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Multistep contributions to elastic and inelastic scattering of intermediate energy ha-
drons from collective nuclei are treated analytically to all orders. Exploiting the eikonal
formalism and nuclear geometry, we obtain closed form expressions for the relevant am-
plitudes without the need for coupled channels. Agreement with experiment, where avail-
able, is excellent, and interesting predictions are made for large momentum transfer ex-

periments and “poor” energy resolution.

NUCLEAR REACTIONS Analytical expressions for hadron-nucleus
coupled channels calculations. '*SEr, '2W, %¥Sm (p,p’), calculated o(8)
exclusive to 0%, 2F, 47, and inclusive.

I. INTRODUCTION

Inelastic scattering among strongly coupled nu-
clear levels cannot be treated in distorted wave
Born approximation, but rather must be calculated
to all orders in the inelastic coupling. The stan-
dard procedure for doing this uses the method of
coupled channels. Recently, we have shown that
intermediate energy elastic scattering and inelastic
scattering among weakly coupled states can be
treated analytically, in closed form, by exploiting
the nuclear geometry expressed in the context of
the eikonal approximation.!=* In this paper we
extend these methods to strongly coupled collective
states obtaining closed form, analytic expressions
for the scattering amplitudes for elastic and inelas-
tic scattering for all orders in the coupling. This
not only avoids the algebraic and numerical com-
plexities of the coupled channel method but also
provides analytic insight into the features that
dominate the physical processes. Our results agree
with available data and make interesting predic-
tions for future experiments.

Strongly coupled collective states have the prop-
erty that the couplings among states are not in-
dependent but rather are the manifestations of
some simple collective feature, for example, the de-
formation. Furthermore, the energy separation of
the collective states is very small compared with
that of the incident intermediate energy projectile.
Equivalently, one can say that the projectile-
nucleus interaction times are very short compared

25

with the times characteristic of the collective
motion. Exploiting this fact at intermediate ener-
gy, one can study the scattering of the projectile
for fixed collective coordinates, e.g., deformation,
rather than for fixed nuclear eigenstates, and then
project that scattering amplitude onto states of de-
finite collective motion. This divides the problem
in two parts: first, the calculation of scattering
from a nucleus with fixed collective coordinates
and second, the projection of that scattering ampli-
tude onto nuclear eigenstates. In our previous
work we have seen that hadron-nucleus scattering
at intermediate energy can be calculated analytical-
ly for large momentum transfer starting from the
eikonal expression for the amplitude and exploiting
the asymptotic properties of the integral and the
nuclear geometry via the method of stationary
phase. These methods still apply for fixed collec-
tive coordinates. Since the scattering amplitude
obtained in this way is analytic, the subsequent
projection into nuclear eigenstates is straightfor-
ward. For asymptotic momentum transfers we ob-
tain explicit expressions for elastic and inelastic
scattering of intermediate energy hadronic projec-
tiles from a nucleus to all orders in the collective
coordinate (deformation). It is easy to check that
our results reduce to our previous one step and two
step calculation when expanded, but we also show
that dispersive effects (the virtual excitation of
many collective states during the scattering pro-
cess) are correctly incorporated and are of consid-
erable importance.
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In Sec. II our analytic methods are applied to
the eikonal scattering amplitude for hadron scatter-
ing from a nucleus with fixed collective coordi-
nates. We specialize to the case of an elliptically
deformed (quadrupole) nucleus but the result is
easily generalized to higher multipole moments.
We then show how the analytic amplitude we ob-
tain can be projected onto discrete nuclear states so
as to calculate elastic and inelastic scattering in the
rotational band to all orders in the deformation.

In Sec. IIT we apply these methods to **Sm, 32w,
and '"®Er, nuclei that represent a wide choice of
quadrupole and hexadecapole deformations.
Agreement with experiment where available [800
MeV **Sm(p,p")] is excellent, and the importance
of dispersive effects (virtual multistep processes) is
demonstrated by a comparison calculation without
such effects. In Sec. IV we discuss our results,
present some conclusions, and point out some new
experimental avenues that exploit the difficult en-
ergy resolution problems intrinsic to scattering
from large strongly deformed nuclei. In the Ap-
pendix we show how our method can be applied to
strongly coupled vibrational states.

II. THEORY

Consider the scattering of a fast particle from a
nucleus with a static deformation. In the high en-
ergy limit we may not only use the eikonal approx-
imation to describe the scattering, but we may also
neglect the energy difference between the collective
states of the nucleus compared with the bombard-
ing energy. This is equivalent to neglecting the
dynamics of the collective degrees of freedom or
equivalently to keeping them fixed during the
scattering. We can, therefore, calculate the scatter-
ing for fixed collective coordinates, and then pro-
ject that scattering amplitude onto states of proper
collective motion (e.g., states of good angular
momentum.) In a different language this is an adi-
abatic or Born-Oppenheimer approximation that
exploits the fact that the collective motion is slow
compared with the projectile motion. For protons
at a few hundred MeV, on a typical collective nu-
cleus, this must be an excellent approximation.
The resulting amplitude will have summed the
scattering to all orders in the collective motion
(within the adiabatic approximation) and will,
therefore, be equivalent to a full coupled channels
calculation coupling together all the collective
states.

In the eikonal approximation the scattering of a
spinless particle from momentum p—q/2 to
P+d/2, from a nucleus with fixed collective coor-
dinate () is given by

—

© oy

__il igh cos ¢ —X(b,¢,)
= b 8 1—
> f dbdge ( e ), (1)

where the particle position is described by cylindri-
cal coordinates z, b, and ¢, and P is along z. X is
proportional to the integral along z (at fixed b and
@) of the projectile nucleus potential for fixed col-
lective coordinate . Hence, that integral depends
not only on b and ¢ but also on the collective coor-
dinates, in this case the orientation of the nucleus.
In the first order multiple scattering or “tp” ap-
proximation, X is given by

X(b,$,Q)=vt(b,9,2) , (2a)

with

tb,6,0)= [ p(F,0)dz,
(2b)

Y=30w(1—ir)

where p is the nuclear density for fixed , normal-
ized to 4 nucleons, as a function of T, the projec-
tile coordinate. In y, o, and r are the isospin
averaged elementary projectile-nucleon total cross
section and the ratio of real to imaginary part,
respectively. The above discussion identifies terms
in the limit of short ranged nucleon-nucleon forces.
Incorporation of the finite ranges does not change
the structure of the equations in any way; it only
obscures the identification of the various terms in
the expression with physical quantities. For sim-
plicity, we will continue to talk in terms of the in-
teraction strength y and density p, but it must be
recognized that the following discussion is equally
valid for the folded tp.

Let us now specialize to the case of the greatest
physical interest—an axially symmetric nucleus
with quadrupole deformation. The collective coor-
dinate ) characterizes the orientation of the nu-
cleus with respect to a laboratory fixed axis, and
may be specified in terms of polar angles (6,®) or
a unit vector R. In this case the nuclear density p
in the laboratory system will depend on the collec-
tive coordinate () entirely through the second order
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Legendre polynomial P,( 7-R).

In an exclusive scattering we must project the T
matrix of Eq. (1) onto nuclear states of definite
LM. Since the target starts in the ground state

(L,M =0,0), we can only go to a state in the
ground state rotational band (L even). To do this
projection we write (taking the same z axis for the
M projections)

<p+ LM|T|p~i 00) =T}, = fdQYZM(Q)<p’+%,Q|T]ﬁ—%,Q>YOO(Q). )

The problem of solving the scattering to all orders in the collective motion is now reduced to evaluating the
integrals in (1) and (3). The ¢ integral can be done directly by noting that P, (" R) will depend only on

¢ — @, the difference between the projectile and nuclear azimuthal coordinate, by virtue of our choice of z
axis. We can also write Y7 ,,(Q) =P, (8)e™®. If we change variables to ®'=®—¢ and Q'=(0,9’), we

have

Tim= J’—fdn Yiu(@) [ bdb(1—e

(b,ﬂ'))fd¢eiqbcos¢—iM¢Y00(Q')

=ipi™ [ dYI(Q)Yoo(Q) [ bdbJy(gb)(1—e 7)) 4)

after making use of the integral representation of
the Bessel function. To make further progress, we
concentrate on large g and use the asymptotic
methods that we have employed for elastic scatter-
ing and one and two step excitations.! 3

In keeping with our earlier work we assume the
nuclear density has a smooth central region and a
well developed surface. In r space this can be
described by a density function with a singularity
near the real axis. For large g the corresponding
singularity of #(b) dominates the b integral of Eq.
(4), which can then be evaluated by the method of
stationary phase. The added feature in our treat-
ment here is that the singularity position now
depends on the collective coordinate (). A specific
realization of such a density is the familiar Fermi
form, but now with angle dependent radius (c¢) and
skin thickness

-1
. r—c(149)
il e T ’ ©

where 8=AP,(#R). po is a normalization con-
stant and A is a dimensionless measure of the de-
formation. For a spherical Fermi distribution the
nearest singularity is a pole at by=c +i7f3 and
thus in the context of our analytic approach it is
natural to deform both the radius and skin thick-
ness [(bo—>bo(1+8)] as we have in Eq. (5). Never-
theless, similar results would be obtained if only
the radius were deformed. Below we will present
phenomenological evidence as well for this particu-
lar choice, but we wish to stress that there is no

I

fundamental constraint preventing distortion of ¢
alone in this formalism should the need arise.
Following our earlier work we write for (4)

Tov=—ipi [ dOY]y(Q)Ye0(Q)

X [GM(q’Y7Q’)+G;I(q7?/*7‘Ql)] ’
(6)

where

GM(Q,”}’,Q.')=% f bdb Hi)(gb)e ~7"b2) 7

We have expressed the Bessel function in (4) in
terms of the Hankel functions and used H}? M
=H}}* and the fact that v is the only complex
quantity under the b integral in (4). We have also
dropped the one in (4) since that contributes only
in the forward direction in elastic scattering. To
evaluate (7) for large ¢ we use the method of sta-
tionary phase with the asymptotic expansion of the
Hankel function. The stationary phase point
comes near the closest singular point of #(5,€’) in
the upper half b plane. That singular point arises
from the corresponding singularity of p, which for
simplicity we evaluate using expression (5), which
has a simple pole at »/1+4+6=c +imB=b, with
residue —f3. These results in pole position and
residue are easily generalized to other functional
forms for the density.> For any density represent-
ing a medium to large nucleus, the residue will be
approximately minus the skin thickness. For the
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Fermi case, the singular part of ¢, ¢y, can be writ-
ten

dz , r’=z24b%.

to=_Bp, f_:

r

1+8

bo

(8)

The difficulty with evaluating this expression by
our usual methods is that § depends on z through
P,. Using the addition theorem for P, and ex-
pressing the Y,,(7) in terms of z and b we can
write

6:—1—\5(A0b2+A1bz+A222) , )
r

where the A; depend on 6 and ®’. The singularity
of (8) in b comes when the denominator and its
first derivative with respect to z vanish. The two
roots of the denominator then coincide, pinching
the integration contour. In the absence of the A,
term in (9), the denominator depends only on z2,
and hence, its stationary point is z =0, just as it is
in the A=0 case treated in the work of Amado,
Dedondor, and Lenz (ADL). Since the singular
point is a stationary point, the addition of the
linear AA; term can only change the location of
the singular point of ¢, in b to second order in
AA,. To first order in A, then, the singularity
comes from z =0 and we may replace & in (8) by
8o=AA,, its value at z=0.° In that case ¢, is pre-
cisely the 7y of ADL, that is, of the undistorted
case, except that by—by(1+48;) and B—B(1+8).
Using the fact that H}} differs asymptotically
from H{" only by e ~™7/2 we have for the G, of
(7), for large gb,

GM(q’7/7QI)=e—iM(1r/2)GO[q77/’b0(1+60)] ) (10)

1
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where Gy is the Gy of ADL [Eq. (40)] but with b,
replaced everywhere (including in 3) by bg(1+8).
In obtaining this very simple result for the eikonal
amplitude at fixed Q, the only assumption we have
made over the usual asymptotic assumption fami-
liar from ADL is that a shift in location of the
singular point of the profile function that is second
order in the deformation may be neglected.

It now remains to do the state projection of Eq.
(6), using the form for G of (10). To do this pro-
jection we need the explicit angular dependence of
(10) carried in A,. It is a straightforward exercise
to show that

Ao=7(3sin’® cos*®’' — 1) (11)

in terms of the nuclear collective coordinates.
Since sin’® cos’®' =x2/r?, A, is just the second
der Legendre polynomial P,, but with respect to
the x axis. [P,= %(3)’6 2_1).] The projections
needed in Eq. (4) are then of the form

ILMze—iM(ﬂ/Z)fdQleM(QI)YOO(Q,)
XGo{g,7,bo[1+AP,(£)]} . (12)

To carry out the integration we express the
Y () in terms of the Y;,,(Q, ) referring to the
x axis. We have

Yo Q)= Yl Q) D 5 p(aBy) (13)
=

in terms of the standard rotation matrices &. The
arguments of 2 are the Euler angles that effect
the rotation. In our case we need only rotate the z
axis into the x axis and that requires a rotation of
/2 about the y axis, which means a=y=0,
B=m/2. With a=y=0, we may express & in
terms of the reduced d. We then have for (12)

Iy=e=M™2F dlin(w/2) [ dQ, Y (Q¥o0(R)Go{g,7,bo[14+AP,(D)]] . (14)
<

The only dependence on ®, in (14) is in the Y7, we may therefore evaluate the ® integral, which will re-

quire M'=0, to give
V2L +1

ILMze_iM("/2)-——2'——~dé;(1r/2) [ d PL(£)Go{q,7,b0[ 1+ AP, ()]} - (15)

This can be further simplified by noting that
172

ass Y (6=7/2, 9=0)

L —- | ="
dOM(7T/2)— 2L +1

(16)
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and that Y,y (0=17/2, $=0)=0 for L +M odd. We therefore get the well known selection rule that L +M

must be even. L must also be even by parity in (15).

Y m(0=m/2, $=0) is the quantity we called ag in the

work of Amado, Lenz, McNeil, and Sparrow (ALMS) and Amado, McNeil, and Sparrow (AMS-I).

To take full account of the x dependence in (15) via all the places that b, and 3 appear in G [see ADL,
Eq. (40)] is complicated, but the integral in (15) can easily be done numerically since G, is known analytical-
ly. Alternatively, and far more 31mp1y, one can exploit the fact that the principal dependence of G, on ¢

and by is via the exponential factor e o 16 write for (15)

/2
Ippyp~e M/ 22200 (2L +1) ( yo(q,%bo)JL ,

where J; is given by

Jo=e" [ dx P (x)e ™M (18)
and where
é\o(q,?’,bo)=e—iqb0G0(q,V) . (19)

If A is very small, we can expand the exponential
under the integral in (18) and recover our one and
two step results. In particular, from the ortho-
gonality of the Legendre polynomials and since L
must be even, we see that if we expand the ex-
ponential the first nonvanishing power of A will be
AL72. That is, for L =2 we have one step results,
for L =4 we have two step results, etc. For the
one step L =2 case the expansion of the exponent
yields a factor of igh®, while for the two-step
L =4 we get —g?b3A%/2. In ALMS and AMS-I
we discuss the importance of these g factors in dis-
tinguishing the slopes of the one- and two-step
processes and the role of the i in the one-step pro-
cess in reversing the relative phase of G and G* so
as to give the reversal of maxima and minima
from elastic scattering normally referred to as the
Blair phase rule. We also comment there on the
importance of the additional phase shift between G
and G* that arises from the complex factor of b,
(or by? in the two step process). This additional
phase, associated with diffusivity, is required in
many cases to fit the data. We would not recover
it here had we deformed the radius parameter ¢
only in the density (5). This is the empirical justi-
fication for deforming both ¢ and B together. In
the spirit of our treatment, this is also natural by
analyticity. The precise connection with earlier
work is that
A5
A Y (4m)1/? 20)

in terms of ¥ and A of ALMS.

Evaluation of J; requires integrals of the form

1
K,= fo dxxz”e""z, ,usi%qboA. (21)

(17)

These may be expressed in terms of the error func-
tion and its derivatives with respect to p or direct-
ly evaluated numerically. Alternatively, one could
expand the exponential yielding a power series in
the coupling, and recover our previous one and two
step results. Although this power series converges
for all p, it converges slowly, requiring some care
in its evaluation. |

This slow oscillating convergence signals that for
asymptotic u the integral may profitably be eval-
uated by the method of stationary phase. To do
this we use the explicit form of P, to write

igbo(1—A/2)

1
J=e [ dx PLx)er (22)

For || >>1 and Reu <0, the stationary phase
point is x =0, and the integral is carried out by
evaluating P; at x =0 and extending the limits to
+ 0. Since Im(by) >0, p <0 is equivalent to A >0,
or prolate deformation, which is the more common
case in nature. We find

172
—2m

o0l 1=A/)
3igboA

Jp~ P.(0)

(23)

Note the absence of any L dependence in the phase
of J;. Since all the other factors in the amplitude
are common, all excitations have the same phase
and, therefore, the cross sections will have the
same shape. Their diffractive patterns will be in
step or phase locked asymptotically. Furthermore,
the magnitudes of the cross sections when summed
over final m states are only weakly L dependent.
The relevant factor is

2

) (24)

L
L/2

2L +1

(2L +1)P.(0)*= a

where (;%,) is the binomial coefficient. For L =0,
this factor is 1 and it increases monotonically to
4/ for very large L. Asymptotically not only will
the cross section be phase locked, but they will
have roughly the same magnitudes. The multiple
virtual excitations have only the impact of altering
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the effective geometry, that is, by—by (1—A/2). integral in (18) numerically. To account for the
For prolate (A > 0) deformations in the asymptotic remaining x dependence in Gy [see Eq. (15)] we use
regime, both the radius and diffusivity are reduced. the asymptotic form by—by(1—A/2) in G, of
This runs counter to the conventional wisdom (19). In numerical tests with (15) we find this
which holds that deformed nuclei appear as an or- gives remarkably accurate results for a wide range
dinary nucleus but with a larger diffusivity due to of g and A. In these terms the full amplitude can
the “smearing out” of the deformation on averag- be written

ing. For the intermediate momentum transfer thus

far sampled experimentally, the falloff of the cross Tiy= _,'p_—‘zLH dsx(m/2)

sections are, in fact, larger than average, indicating 2

a larger effective diffusivity, but this is due pri-
marily to the influence of multiple excitations, not
the averaging over orientations. In the time of

X { Golg,y,bo(1—A/2)1,

passage of the projectile, the nucleus is fixed in +@3 [g,7*,bo(1—=A/5)VL ) . (25)
orientation and lacks the time necessary to smear

the surface. In averaging the amplitude over orien- The discussion thus far for quadrupole deforma-
tations for large A, gc cancellations occur over all tions easily generalizes to higher moments. For an
orientations except for the stationary point x =0. example of empirical interest we consider adding
This corresponds to scattering from the “waist” of the hexadecapole deformation, thus in G, we use

the ellipsoid, where the effective geometry is re-

2
duced by the (1—A/2) factor. In Sec. III the ex- by
ample of 800 MeV ®*Er(p,p’) scattering illustrates d=MoPrtAs |~ 7| Pus (26)
the onset of asymptopia where the slope of the
elastic distribution is reduced beyond ¢ =2.6 fm . where the factor of (b, /c)? arises from a Tassie
The 800 MeV '82W(p,p’) example is even more description of the transition and is well motivated
dramatic but complicated somewhat by the addi- empirically. The arguments concerning the fixed
tional large hexadecapole contribution. orientation of the target and the application of the
In the actual examples we study in Sec. III, u is ADL analytic methods go through as before. The
seldom large enough to permit direct use of the scattering amplitude is given by (25) but now J; is
asymptotic method. Therefore, we evaluate the J, given by
|
2
1 bo
JL: f_ldeL(x)exp {lqbo 1+A2P2(X)+A4 ‘“c— P4(x) ] (27)
f
and is evaluated numerically, and we use the '7°Yb data, but those results are not included
Go{9,7,bol1+AsP5(0) + Agby?/c?P4(0)]}. In the here.)
realistic examples presented below, this generalized The first example is a calculation of 800 MeV
form is used. Complete generalization to arbitrary protons on '®®Er to the ground and first two excit-
even L poles with or without the Tassie factors is ed states. The geometric and deformation parame-
straightforward. ters are ¢ =6.1 fm, B=0.60 fm, A,=0.21, and
A4=—0.003.7 The nucleon-nucleon strength
y=2.09+4i0.38 fm? is fixed throughout. The near-
III. RESULTS ly vanishing value for the hexadecupole moment
insures that only the distortion and multiple quad-
In this section we present sample calculations of rupole excitations contribute. In Fig. 1 we plot the
elastic scattering and inelastic excitation of the : 800 MeV !*SEr(p,p) elastic cross section along with
first two excited states by 800 MeV protons for the 2% and 4% inelastic cross sections as well as
three rotational nuclei, '®Er, '2W, and '**Sm. the incoherent sum. For small momentum transfer
These three are chosen to represent a distribution q, we see the characteristic power law difference of
of deformation parameters. Of these nuclei, data the slopes between the elastic scattering, the one
for comparison exists only in the case of '**Sm. step 27, and two step 4*.2 However, since A, is

(Our calculations are also successful at describing fairly large these perturbation theory features soon
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188Er (p,p")
Ep=BOOMeV —

(mb/sr)

do
dQ

10"~ ——— ELASTIC
[ 2+

10 [ ersseane 4*
— SUM

FIG. 1. Calculations using Egs. (25) and (27) of 800
MeV protons on '®Er to the 0% ground and nearest 2+
and 4% excited states as well as the incoherent sum are
shown. The nuclear parameters were taken from Ref. 7.
The cross sections have the same shape for large
momentum transfers, which returns the diffractive
structure to the incoherent sum.

disappear with increasing g and beyond g =3.5
fm~! the phases and shapes of the diffraction pat-
terns are locked together and correspond to a de-
crease in effective radius and diffusivity as our
asymptotic formula requires. Thus, even a poorly
resolved experiment which measures the incoherent
sum of elastic and 2% and 4T excitations would
show some diffractive structure for large momen-
tum transfer. We know of no data currently avail-
able for '$®Er.

To illustrate some of the variety of effects possi-
ble we present in Fig. 2 the elastic and low lying
2% and 4 excitations of W by 800 MeV pro-
tons. The geometric and deformation parameters
are ¢ =6.4 fm, 3=0.48 fm, A,=0.17, and
Ay=—0.16.2 With | A,|~|A,| the situation is
more complicated. At small momentum transfer
we see the power law difference between elastic
and inelastic scattering, but now since A, is large,
both 2% and 4™ can go by the one step process. In
the intermediate momentum transfer region
1.5<q <4 fm~! the 2% excitation dominates the
incoherent sum, while the elastic and 4% cross sec-
tions quickly phase lock (by ¢ =5.0 fm ™! the

FIG. 2. Calculations using Egs. (25) and (27) of the
ground and 2% and 47 excited state cross sections as
well as their incoherent sum for 800 MeV protons on
182y are shown. The nuclear parameters were taken
from Ref. 8. The large quadrupole and hexadecupole
moments couple to the elastic scattering in such a way
to produce the dramatic change in the slope at momen-
tum transfer ¢ =2.8 fm~!. This nucleus was chosen as
an example because of the large riegative hexadecapole

moment.

phase of the 27 is also locked with the others).
Note the discontinuity in the slope of the elastic
cross section around g =2.8 fm~!; this is due to
the virtual multiple excitations which dominate the
elastic cross sections beyond ¢ =2.8 fm~! and is
characteristic of the onset of asymptopia. In this
example a poorly resolved experiment would show
some diffractive structure for g >2.0 fm~!. For
20 fm~!'< g <4.2 fm~! this is due to the domi-
nance of the incoherent sum by the 2 excitation,
and for momentum transfers larger than g =4.2
fm~! the structure results from total phase lock-
ing, indicative of asymptopia. Again no data is
available.

As our final example we consider elastic scatter-
ing and 2% and 47 excitations of '**Sm bombarded
by 800 MeV protons for which data is available.’
The geometric parameters fit to the data are ¢
=6.0 fm, B=0.64 fm, A,=0.21, A,=0.06, and so
represents a case intermediate to the first two ex-
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FIG. 3. We compare data from Ref. 9 with calcula-
tions using Egs. (25) and (27) for 800 MeV p-'**Sm elas-
tic and 2% (0.081) and 4+ (0.267) inelastic scattering.
We also present a calculation of the elastic scattering
without dispersive effects (dashed curve). The nuclear
parameters fit to the data were ¢ =6.0 fm, f=0.64 fm,
A,=0.21, and A,=0.06.

amples. (Our parameters are to be compared with
A,=0.19 and A4=0.09 of Ref. 10.) In Fig. 3 we

present the data along with the theoretical calcula-
tions using Egs. (25) and (27). The agreement is

excellent. In Fig. 3 we also present calculations of
the elastic scattering without the multiple virtual
excitations. The empirical necessity of including
dispersive processes is clear. The dispersive
processes have the effect in this intermediate
momentum transfer region of increasing the effec-
tive diffusivity and decreasing the effective radius.
In asymptopia we expect both the effective radius
and diffusivity to be decreased.

IvV. DISCUSSION

Exploiting the fast passage of an intermediate
energy hadron by a collective nucleus, we have
been able to give a closed form (integrals) expres-
sion in the eikonal formalism for elastic scattering
and inelastic excitation of the nucleus to all orders
in the collective coordinate deformation. Using
our analytic methods and the nuclear geometry ,
these integrals can be evaluated. Comparison with
data, where it is available, yields excellent agree-
ment. We find, in agreement with others, that
dispersive effects (the virtual effects of intermedi-
ate excitations) are very important.”!! In addition,
we have shown how these effects grow with
momentum transfer, and furthermore, that at very
large momentum transfer the elastic and inelastic
cross sections become essentially identical. This
“phase locking” suggests that a “moderate” energy
resolution experiment (which cannot resolve the
elastic and low-lying inelastic scattering) will show
diffractive structures at these large momentum
transfers.

This asymptotic result may surprise some who
believe the large momentum transfers correspond
to short distance behavior, and that one should see
details of the excitation mechanism rather than the
average properties associated with the deformation.
This might be so if the large momentum transfer
collision occurred in one hard step, but our result,
and earlier work on multiple scattering both within
and outside the eikonal formalism, shows that it is
far more probable to achieve the large momentum
transfer by a coherent sum of small steps than in
one large step. It is precisely these many steps our
formalism sums up.

Our treatment is primarily given for deformed
nuclei and for rotational states. In the Appendix
we treat vibrations. It is of interest to combine
these, perhaps using the interacting boson model.

This work was supported in part by a grant
from the National Science Foundation.
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APPENDIX: VIBRATIONAL STATES

In this appendix we develop the theory for treating the excitation of collective vibrations by an intermedi-
ate energy hadronic probe to all orders in the coupling. Our concern here is primarily with the formalism
rather than with comparison with experiment.

Consider a nucleus with a set of quadrupole vibrations separated by energy €. The creation (destruction)
operators for these vibrations are a : (a,), =0, +1, and +2. They obey

la,,a}1=5,, . (A1)

The Hamiltonian describing the interaction of an hadronic projectile of mass m with this nucleus is

2
H=2P—m+ Vir+Aw(r) Y, [Y'Z'M(B,cp)a#+Y2”(6,¢))a;]+ zeala# ,
K e

(A2)

where 7, 0, and ¢ are the projectile coordinates and p is its momentum. V() is an average distorting poten-

tential and Aw () is the coupling potential between the projectile and the oscillator. We wish to solve the
scattering problem to all orders in A.

The basic assumption we have been making is that the last term in H, the nuclear excitation energy, may
be neglected compared with the projectile energy, in which case the scattering amplitude is most easily
found not in a representation in which a *a is diagonal, but rather as an operator in the nuclear space'?. In
the eikonal approximation that amplitude is
—X(b)—-3 A/thau +A#a;

"

__ ik oo g |
T= 21debe ll exp ], (A3)

where k is the projectile average momentum and is in the z direction, g is the momentum transfer, and
X)="5 [ dzvb,),
A

A =" [ dzw(b,2)Y5,(0,9) . (A4)

k
Once one neglects the @ Ta term in H, expression (A3) follows by the standard eikonal methods.

To evaluate the integral for A, one must take account of the z dependence of Y5,. If w depends only on
r=(b2+2z%"2 the Y, terms will integrate to zero since they are odd in z. If we further assume, as in the
rotational case, that the leading contribution will come for near z =0 we obtain (putting z =0 in the explicit
forms of the Y5,)

Aoz%-l- _gvm,r] ST dzwb.=—x,0),
A= M (LT 78702 | [ dzw(b,2)=v/3720x,(0) (A5)
Ai1=0 .
If we define
A=—ag+V'3/2a,e %P +a_,e%?) (A6)

we can write for the transition operator
ik T —x,(b)A+4T)
ngfdzbe’q be X(b)e t , (A7)

where we have dropped the 1 that contributes only to forward elastic scattering and assumed X, =X;.
To evaluate the transition amplitude to particular final states of the target, we need matrix elements of
(A7) between the ground state |0), which contains no oscillator quanta, and some excited state | N) con-
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taining N quanta, (N | T'|0). To find this it is convenient to use the Baker, Campbell, Hausdorff formula'

—x,(6)4 T +4)
e

Since [4 *,4]= —4 and since 4 | 0) =0, we get

ik iab
2 iq-b
(ijl())—z fdbe e

—X,(b)A+ —x,(b)d —x,Ab)[A4T,41/2
e e e .

2X,2(b) —x, (b4t
—X(b)e t (N|e t |0>

(A8)

)

_ ik 2 iGb, —X(b) 2D 1 N +\N
_Zﬂfd beidbe—Xb) NIl DTN [+ o) . (A9)

To specify the state N we must also give its total angular momentum (J =0, 2, 4, 6. . .) and the z com-

ponent M. We thus have
(NI M|+ [0)=e™Mer),

(A10)

where f is a combinatoric factor and M must be even by the structure of 4 (A6). The f’s are easily calculat-

ed for particular cases. We get, finally,

)
A

. M
(N,J,M | T|0)=ik(—i) I

X(b)+2X,2(b)

[, dbbay(gb)—x, Ve ™ :

(A11)

where we used the integral representation of the Bessel function to do the ¢ integral. Given a dynamical

theory for X(b) and X,(b), the integral in (A11) can be evaluated by the stationary phase methods we have
used before. It is particularly simple in a derivative coupling model in which X,(b)=(d /db)X(b) and X (b)

is the usual density thickness function.

It is of considerable interest to combine the algebraic results presented in this appendix with the rotational
al methods of the paper to develop a “unified” theory. We are working to do this in the context of the in-

teracting boson model.
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