straight-line collisionless trajectories in the
interior of the nucleus and suffers an elastic reflec-
tion at the surface. Such a description of the
dynamics of nucleons is not new. It is embodied in

the discussion of the Fermi motion of nucleons and
also in the theory of one-body dissipation. '
What is perhaps new is to see how such a motion
can be inferred from the TDHF approximation and
thereby connected to a dynamical theory.

An important concept in the description of a
ground-state nucleus is the replenishment of the
Fermi spheres under the motion of the pseudonu-
cleons. The total distribution function of a
ground-state nucleus is time independent. Such
time independence is achieved in the presence of the
motion of pseudonucleons when the motion is such
that for every group of pseudonucleons leaving a
phase space point, it is replenished by the arrival of
another group of pseudonucleons from some other
location. Thus, a change of the trajectories of the
pseudonucleons will affect the replenishment of the
Fermi sphere.

We next focus our attention to the TDHF results
of absence of fusion in head-on collisions when the
energy exceeds a certain limit. The disappearance
of the boundary between the two nuclei alters the
trajectories of the pseudonucleons. The pseudonu-
cleons at the surface with the correct momentum
direction can proceed to the other nucleus. They do
not replenish the Fermi sphere in its own nucleus
but rather add on to the momentum distribution at
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another point in the other nucleus. The important
instant which determines fusion or nonfusion events
occurs when the most energetic pseudonucleons ar-
rive at the far surface of the other nucleus. If these
pseudonucleons are contained by the potential well,

they will be reflected backward and eventually lead
to a fused composite system. On the other hand, if
they are not contained but emerge outside the sur-

face, a self-consistent effect develops to lower the
potential well to allow even more pseudonucleons to
emerge outside the surface. This flow-through mo-

tion leads eventually to the breakup of the compo-
site system. Threshold energies and low-I fusion
windows obtained using such a picture give good
agreement with the TDHF results. Threshold ener-

gies for particle emission are also estimated.
Our comparison of the pseudoparticle model with

the theory of one-body dissipation reveals the simi-
larities and differences. The similarities can be
found in the description of the trajectories, while
the differences are in the additional assumptions of
the one-body dissipation with regard to energy dis-
sipation. Furthermore, the pseudoparticle simula-
tion is a complete and self-contained microscopic
dynamical theory all by itself without the need to
attach itself to some other dynamical theory of col-
lective variables, as is the case with the theory of
one-body dissipation.

The pseudoparticle simulation can also be com-
pared with the classical particle model used in the
discussion of high-energy, heavy-ion collisions. The
similarity of the two descriptions can be found in
the way the trajectories of the particles are fol-
lowed. However, in the pseudoparticle model, the
particles are pseudoparticles, so they can be
numerous in number, whereas in the classical parti-
cle model, the particles are real particles, the same
number as the mass number of the nucleus. Anoth-
er difference can be found in the treatment of the

Pauli principle. In the pseudoparticle model, this is
done by giving an initial Fermi distribution in the
momentum space, while in the other treatment, a
momentum-dependent potential is used to simulate
the Pauli exclusion effect. Still another difference
is the possibility of incorporating the equation of
state using the mean-field potential in the pseu-
doparticle simulation.

Useful as it is in providing a conceptual tool in
understanding the TDHF approximation, the pseu-
doparticle simulation may be limited in its practical
application because of the large number of pseu-
doparticles needed to describe the phase-space dis-
tribution and the possibility of numerical instability
associated with the Vlasov equation. Much work
remains to be done to examine whether it can be a
useful numerical tool for heavy-ion collisions.

It will be of interest in future work to extend the
pseudoparticle simulation to include particle colli-
sions in a way similar to what was done in the
Landau-Fermi liquid theory. Such an extension
will allow one to discuss the approach to local ther-
mal equilibrium and the validity of hydrodynamical
approximations in heavy-ion collisions.

After the main work was completed and the main
results were presented the author was happy to
learn of recent applications of the pseudoparticle
method by G. Maddison and D. Brink. A dif-
ferent approach to study the Vlasov equation was
recently developed by H. Tang et al.
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helpful discussions.

~C. Y. Wong, J. A. Maruhn, and T. A. Welton, Nucl.
Phys. A253, 469 (1975).

2C. Y. Wong, T. A. Welton, and J. A. Maruhn, Phys.
Rev. C 15, 1558 (1977); C. Y. Wong, ibid. 17, 1832
(1978).

3C. Y. Wong and J. A. McDonald, Phys. Rev. C 16, 1196
(1977).

4C. Y. Wong and H. H. K. Tang, Phys. Rev. Lett. 40,
1070 (1978);Phys. Rev. C 20, 1419 (1979).

5The main results of the present article were presented
previously in C. Y. Wong, Time-Dependent Hartree-
I'ock Method, edited by P. Bonche, B. Giraud, and Ph.
Quentin {Editions de Physique, Paris, 1979), p. 205.

P. Bonche, S. E. Koonin, and J. W. Negele, Phys. Rev.
C 3, 1226 (1976).

7S. E. Koonin, K. T. R. Davies, V. Maruhn-Rezwani, H.
Feldmeier, S. J. Krieger, and J. W. Negele, Phys. Rev.
C 15, 1359 (1977).

H. Flocard, S. E. Koonin, and M. S. Weiss, Phys. Rev.
C 17, 1682 (1978).

P. Bonche, B. Grammaticos, and S. Koonin, Phys. Rev.
C 17, 1700 (1978).

~OR. Y. Cusson, R. K. Smith, and J. A. Maruhn, Phys.
Rev. Lett. 36, 1166 (1976); R. Y. Cusson and J. A.
Maruhn, Phys. Lett. 62B, 134 (1976); R. Y. Cusson
and J. A. Maruhn, ibid. 62B, 134 (1976);J. A. Maruhn



25 DYNAMICS OF NUCLEAR FLUID. VIII. TIME-DEPENDENT. . . 1475

and R. Y. Cusson, Nucl. Phys. A270, 437 (1976).
J. W. Negele, S. E. Koonin, P. Mufller, J. R. Nix, and
A. J. Sierk, Phys. Rev. C 3, 1098 (1978).

~2J. W. Negele, in Theoretical Methods in Medium-
Energy and Heavy-Ion Physics, edited by K. W. McVoy
and W. A. Friedman (Plenum, New York, 1978), p.
235.

~3Recent work in TDHF is discussed in Time-Dependent
Hartree-Fock Method, edited by P. Bonche, B.Giraud,
and Ph. Quentin (Editions de Physique, Paris, 1979).
P. C. Lichtner and J. J. Griffin, Phys. Rev. Lett. 37,
1521 (1976); P. C. Lichtner, J. J. Griffin, H. Schulteis,
R. Schulteis, and A. B. Volkov, University of Mary-
land Report ORO-5126-49, 1978; J. J. Griffin, Univer-

sity of Maryland Report ORO-5126-44, 1978.
~5J. Blocki and H. Flocard, Nucl. Phys. A273, 45 (1976).

K. K. Kan, J. J. Griffin, P. C. Lichtner, and M.
Dworzecka, in Time-Dependent Hartree-Fock Method,
edited by P. Bonche, B. Giraud, and Ph. Quentin (Edi-
tions de Physique, Paris, 1979).
C. M. Shakin and M. S. Weiss, UCRL Report No.
08500.
H. Orland and R. Schaeffer, Z. Phys. A 290, 191
(1979).
S. Levit, J. W. Negele, and Z. Paltiel, Phys. Rev. C 21,
1603 (1980);22, 1979 (1980).

20Y. Alhassid and S. E. Koonin, Phys. Rev. C 23, 1590
(1981).
J. Mocki, Y. Boneh, J. R. Nix, J. Randrup, M. Robel,
A. J. Sierk, and W. J. Swiatecki, Ann. Phys. (N. Y.)
113,330 (1978).

S. E. Koonin, R. L. Hatch, and J. Randrup, Nucl.
Phys. A283, 87 (1977); S. E. Koonin and J. Randrup,
ibid. A289, 475 {1977).

23L. Wilets, A. D. Mac Kellar, and G. A. Rinker,
Proceeding of the Symposium on Macroscopic
Features of Heavy-Ion Collisions, Argonne, Illinois,

1976, ANL Report No. ANL-PHY-76-2.
~4A. R. Bodmer and C. N. Panos, in Proceedings of the

International Workshop III on Gross Properties of Nu-

clei and Nuclear Excitations, Hirschegg, Kleinwalser-

tal, Austria, 1975, edited by W. D. Meyers, Technische
Hochschule Darmstadt Report No. AED-Conf. 75-
009-000, 1975 (unpublished); Phys. Rev. C 15, 1342
(1977).

25J. P. Bondorf, H. T. Feldmeier, S. Garpman, and E. C.
Halbert, Phys. Lett. 65B, 217 (1976);J. P. Bondorf, P.
J. Siemens, S. Garpman, and E. C. Halbert, Z. Phys.
A 279, 385 (1976).
R. K. Smith and M. Danos (unpublished).
Y. Yariv and Z. Fraenkel, Phys. Rev. C 20, 2270
(1979).

SJ. Cugnon, T. Mitzutani, and J. Vandermeulen, Nucl.
Phys. A352, 505 (1981).

2 J. Cugnon, Phys. Rev. C. 22, 1885 (1980); 23, 2094

(1981).
L. Wilets, E. M. Henley, M. Kraft, and A. D. MacKel-
lar, Nucl. Phys. A282, 341 {1977).

'L. Wilets, Y. Yariv, and R. Chestnut, Nucl. Phys.
A301, 359 (1978).

32E. Wigner, Phys. Rev. 40, 749 {1932).
E. A. Remler, Ann. Phys. (N. Y.) 95, 455 (1975); E. J.
Heller, J. Chem. Phys. 65, 1289 (1976).

G. F. Bertsch, Nucl. Phys. A249, 253 (1975); Lecture
Notes for the 1977 Les Houches Summer School, Les
Houches, Frahce.
S. E. Koonin, Ph.D thesis, MIT, 1975 (unpublished).

3sI. P. Hansen and I. R. McDonald, Theory of Simple
Liquids (Academic, New York, 1976), Chap. 3 and
references cited therein.

37H. Okuda, Nucl. Sci. Eng. 64, 1 (1977) and references
cited therein; C. Z. Cheng and H. Okuda, Nucl. Fu-
sion 18, 5 (1978); W. W. Lee and H. Okuda, J. Comp.
Phys. 26, 2 (1978).
N. L. Balazs and G. C. Zipfel, J. Math. Phys. 15, 2086
(1974); N. L. Balazs and H. C. Pauli, Z. Phys. A 281,
395 (1977).
S. Kohler and H. Flocard, Nucl. Phys. A323, 189
(1979).

J. J. Griffin and C. Y. Wong, Proceedings of the XIV
International Winter Meeting on Nuclear Physics, Bor-
mio, Italy, 1976; also University of Maryland Report
76-118.
P. Bonche, K. T. R. Davies, B. Flanders, H. Flocard,
B. Grammaticos, S. E. Koonin, S. J. Krieger, and M.
S. Weiss, Phys. Rev. C 20, 641 (1979).

R. Y. Cusson, private communication.
4 J. B. Natowitz, G. Donkellis, B. Kolb, G. Rosner, and

Th. Walcher, Heidelberg report (unpublished).
44A. Lazzarini, et al., Workshop on Nuclear Dynamics,

Granlibakken, California, 1980, Lawrence Berkely
Laboratory Report LBL-10688, p. 61.

45F. Plasil, private communication.
K. R. Sandhya Devi, M. R. Strayer, K. T. R. Davies, S.
E. Koonin, and A. K. Dhar, Phys. Rev. C 24, 2521
(1981).

47D. G. Sarantites, L. Westerberg, M. L. Halbert, R. A.
Dayras, D. C. Hensley, and J. H. Barker, Phys. Rev.
C 18, 778 (1978); K. Geoffroy Young, D. G. Saran-
tites, J. R. Beene, M. L. Halbert, D. C. Hensley, R. A.
Dayras, and J. H. Barker (unpublished); G. A. Pettit,
R. L. Ferguson, A. Gavron, F. E. Obenshain, F. Plasil,
A. H. Snell, G. R. Young, K. A. Geoffroy D. G.
Sarantites, and C. F. Maguire, Proceedings of Interna-
tional Symposium on Continuum Spectra of Heavy-Ion
Reactions, San Antonio, Texas, 1979 (unpublished).

4 G. F. Bertsch, Phys. Rev. C 17, 1646 (1978).
49G. Maddison and D. Brink (unpublished).

H. Tang, C. H. Dasso, H. Ebensen, R. A. Broglia, and
A. Winther, Phys. Lett. 101B, 10 (1981).


