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A time-dependent multichannel nonrelativistic quantum scattering theory is established
for systems which contain identical particles. The symmetry properties of the theory are
rooted in the abstract algebraic relationships between permutations. The formalism of
second quantization is thus avoided. Appropriate wave and scattering operators are de-

fined, including those for systems with long range (e.g., Coulomb) interactions. A correct-

ly symmetrized dynamical equation for the symmetric form of the transition operator is
derived and used to develop an optical potential formalism.
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I. INTRODUCTION

During the past few years considerable progress
has been made in the nonrelativistic multichannel
quantum scattering theory for systems of distin-
guishable particles. A time-dependent theory has
emerged that is physically transparent and
mathematically precise. ' By now there are also
several formulations of the exactly equivalent
time-independent theory available. '

On the other hand, the scattering theory for sys-
tems containing indistinguishable particles is in a
less satisfactory state, in our opinion. It is general-

ly believed that the treatment of particle identity in
an X-particle system poses only technical prob-
lems. While this is certainly true for bound state
problems, the inclusion of exchange symmetry in
scattering problems is far from trivial. The reason
is that the asymptotic form of the scattering wave
function (boundary condition) does not accommo-
date the permutation symmetry imposed by the
symmetry group of the Hamiltonian of the system.
As a consequence there is no longer a single chan-
nel Hamiltonian which describes the asymptotic
waves and the well known problems connected
with rearrangement arise. The conventional pro-

cedure described in textbooks is to construct prop-
erly symmetrized'scattering amplitudes from those
of distinguishable particle theory. ' ' It is clear,
however, that such a procedure does not provide a
solution to the physical problem and is therefore
unsatisfactory from a fundamental point of view, as
well as highly impractical except for Born-type ap-
proximations.

Our goal in this paper is to remedy this situation
and to bring the scattering theory for indistinguish-
able particles to a state equally as satisfactory as
that of distinguishable particle theory. This is
done by combining ideas of Ekstein' and Coester
and Schlessinger on the time-dependent formal-
ism with ideas embodied in the time-independent
formalism of Bencze and Redish. ' The result is a
time-dependent theory that involves only objects
with the correct permutation symmetry and that is
clearly defined both physically and mathematically.
The abstract structure, and hence many desirable
concrete structural features, of distinguishable par-
ticle theory are preserved. In particular, the transi-
tion to time-independent theory can be made in the
standard way and the previous time-independent
results can be recovered. Our results and their
physical interpretation, however straightforward
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II. TWO-HILBERT-SPACE FORMALISM

In recent years the two-Hilbert-space formula-

tion of nonrelativistic multichannel quantum

scattering theory has been extensively developed by
several authors. The features of this formalism

that are essential for this paper are briefly summa-
rized in this section. For details the reader should
consult Refs. 1, 22, 27, 29, and 34.

The formalism of this section refers to systems
of distinguishable particles. The dynamics of a
system of N distinguishable particles is governed

by a Hamiltonian operator Hz. The operator Hz
is self-adjoint and is bounded from below on a
separable Hilbert space A z of X-particle wave
functions.

A space 4 of asymptotic wave functions is con-
structed as a direct sum,

(2 1)4 =SA„, (A~=P„AH).
A

The A z are the arrangement channel (cluster) sub-

spaces of A N and the operators PA are orthogonal
projections. The asymptotic dynamics on P is
governed by a unitary operator e' 'U(t}, where

EHIU(t) U(t) IHI (2.2)

they may seem, could not have been derived

without the modern techniques developed by
Bencze and Bencze and Redish.

We have organized this paper as follows. In Sec.
II the two-Hilbert-space formalism for the scatter-
ing of distinguishable particles is recalled. Nota-
tion is thereby established. The relevant portions
of the theory of permutation symmetry are re-
viewed in Sec. III. Section IV is devoted to the
scattering theory for identical particles. Correctly
symmetrized forms of the wave and scattering
operators are developed, as is a dynamical equation
for the symmetric form of the transition operator.
In Sec. V an optical potential formalism is
developed along the lines of that of Kowalski and
co-workers. ' Concluding remarks are in Sec.
VI.

Such corrections are, in particular, necessary for
the Coulomb interactions. If there are no long-
range interactions, then U(t) =I, where I denotes
the identity on A . Finally, the commutation rela-
tions

[Hq, Pz ]=0=[Uw (t),Pw ] (2 4)

J%=JS t/ig —= g fg,
A

(2.5)

and its adjoint J*:4&~A,
J'g= SP„Q.

A

The multichannel wave operators Q+—:A ~A ~
are defined by

(2.6)

Q +—= s —lime "Je ' 'U( t) . —
t~+ oo

(2.7)

These operators are partially isometric
(Q+*Q+=I =Q 'Q ) and have the intertwining

property (HNQ +=Q+-H). -An alternative represen-
tation is given by

Q-+4= g Qg
A

where 4= Szgz is any vector in A . The ar-
rangement channel (cluster) wave operators
QA—+.A A~A z are given by

iH&t —iH& t
Qq- ——s —lim e Pqe Uq(t) .

t—++ oo

(2.8)

(2 9)

The partial isometry of Q+- is equivalent to the
property

QB QA QB QA 5BA PA (2.10)

where 5BA is the Kronecker delta. The intertwin-

ing property of Q+-is equivalent to the property

H~QA———QA
—

HA . (2.11}

The multichannel scattering operator S:A —+A

is defined by

hold.
Communication between 4 and A & is provided

by the linear operator J;A ~A z,

The form of operator e' 'U(t) is specified by the
equation

An alternative representation is

(2.12)

(2.3)e' 'U(t)%= Se " U„(t)l(g,
A

where 4= Sz l(tz is any vector in A . The opera-
tors Hz are the arrangement channel (cluster)
Hamiltonians. The unitary operators Uz (t)

tH~ t
represent the corrections to e " that are necessi-
tated if the interactions have long range.

S%'= 6 QSaaga (2.13)

where 4= S

&fan

is any vector in 4 and

SBA QB QA

Consider now systems in which all interactions
have short range, so that U(t) =I. The scattering
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where Imz+0 has been assumed. The operator
T(z) satisfies the dynamical equation

T(z) =(J"J 1)(z —H)+—8'+ WR (z)T(z),

where II (z) =(z H} ',—and where W satisfies

8'J*=J*Hg —HJ* . (2.16)

Equation (2.14) can also be written in terms of the
arrangement channel (cluster) matrix elements

Ta~ (z»

Ta~(»=(1 —4~)P~Pa(z —H~ }+II'a~

+ Q II'sc(z Hc) 'Tc—g(z), (2.17)
C

where 6~& is the Kronecker delta.
DiAerent specific versions of this abstract for-

malism are generated by diAerent choices of H and
W. In the Chandler-Gibson (CG} theory ' the
spaces A z are true channel subspaces in which the
bound state wave functions of the bound clusters
are incorporated. The operator 8' in this case is
defined by

( 8' }sq Pg(H~ H~——} g Pc —'P„. (2.18)

In the Bencze-Redish-Sloan (BRS) theory' ' the
spaces ~z are each identical to ~z, so that
Pz ——IN, the identity on P z. The operator 8' is
defined by

(W )sq ——( —1) "(mg —I)!Vg, (2.19)

where mz is the number of clusters in arrangement
A and Vz is the sum over all interactions. that are
in Hz but not in Hz. The Kouri-Levin-Tobocman
(KI.T) theory' ' is obtained by setting M„=A ~
and restricting the index A to those arrangements
with only two clusters. The operator 8' in this
theory has the form

operator S then has a time-independent representa-
tion in terms of the usual transition operators.
From the various forms of the transition operators
we choose the symmetric form

T(z)=(z H)—J (z HN—) 'J(z H)—(z —H)—,

(2.14)

Bemuse our abstract formalism embraces all of
these specific theories, our conclusions in this pa-
per will apply to all of them.

III. PERMUTATION SYMMETRY
IN N-PARTICLE SYSTEMS

[HN, p] =0, Vp &A, (3.1)

where p denotes the linear unitary operator associ-
ated with the permutation. Since linear unitary
operator representations of W can always be con-
structed, in the following we shall denote both the
permutation and its unitary operator representative

by the same symbol.
It is.convenient to introduce the operators

P=fpp ~ (3.2)

where the phase factor f~ is —1 if p involves an
odd number of fermion permutations and +1 oth-
erwise. In this way bosons and fermions can be
treated in a unified manner.

The symmetrization postulate for physically ad-
missible wave functions ' can then be formulated
as the requirement that

In quantum systems identical particles are indis-

tinguishable so that any permutation of them can-
not affect any physical property of the system.
Consequently, the permutation of identical particles
is a symmetry operation and the set of all such
permutations forms a symmetry group of the
system's Hamiltonian, i.e., the permutation group
of the system. Therefore, if in an N-particle sys-
tem some or all the particles are identical, certain
symmetry requirements have to be fulfilled by the
treatment of the dynamics. The algebraic proper-
ties of permutation symmetry have been discussed
extensively in previous works ' so that here we
only summarize the most important results to be
used.

Let P' denote the permutation group of the sys-
tem. If all the particles are identical, then A—=Sz
is the full symmetric group of N objects. In case
there are different sorts of identical particles
present, clearly P' will be (isomorphic to) the
direct product of several symmetric groups. The
permutation symmetry of the system implies that

( 8' )i' (H~ Hs )cosg, —— — (2.20)
(3.3)

where cozen is a numerical valued matrix with the
property

As is well known, the Young symmetrizer of the
group S,

(3.4)
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where
(
P'

~

denotes the order of the group, is an

idernpotent element of the group algebra,

(RN ) =RN ——
Riv

', (3.5)

w=Iaj . (3.6)

Then it is clear that the permutation group P' of
the system maps M into itself. Depending on the
way of labeling, some permutations leave a label a
unchanged. The set of such permutations,

w =[PEP'~pa=aj, (3.7)

form a subgroup P' | P' of the permutation
group. The corresponding Young operator

R =/P'[ ' gp (3.g)

is an idempotent element of the group algebra so
that its operator representation is a projection.

If a is a partition label A, then clearly P'z is a
symmetry group of the channel Hamiltonian Hz,
as well as (in case of long-range interactions) the
operator family Uz (t),

[Hq P]=[Uz ( t) P]=0, VP EWw . (3.9)

For an X-particle system that contains identical
particles, the symmetry is carried by the permuta-
tion group W of the system. Since the permuta-
tion of identical particles, even if it changes labels,
does not change any physical property of the sys-
tern, quantities labeled by a and a' with a'=pa,
p EM, are physically equivalent. It is easy to see
that the binary relation

a'A'a, iA' 3 p EP', pa=a' (3.10)

is an equivalence relation that splits up the label
set M into equivalence classes. From the above

with the important property pR~ ——R~ . Using
(3.3) and (3.5) the symmetrization postulate can be
reformulated as the requirement that each physical-

ly admissible wave function of the system should
transform according to a one-dimensional irreduci-
ble representation of the permutation group P'.
Wave functions of physical interest are, therefore,
those which belong to the set Rz A z.

The asymptotic states of a multiparticle system
can be characterized in terms of partitions (cluster-

ings) of the particles. Consequently, in the various
formulations of multiparticle scattering theory the
relevant quantities are usually labeled by partitions
or chains of partitions. Let W denote the set of
these labels a,

(3.1 1)

where W is the subgroup defined by (3.7). The la-

bel a in [a] can be arbitrarily chosen since if a'9Fa
then necessarily W and P'

~ are conjugate sub-

groups (P'~ =p&~ ' for some p EP'). From the
above results follow the important factorization
formulas

l~] a'a[a]
(3.12)

a'C fa]
(3.13)

where p~ ~ denotes the permutation which maps a
into a' and Ip«j is a transversal of the subgroup

Since the choice of transversals is not unique,
it is often convenient to introduce canonical labels
a to fix the representation.

It is important to study how the quantities la-
beled by partitions or chains of partitions
transform under permutations of the particles. The
operators and other relevant quantities typical to
1V-particle scattering theories are uniquely deter-
mined by giving the partitions or the labels of the
system. If a permutation of the particles changes
the labels, the corresponding quantities change as
well. The simplest, and most natural, transforma-
tion properties are

pM p '=M~

pM ~p '=M~ '~~
(3.14)

with pEW and aEW. The symbols M and M ~

denote arbitrary operators characterized by one or
two labels. The class of operators satisfying Eq.
(3.14) is called "label transforming" and plays a
very important role in the multiparticle scattering
theory of identical particles. In subsequent sections
the labels a will always be taken to be the partition
label A of the arrangement channels (clusterings).

IV. SCATTERING THEORY
FOR IDENTICAL PARTICLES

A. The operator Q~

The following label transforming properties are
essential to the structure of the theory:

considerations it follows that the physically
relevant information is carried by quantities which
depend only on the equivalence classes. Let [a]
denote the equivalence class to which a belongs.
By Lagrange's theorem the number of elements of
the equivalence class [a] is given by
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~a
PBA ~ ~ PBA

PBA ~A ~BPBA

paA UA ( t) = Ua ( t)pa»

PBA ~A ~BPBA

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

Equation (4.1) is a consequence of the definition

ofR ". Equations (4.2) and (4.3) are consequences
of the commonly assumed forms of HA and
UA(t). ' ' . Equation (4.4) is a straightforward
relation between spaces and does not imply any
symmetry of particluar functions under the action
of M. Equation (4.5) is automatic for the BRS and

KLT theories, but it implies in the CG theory that
the bound state wave functions of the clusters are
invariant under the actions of ~A. %e adopt Eqs.
(4.1)—(4.5) as basic assumptions.

Consider now the operators QBA de6ned by

r

BA A

A

g QBA
B

(4.15)

(4.16)

Equation (3.12), with a =A, and Eqs. (4.6) and
(4.7) imply that

g QBA ~N
8-

(4.17)

Combining Eqs. (4.16) and (4.17) yields the funda-
mental result

In going from Eq. (4.13) to (4.14) we have made
use of Eq. (4.1) and the group property of P'.
Since N[A~ is the number of members of the
equivalence class [A], it follows immediately that
the right side of Eq. (4.14) is just QBA. Conse-
quently, (Q' ) =Q and Q is an orthogonal pro-
jection on A .

Suppose now that 0'= 63 pA belongs to A
and consider

QBA =N(A)paAR 1f8 + [A] (4.6)
RN J=JQ . (4.18)

(4.7)

r

Q +=Q ~V. —= XQ-O. ,
A B A

(4.8)

=0, if 8&[A] .

It is clear from Eqs. (4.4) and (4.5) that QBA maps
A A into A a. The operator Q, defined by

~=SR 0. (4.19)

The operator Q has another important
representation. For each equivalence class [A] let
a canonical label 2 be chosen. Define the direct
sum Hilbert space

is therefore a mapping from A into A . Equations
(3.8), (3.9), (4.2), and (4.3) imply

Next define the linear operator p:M ~A through
the following equations.

and

QaA~A =&BQaA

QBA UA(t) = Ua(t)QaA

(4.9)

(4.10)

PC'=P 4„o =—B PBA ~A o

A06[B]
(4.20)

Consequently,

[Q,H]=0=[Q, U(t)] . (4.11)

(Q Q )BA=+QacQcA ~

The right side of Eq. (4.12) is zero unless 8 E [A].
If BE[A], then

(4.12)

l
+Ig QacQcA =N(A) & lac~ ~PcA&'

C Ca[A]
—2 g PBA~

Ca[A]
(4.14)

Since the operators p form a unitary representation
of the group W, it follows that PBA ——PAB and,
hence, that QBA* ——QAB. This implies that Q is
self-adjoint. We now consider

~0
pa„o=N(B) paAoR

"—, if A E[B],

=—0, if Aog[8] .

It is straightforward to prove that

pp*=Q and p*p=R

where

R 4=R Sp„o= SR

A further consequence of Eq. (4.23) is that

Q p=p and p"Q =p' .

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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The operators Q and p play a central role in

subsequent developments in this paper.

—1/2 1/2S oAo —N) o)N) o) ~ P oBS o

o~

(4.34)

B. Wave and scattering operators

Where some or all of the particles of the system
are identical, the wave operators appropriate to the
system are R~ n-+. ' A straightforward conse-
quence of Eqs. (2.7), (3.1), (4.11), and (4.18) is that

R~ Q+-=Q+—Q (4.26)

n~+=n+p .

By the partial isometry of Q+-and Eq. (4.23),

n~+*n~+ =n~-*n~- =R~,

(4.27)

(4.28)

The asymptotic wave functions of the system must
therefore lie in the space Q A . It is convenient to
represent these states in terms of wave functions in
the space ~ . Wave operators n +-:~~Rz P N

are therefore defined by

Another interesting property of S follows in an
elementary way from Eq. (4.2S). The property is
that

S S =p S Sp and S S =p SS"p. (4.35)

It follows that if S is unitary on 4, then S is un-
itary on R P. Thus, the symmetrization required
by indistinguishability of particles, a nondynamical
symmetry, does not destroy the unitarity of the
scattering operator, an important dynamical sym-
metry.

The symmetrization also preserves the asymptot-
ic completeness property.

We now define unitary operators e' ' and V(t}
on P:

so that the wave operators n -+ are partial
isometrics with initial space R ~. The scattering
operator S:~—+~ is defined by

iH ot—:Se (4.36)

s~=n~+*n~- . (4.29}
and

Equation (4.27) can be written in terms of ar-
rangement channel (cluster) matrix elements.
Thus,

(4.30)
Ao

(4.37)

V(t)4= V(t) e P„,
8 Ug (t)0y p

o A A

It follows that e' ' and V(t) have the properties

~+ += &Q~ pa~o.
B

(4.31}

[e' ', V(t)] =0,
pe

iFt eiHt

pV(t) = U(t)p .

(4.38)

(4.39}

(4.40}
An elementary consequence of Eqs. (2.9), (3.1},
(3.9), (4.2}, and (4.4) is that Qii satisfies Equations (2.7), (4.27), and (4.38)—(4.40) can be

combined to yield the important equation
BPBA PBA A

By Eq. (4.21), therefore,

(4.32) iH~t
Q -+= s —lime "Jpe ' 'V(t) .

f~+ oo
(4.41)

Q +=N ' ~ Q-+-
Ao [Ao] ~ BJBA

Be(Ao)

1/2 M +—N(Ao)R~ nAo . (4.33)

The content of Eq. (4.33} is familiar.
Equation (4.33) can be used to derive similar for-

mulas for the matrix elements S o o of S . The

results are well known relations, an example be-
ing

Furthermore, by Eq. (4.39}and the intertwining

property for n+-, relation H&n +-=n -+F holds.
When the interactions have short range, the cluster
properties of n +-and S have also been veri-
fied

The form of Eq. (4.41) is the same as that of Eq.
(2.7}. The difference lies in the fact that in Eq.
(4.41) entire equivalence classes (represented by
canonical members A ) are treated as single physi-
cal channels. This is in complete agreement with
the notion that these equivalence classes are the
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J =—Jp. (4.42)

C. Transition operators

fundamental physical entities.
The foregoing results imply that the scattering

theory for systems with identical particles has the
same abstract structure as that for systems of dis-
tinguishable particles. To pass from the distin-
guishable particle theory to the identical particle
theory one replaces 4 by ~, H by F, U(t) by
V(t), and J by

Equations (4.44) and (4.48} can also be written in

terms of matrix elements. The result is

.5
1/2 ao

Bp„p —(N[BO]E[AO] ) PBoR RN R P„o

ji

BA+ A BAO

+ g W, ,(z —H, )
—'T,„, (4.50)

CO

and

—1/2
BA [B] [A ]

According to Secs. II and IV 8, the symmetric
transition operator that corresponds to 5 when

the interactions have short range is

BOPBOB»~
B,A

AA
(4.51)

T (z) =(z F)J (—z H~) 'J—(z F) (z—F)—, —

p"T(z)p (4.43)

where

PT,PJ.&4 J.N4~ FJP 4
N

Thus,

8' J '=p'WJ*R N——p" WQ J",
from which it follows that

The simplest choice of 8'is

8' =p*8'p .

(4.45)

(4.46)

(4.47)

(4.48)

With this choice the scattering theory is completely
specified in terms of correctly symmetrized objects.

Equation (4.43) can be written in terms of ar-
rangement channel (cluster) matrix elements.
When this is done and the label transforming prop-
erties [Eqs. (4.1), (4.2), and (4.3)] are taken into ac-
count, the well known results ' expressing T o,
as coherent sums of TBA are recovered. For exam-

ple,
—1/2 1/2

TBpAp(Z) =E[ O] +B[Ap]

X g R ~p
o T p(z).

Be[a']
(4.49}

Here we have considered T as an operator on
R ~, on which p*p is the identity. This sym-
metrized transition operator satisfies the dynamical
equation

T ~=p*(J*J 'I)p(z F)——

(4.44)

An important question is whether Eq. (4.48)
preserves the channel coupling structure of the dis-
tinguishable particle equation Eq. (2.15}. There are
indications that it is preserved for the BRS
theory and is not for the KLT theory. The de-
finitive answer is a matter for future research.

V. OPTICAL POTENTIAL FORMALISM

Though the optical model of elastic scattering
dates back to the 1940's, the formal theoretical jus-
tification of it was elaborated only much later by
Feshbach. The projection operator formalism
developed by Feshbach made it possible to reduce
the elastic scattering of two nuclear particles to an
eA'ective two-body problem. The corresponding ef-
fective two-body interaction, the (generalized) opti-
cal potential, however, could only be given by a
formal expression. Its construction, in fact, would
have required the solution of a multiparticle col-
lision problem.

Owing to the rapid development in the field of
multiparticle scattering theory there are now a
number of exact X-particle formalisms available.
These exact N-particle equations make it possible
to recast the optical potential formalism in the
form of an explicit theory. Thus, recently there
has been an increased interest in developing
dynamical theories for the optical potential.
While these considerations are straightforward for
systems of distinguishable particles, particle identi-
ty introduces some complications into the formal-
ism, as it has been recently demonstrated by
Kowalski.

As an application of the results described in pre-
vious chapters, here we develop a simple and expli-
cit formalism for the optical potential. The two-
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Hilbert-space formalism makes the physical ideas
as well as mathematical technique especially tran-
sparent. The case of identical particles presents no
extra difficulties.

Once the corresponding Hilbert spaces have been
constructed which account for the permutation
symmetry of the N-particle system, the abstract
structure of the theory is the same as in the case of
distinguishable particles. For simplicity of nota-
tion, therefore, we first develop the theory in terms
of the distinguishable particle theory.

Let us consider the symmetric form T(z) of the
transition operator [cf. Eq. (2.14)]. The dynamical
equation satisfied by T(z) is Eq. (2.15). Since T(z)
is a multicomponent quantity, Eq. (2.15)
represents, in fact, a set of coupled equations.
Now, if one is interested in the description of elas-
tic scattering, only a single component is effectively
needed. Of course, if Eq. (2.15) is solved, one also
has the elastic scattering T operator. In the optical
potential formalism, however, one first eliminates
the unwanted quantities and obtains a single equa-
tion with effective interaction for the elastic T
operator. In Feshbach's theory, the elimination
procedure is facilitated by the projection operator
technique, though it results only in formal expres-
sions. In the frame of exact N-particle scattering
theory, the projection operator technique will be-
come a powerful tool and can lead to practical
results. ~

Let us introduce the projection operator P that
when applied to T selects the required component.
By definition

+[P(A +I )P PAP]—RPTP .

Another partial inversion of the kernel yields

PTP=[I+PAPR] 'P(A+1 )

XP [I+RPTP],
= U+URPTP .

(5.8)

(5.9)

(5.10)

The optical potential operator
U=[I+PAPR] 'P(A+r)P satisfies the equation

U=P(A+1 )P PAPRU—. (5.11)

Equations (5.2), (5.10), and (5.11) are the funda-
mental equations of Kowalski, written in two-
Hilbert-space notation.

The fundamental equations for systems with
identical particles follow from those for distin-
guishable particles. The operators 8', J, and R are
to be replaced by W, J, and (z F) ', respe—c-
tively. The projection operator P is to be interpret-
ed as selecting the desired channel A in P . The
resulting equations for the matrix elements of the
operators are

Inverting part of the kernel we obtain

T= [1—W(1 P—)R]

X [(J'J I)R— '+ W+ WRPT] . (5.7)

Equation (5.4) now follows directly from Eqs. (5.3)
and (5.5). Multiplying Eq. (5.4) from the left and
right by P and rearranging terms yields

pTp=p(A+r)p

[P,R]=0 .

Let us define the operator I by the equation

r= w+ w(I —p)Rr .

(5.1)

(5.2)

~~~~ =U~~+~~' H~o) 'T~~~—

Ao
—Ao+ AoAo

—A„o(z —H„o) U„o i

(5.12)

(5.13)

The formal solution of Eq. (5.2) can be written as

r=[I—w(I p)R] 'w . — (5.3)

By making use of Eq. (5.3) one can then obtain the
equation

r, ,„,= w, ,„,+ g(i —s,,„,) w...,
co

c' ' c'~' ' (5.14)

T=A+I +I RPT,
where

(5.4) A„,= +[5„,,+(1—5„, ,)r„, ,(z —H, ) ']
co

A=[I+1 (1 P)R](J J I)(z —H) . — —(5.5)

The derivation of Eq. (5.4) is very simple. Start-
ing with Eq. (2.15) one writes

o—5co„oR
" P„o)(z —H„o) . (5.15)

T=(J'J I)R '+W——

+ WRPT+ WR (1 P)T . —(5.6)

The optical potential UAO is defined by Eqs.
(5.13)—(5.15), which contains only correctly sym-
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metrized quantities. Once this potential is known

T, , can be calculated via the Lippmann-

Schwinger equation Eq. (5.12).
It is important to note that the above simple

considerations are completely general and identical
particle effects are easily incorporated. The formal
tools used to obtain dynamical equations for the
optical potential are essentially the generalization
of those of Feshbach in the frame of an exact mul-

tiparticle scattering theory.
Two final delicate points should be mentioned.

While in the various X-particle formalisms it turns
out that Eqs. (5.13) and (5.14) have well-behaved

kernels, the existence and uniqueness of the solu-
tion needs some more careful study. Second, the
operatois U 0, I 0 0, and 3 0 seem to have no cut

corresponding to the channel 3 . This was a ma-

jor point of Kowalski.

VI. CONCLUSIONS

In a multiparticle system the permutations of
identical particles form a symmetry group of the
Hamiltonian. In addition to the symmetrization
postulate for the total wave function, the permuta-
tion symmetry of the system has other important
consequences. The permutation symmetry induces
an equivalence relation on the set of asymptotic ar-
rangement channels of the system. Consequently,
only the equivalence classes can be considered as
physical entities. In particular, the physical prop-
erties of the system have to be described by opera-
tors which depend only on the equivalence classes.
This necessitates a reformulation of the asymptotic
condition and leads naturally to the properly sym-
metrized wave and scattering operators for physical
processes. These operators can be expressed as
suitable linear combinations of the corresponding
operators of distinguishable particle theory, but are
much fewer in number. ' These "physical" opera-
tors are, in the usual terminology, coherent sums of
operators for the '*direct" and "exchange"
processes.

In the present work we have built the permuta-
tion symmetry into the definition of the scattering
states. This has made it possible to elaborate the
previous work of Ekstein' and Coester and Schless-
inger into a detailed scattering theory for identi-
cal particles.

The main results of the paper are as follows.
Using a two-Hilbert-space technique, in which the
abstract structure of the theory is especially clear,

we have shown that the incorporation of the per-
mutation symmetry of the system into the forrnal-
ism does not destroy the unitarity of the scattering
operator. In addition, we have demonstrated that
the symmetrization of the theory can be performed
even if there are long-range Coulomb interactions
in the system. This last result is not obvious even
if it is usually taken for granted. We have also
written down the correctly symmetrized equation
for the transition operator. As a byproduct of
these considerations, we have also shown that the
two-Hilbert-space technique and a suitable general-
ization of Feshbach's projection operator formalism
lead in a natural way to an optical potential for-
malism. Owing to the abstract structure of the
theory identical particle effects are easily included
in the optical potential formalism if the relevant
quantities are label transforming. Our results can
be regarded as an abstract generalization of
Kowalski's optical potential formalism.

The most important result of the present work
is, however, the combination of the abstract alge-
braic consequences of the permutation symmetry of
the system with a clear time-dependent physical
picture of the scattering process. As a result, a
time-dependent scattering theory of systems with
identical particles emerges that is clearly defined,
both physically and mathematically, in terms of
objects with the correct symmetries. That the con-
struction of this theory seems almost trivial is tes-
timony to the power of the two-Hilbert-space for-
malism and the abstract algebraic theory of the
permutation group. In this way the elaborate for-
malism of second quantization is not needed.
Moreover, the transition to time-independent
theory can be made in a rigorous way and the pre-
vious time-independent results are recovered.
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