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The magnetic form factor for the ground state of Li has been measured for momentum

transfers q =0.8—2.8 fm '. The diffraction minimum has been located at q =1.41 fm

and the results extend over the second maximum. All available longitudinal and transverse

form factors of Li are shown to be consistent with the a-d cluster model providing the d
cluster is deformed and aligned. Comparison is made between the elastic and 3.56 MeV
M1 form factors, and the effects of exchange currents are considered. The ground-state

current density is deduced by a Fourier-Bessel analysis of the elastic M 1 data.

NUCLEAR REACTIONS Li(e, e'), E =80—300 MeV; o.(E;E,, O).

Li deduced elastic M 1 form factor. Cluster model. Exchange currents.
Current density.

I. INTRODUCTION

Excluding the few broad resonances above 20
MeV excitation, Li has only five known excited
states, all below 6 MeV. %ith one exception, all are
clearly seen in electron scattering and most of the
corresponding form factors have been measured
over a wide range of momentum transfers. The ex-

ception is the 5.65 MeV (1+,T =0) level. It is not
clear why this level has not been seen unless its na-
tural width is very large, i.e., greater than 2 MeV, in
which case it would be hidden by the rather broad
peaks from the 4.31 MeV (2+,T =0) and 5.37 MeV
(2+,T =1) excitations. The 4.31 MeV transition is
quite evident but its form factor has not been deter-
mined because of the large natural width (I'-1
MeV), the proximity of other levels, and the strong
underlying continua.

Aside from these two cases, only the elastic mag-
netic form factor remained relatively unknown.
Some indication of the q dependence comes from
the Amsterdam' and Stanford work; however, the
former are confined to q&0.9 fm ', while the
latter extend to 1.4 fm ' but with poor statistics.

In this paper we present new measurements of

the elastic magnetic form factor for momentum
transfers q =0.8—2.8 fm '. The location of a dif-
fraction minimum has been clearly established at

q =1.41+0.03 fm ', and the data extend over the
second inaximum of the form factor. The statisti-
cal accuracy of this work is considerably improved
over the previous measurements where they overlap.

Since He is a strongly bound system, it. has been
assumed that the low-lying features of Li can be
treated to first order as a three-body problem con-
sisting of an inert o, core plus two relatively weakly
bound nucleons. Support for this picture comes
from three-body calculations of A =6 nuclei using
realistic S-S and t-a interactions, and although
these have focused on the ground states, the results
are encouraging.

Electron scattering can provide a good test for
such calculations since it is sensitive to the spatial
dependence of the charge and current densities.
However, to date there have been very few estimates
made of the electromagnetic form factors of Li in
the three-body model. The ground state is a logical
starting point for comparing theory and experiment,
but the charge form factor does not in itself provide
a sufficient test since the dynamical aspects as
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represented by the current density must also be con-
sidered. The latter contributes to the magnetic
form factor, and hence provides one motivation for
the present experiment. Hopefully, the availability
of both form factors mill encourage further theoret-
ical development in this direction.

The elastic form factors place strong constraints
on the various phengmenological descriptions such
as the two-body cluster models. These macroscopic
models are useful in that they often provide simple
interpretations of phenomena that are rather com-
plex at the microscopic level. In view of the ap-
parent failure of the cluster models to give a reason-
able account of the elastic Coulomb and inelastic
(3.56 MeV) magnetic form factors within a com-
mon basis, it becomes important to see how the
models compare with both elastic form factors.

Finally, it is well known that two-body processes
such as meson exchange currents make negligible
contributions to the ground state M 1 scattering due
to its isoscalar nature, but they can affect the iso-
vector M 1 transition to the 3.56 MeV (0+,T =1)
state. By comparing these form factors some in-

sight might be gained as to the order of magnitude
of the two-body effects in 6Li.

The present paper is organized as follows. First,
the experimental details and data analysis are dis-
cussed, with particular attention to the Coulomb
correction near 180', and the experimental results
are given. In Sec. III we show that all the known
form factors below 6 MeV excitation can be
described by a simple a-d cluster model providing
the "deuteron" cluster is deformed and aligned. In
Sec. IV the elastic M 1 and inelastic (3.56 MeV) M 1

form factors are compared and the influence of ex-

change currents is considered. Finally, in Sec. V we

give the ground state current density based on a
Fourier-Bessel analysis of the magnetic form factor.

II. EXPERIMENTAL DETAILS
AND DATA ANALYSIS

This experiment was performed at the electron
scattering facility of the MIT-Bates accelerator lab-

oratory. Scattering angles varied between 150' and
180, and for the latter the four-magnet 180 scatter-
ing system was utilized. The dispersed-beam mode
was used at all angles so currents up to 30 pA could
be endured by the lithium targets, although as a
precaution most runs were made at -20 pA.

The Li targets were rolled from 98.7% isotopi-
cally enriched metal and varied in thicknesses from
26.20 to 94.79 mg/cm . The main impurity, Li,

gives an inelastic peak from the 0.478 MeV level

which at certain energies cannot be resolved from
the Li elastic peak due to the differential recoil of
the nuclei. To correct for this, data were also ob-
tained with Li targets enriched to 99.9% and of
thicknesses similar to the Li targets. The energy
calibration of the incident beam was determined
from the differential recoil of the Li 4.633 MeV
peak relative to the 2.185 and 3.562 MeV peaks
from Li.

For the most part, the data were normalized us-

ing the known system parameters. The overall effi-
ciency was checked periodically against the proton
by scattering from a 23.6 mg/cm rotating po-
lyethylene target. Cross checks were also made
whenever possible against the 3.56 MeV M1 form
factor of Li (Ref. 7). Consistency with the system
calibration was always achieved above 140 MeV,
but at lower energies both checks showed a
monotonically-decreasing detector efficiency, subse-

quently traced to the Cerenkov counters. Therefore,
below 140 MeV we have relied on the experimental
efficiencies and included their uncertainties in the
final data errors.

The raw data were converted to cross sections in

the usual way by integrating the elastic peaks out to
some cutoff energy AE and then by applying vari-
ous factors to correct for radiative and straggling
phenomena. Although the straggling factors were
essentially unity, the radiative corrections were as
large as 1.4. We have used a version of the radia-
tive correction in which the soft-photon term is ex-
ponentiated as discussed by Maximon. Checks
mere made to ensure that the cross sections mere in-
dependent of AE within statistics, and the reliability
of the corrections were verified occasionally by nor-
malizing the elastic peak to the 3.56 MeV form fac-
tor.

The magnetic moment of Li is small and there-
fore the charge scattering is predominant at all but
the largest scattering angles. In practice, even the
180 measurements contain a sizable Coulomb con-
tribution for energies below -200 MeV. At higher
energies the Coulomb form factor rapidly decreases,
allowing measurements to be made at scattering an-
gles of 150 —160, where the targets could be
oriented in the so-called transmission mode to
achieve optimum resolution and counting rates.

The finite angular acceptance of the spectrometer
and multiple scattering in the targets enhance the
Coulomb effects near 180. Since our estimate of
the multiple scattering differs from previous treat-
ments, we will review the basic equations.
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The probability that an electron will enter the tar-
get and multiply scatter down to a depth t, undergo
a near-180' deflection by the nuclear Coulomb field
in a layer dt, and then multiply scatter back to em-

erge into a solid angle dQ at a small angle e to the
true 180 direction, is

constants used by Rand are a=1.5, p= 1.1.} The
integral in Eq. (4) may now be done in closed form
and one obtains

P(t,dt}= , opF—++2(&) + &dfld~ (1) = —,(8 ), sincere=7 —9.
0 (7)

Here, F& is the Coulomb form factor, y is the ratio
of the electron energy to its rest energy, X is the
number of nuclei per unit volume, and

2
1 Ze
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Finally, Eq. (3) must be integrated over the spec-
trometer acceptance angles, 8~ and 8„ in the hor-
izontal and vertical planes, respectively. If the
magnetic scattering is also included, the total exper-
imental cross section near 180 may be written

2EO
7/=1+

M
sin

2 1 &o
2

EQ,
4

(8)

where the symbols in Eq. (2) have their usual mean-

ing. Finally, (8 ), is the mean-square multiple
scattering angle after traversing a thickness t of ma-
terial. In deriving Eq. (1) we have assumed the total
path length does not deviate appreciably from 2t.

Equation (1) is essentially equivalent to a deriva-
tion by Rand [Eq. (6)]. However, we go further
and integrate Eq. (1) over the target thickness to ob-
tain the effective Coulomb differential cross section

(3)

where

and to is the target thickness.
The multiple scattering is evaluated using the

Moliere theory as reviewed by Bethe and Ashkin, '

retaining only the leading Gaussian term. Thus,

(8 ),=0.157Z

where t is in g/cm and Eo is in MeV. The parame-
ter B is the solution to a transcendental equation
but can be approximated by

8=a+pin[7800Z'~'(Z+1)t/A j .

With the help of Table IX in Ref. 10 and related
equations, we find a=1.01 and p=1.15 for the
present targets. (For comparison, the equivalent

where 40=HI, O„and ~—eo ——8 is the nominal
scattering angle as prescribed by the spectrometer
and deflecting magnets. Our definition of the mag-
netic form factor F~ is similar to that used in in-
elastic scattering, being related to the magnetic
cross section by

do'~ cos 2 9=op, ( —, +tan —,8)F~
sin —02

(9)

An experimental check of the Coulomb correc-
tion was made at 80 MeV for a range of spectrome-
ter apertures (60=0.7—2.8 msr) and two I.i tar-

gets (26 and 95 mg/cm ). The Coulomb terms were
evaluated according to Eq. (8) with opFc as com-
puted by a phase-shift code using the charge distri-
bution from Ref. 11. After correcting the data for
charge scattering, up to 50% in some cases, the
remaining magnetic cross sections were found to be
self-consistent within statistical errors.

Under ideal conditions eo ——0, but since the align-
ment of the 180 system had not been optimized for
very light nuclei, we have included an uncertainty
of 0.5' in eo and propagated this to our final errors.
This contribution is insignificant for energies

Eo & 140 MeV.
The final experimental results are summarized in

Table I and are plotted as the black points in Fig. 1.
For comparison, we have also included the Amster-
dam data, ' shown as the open circles, and the agree-
ment between the two data sets is seen to be quite
good.

The present analysis was done in the Born ap-
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TABLE I. Tabulation of the elastic M 1 form factor of Li as determined by the present ex-
periment.

(MeV)
8

(deg)
q

(fm ') (y 10-')

80.0
100.0
120.0
140.0
160.0
179.6
195.5
215.5
230.3
257.1

255.8
267.1

282.4
283.0
297.8

180'
180
180
180'
180'
180'
180
180'
180'
150'
160'
150
150'
150'
150'

0.80
1.00
1.19
1.39
1.58
1.76
1.92
2.11
2.24
2.42
2.45
2.51
2.64
2.65
2.78

91.5 +5.6
32.5 +3.4
6.7 +1.5

(0.5
3.4 +1.0
5.00+0.51
7.10+0.54
6.56+0.50
5.10+0.44
3.06+0.37
3.51+0.38
2.38+0.26
1.76+0.17
1.82+0.18
1.17+0.11

proximation [i.e., Eq. (9)] and no corrections were
made for Coulomb distortion. One can partially
take this into account by using the effective
momentum transfer q,rr, given by

3cxZ
ff 0 + 2E g0

(10)

where R =(—,)'~ r, is the radius of the equivalent

sphere.

4
IO

6
LI MAGNETIC

FORM FACTOR

III. PHENOMENOLOGICAL a-d
CLUSTER MODEL

A. Formalism and comparison with experiment

-6
IO

1 I I I I I i i 1 I t I I 1

0 I 2
q(fm ')

FIG. 1. The elastic M1 form factor of Li as deter-
mined by the present work (black points), and the Am-
sterdam results (open circles). No corrections have been
made for Coulomb distortion. Our definition of the
magnetic form factor is similar to that used in inelastic
scattering [Eq. (9)].

The a-d cluster model has been used for several
years as a basis for describing the low-lying struc-
ture of Li, with varying degrees of success. The
phenomenological version pioneered by Kudeyarov
et al. ' was among the first antisymmetrized cluster
models to be applied to the electromagnetic form
factors, and showed the vital role played by an-
tisymmetrization, particularly for the transverse
form factors. In this version there are only three
parameters; the internal alpha-particle oscillator
parameter a, the internal deuteron parameter p, and

y representing the relative motion of the clusters.
The usual ( ls) (lp) harmonic oscillator shell model
obtains in the limit y= p=a.

A more recent study concluded that the longitu-
dinal form factors of the ground and first excited
states of Li can be understood within the context
of the phenomenological u-d ~odel, but not the
transverse form factors of other levels. In particu-
lar, the 3.56 MeV M 1 diffraction minimum occurs
at a somewhat higher momentum transfer (q =1.4
fm ') than predicted, and no reasonable choice for
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P or y improves the situation. A similar problem
occurs with the ground state magnetic form factor,
which also has a minimum near q =1.4 fm
Oddly enough, both M 1 form factors are more con-
sistent with a t-~ cluster model, but the correspond-
ing elastic Coulomb form factor disagrees markedly
with experiment.

It is our purpose here to show that a consistent
description of all the available form factors of I.i
can be achieved within the framework of the
phenomenological a-d model if we permit the deu-
teron cluster to deform, or stretch, along a line con-
necting the cluster centers of mass. Actually, this
apparent ad hoc modification has a simple interpre-
tation in the familiar shell model, as will be seen
shortly.

As usual, we use L-S coupling and retain only the
dominant configuration of each state; S1 for the
ground state, 'So for the 3.56 MeV level, etc.4 The
wave function for a state with angular momentum J
and isospin T is given by

PL(R)=R YLM(Qg)exp( ,—yR—). (14)

e( —) /4)Pr (e
—aP r ~ R +eaP r R )y (15)

Here, R=Rd —R is the relative position of the
clusters, pL(R) is the relative motion function, and
b,P is a measure of the deuteron deformation. The
subscript "sym" implies explicit symmetrization of
gd with respect to the particles 5 and 6, necessary to
preserve the proper spin-isospin symmetries. The
appropriate spin-isospin functions are represented
by X; the d cluster is in a triplet and singlet spin
state for the T =0 and T = 1 levels, respectively.
Finally, we explicitly apply the center of mass con-
straint g, , r;=O.

The significance of hP can be seen more clearly
by writing the d-cluster wave function as

+JT=~ [(err 3 0d )ST 3NL(R)lJT ~

where A is the antisymmetrization operator, and

1() =exp ——,a g ( r; —R )

]
gd ——exp ——,P g (r; —Rg)

i=5

4bP(r6 r—s )—3 2 2

sym

(12)

(13)

w'here r is the relative position of the two nucleons.
Thus, the b,P term elongates the cluster along the
direction of R, the asymmetry increasing with R
but weighted by (I)L(R) through Eq. (11). Of
course, the actual nucleon distribution will be al-
tered somewhat by the antisymmetrization of Eq.
(11), which among other things generates a node in
the relative Inotion function. '

It is instructive to express the wave function
given by Eqs. (11)—(14) in an alternative form.
%ith the help of the center of mass constraint, we
have

( —1/2)ar; ( — 2 b;r;e ' e
i=1 i=5 sym

( —(/2)r( r s
—r &)

(16)

where

bs ———,(3y—a+3&P),

b6 ———,(3y —a —3bP),

c = —,(a —3y+2P),

and for clarity the spin-isospin functions, antisym-
metrization, etc., have been suppressed. Antisym-
metrization of the above geneiates the correct bino-
mial combinations of r; and rJ from R YL~(Q+),
consistent with the Pauli principle and the orbital
angular momentum.

According to Eq. (16), the deformed a-d model
may be interpreted in a shell model basis as a closed
1s core plus two 1p valence nucleons whose oscilla-

I

tor parameters b; differ by 3b,P, and which mutual-

ly interact through an effective harmonic potential
with oscillator parameter c. This "residual" two-
body interaction is independent of b,P and vanishes
in the independent-particle shell model limit
a=P=y.

The electromagnetic form factors were calculated
with the modified a-d wave functions using the
same techniques as in Ref. 4, except here the 2.18
MeV (3+,T=O) wave function is fully antisym-
metrized. Specifically, the levels and multipolari-
ties we have considered are the ground state
(CO,M1), 2.18 MeV (C2), 3.56 MeV (M 1), and
5.37 MeV (M 1+E2+M3). As before, the proton
form factor was explicitly included, and the value
of a was determined from the free He radius. The
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a=0.582 fm, P/a=0. 50,

y/a=0. 41, b,P/a=0. 17, (17)

and the corresponding form factors are compared
with experiment in Fig. 2. For the most part, the
model gives a reasonable account of all the data.
We now comment briefly on each of the form fac-
tors.

remaining variables (P, bP, y) were constrained by
the Li charge radius and the general features of the
elastic form factors, such as the position of the M 1

diffraction minimum. The location of this
minimum is very sensitive to bp and tightly res-
tricts its range of values.

The optimized parameters are

structure is determined by the valence nucleons, the
transverse form factors are somewhat less sensitive
to the specific core model.

The measured rms radius of Li is 2.56+0.05 fm
(Ref. 11) compared with 2.50 fm for the present
model. The rms radius of the d-cluster function
[i.e., Eq. (15)], after integrating over R and includ-
ing the proton radius, is about 2.1 fm, which (coin-
cidentally) is the same as the free deuteron.

The undeformed o.-d model predicts a t-r spec-
troscopic factor for the ground state 8& (t)=0.41,
while the deformed model gives 80 (t) =0.49, com-
pared with the "experimental" range of values

80 (t) =0.6—0.8.

2. 2.18Me V state (3+,T~0)

1. Ground stote (1+,T=O)

The Ml form factor [Fig. 2(a)] compares well

with the data over the whole range of momentum
transfers, but the CO form factor [Fig. 2(b)] shows
some disagreement at large q. This may in part be
due to the harmonic oscillator representation of the
a core which we know does not give a proper
description of the He Coulomb form factor in the
same region. On the other hand, since the magnetic

The C2 form factor is much too small if the
excited-state y parameter (y') is equal to the
ground-state value, so y' was optimized to minimize
the difference near the top of the form factor, with
the result

y'/a =0.30 .

That this is smaller than the ground-state quantity
is hardly surprising; it reflects the increase in the

2
(gnd

10-5

ooa

10

0)
0

0

F gnd
10

10 O
I

10 10

(b)
I

I

I s I I i I

0 2 3 0 2 3

q(fm )

FIG. 2. The known form factors of Li compared with the deformed a-d cluster model. The black data points for
E~~ (gnd) are from the present experiment while the open circles are the Amsterdam results (Ref. 1). The E~~ (3.56)
points are from Saskatoon and Mainz (Ref. 7), while the elastic Coulomb data, E&0(gnd), are from Stanford (Ref. 11).
The E~2 (2.18) results are a combination from Darmstadt, Saskatoon, and Mainz (references cited in Ref. 4). The data
for F~2(5.37) are from five experiments, cited in Ref. 14.
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average intercluster separation due to the unbound
character (to a+d breakup) of the excited state.
The form factor is shown in Fig. 2(c).

The radiative width j. & is in better agreement
with experiment than the undeformed calculation.
The present model gives

I ~(a —d) =4.0&& 10 eV,

while the experimental value is'

I ~(expt. ) =(4.4+0.3) &&10 eV .

3. 3.56MeV state (0+,T=l)

The predicted M1 form factor, shown in Fig.
2(a), is in very good agreement with the data on the
first lobe, and gradually falls away from the data

beyond the diffraction minimum. This agreement
is particularly noteworthy since we have employed a
combination of oscillatorlike functions, while all

previous efforts to accurately describe the data on
the first maximum have relied on a Woods-Saxon
potential in a shell model basis.

Another. interesting feature concerns the ratio of
the elastic and inelastic M 1 form factors. One may
show on general grounds that the isoscalar and iso-
vector form factors for the transitions
Si(T =0)~ Si(T=0) and Si(T =0)—+'So

( T = 1) are related by

(18)

where p~„are the nucleon magnetic moments.
This relation assumes no change in the radial func-
tions between the ground and excited states. Since
the curves in Fig. 2(a) satisfy Eq. (18), it is apparent
that the experimental results seem to follow the
same trend, except at the higher momentum
transfers, even to the extent of having coincident
diffraction minima.

The 3.56 MeV level has a P-state component
whose amplitude may be as large as 0.5, so it may
seem surprising that a model based on a simple
spin-flip transition should work so well. As it hap-
pens, more complete wave functions such as those
derived from electron scattering show that over

90% of the transition amplitude is spin flip in ori-
gin. Furthermore, the M1 form factor for these
wave functions is similar to that calculated in the
I.-S limit S&~'So, and the respective radiative
widths differ by less than 2%. Thus, the agreement
achieved with the a-d model is probably represents-

tive of what could be expected if the cluster basis
were expanded to include other I.-S configurations.

4. 5.37MeVstate (2+,T=l),.

The transverse form factor for this level is of
mixed multipolarity, M1+E2+M3. The general
wave function in I.-S coupling and a (lp) configu-
ration space is of the form

%„,=O'P, +H'B, ,

where G =0.46 and H =0.89 (Ref. 14). However, it
may be shown that the D state rapidly dominates
the total transverse form factor when q & 0.6 fm
so the cluster model (which contains only the D
state) should be valid at higher momentum transfers
providing the corresponding form factor (squared)
is renormalized by H . An additional factor of
1/1.42 is required for technical reasons related to
the analysis of the electron scattering spectra.

As seen in Fig. 2(c), we obtain very good agree-
ment with experiment except perhaps at the lowest
momentum transfers, where the P-state contribution
is not negligible.

B. Discussion

The ground state magnetic form factor provides a
strong constraint on the a-d cluster model of Li,
and only by deforming and aligning the deuteron
cluster can we get an acceptable description of both
the longitudinal and transverse elastic form factors.
The deformed a-d model also yields form factors
for the 2.18, 3.56, and 5.37 MeV levels that are in
much better agreement with experiment than the
usual a-d or t-~ models.

While the cluster model is a convenient way of
visualizing the system, it is simply a reflection of
structural details originating at a more microscopic
level. Thus, from the shell model point of view,
Eqs. (16) and (17) show that the two valence nu-

cleons have dissimilar oscillator parameters b;, and
that there is a substantial n pinteraction (c =0.11-
fm ), the latter probably reflecting the expected
two-body residual interaction. While it is possible
to get a good fit to the elastic M 1 data in the c =0
limit, the corresponding Coulomb form factor com-
pares poorly with experiment, even when the rms
radius is constrained to the known value. Ap-
parently in Li the two-body interaction cannot be
completely represented by a suitable one-body cen-
tral potential, a conclusion also reached in a recent
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work by Payne and Nigam. ' These authors
evaluated the relative n pw-ave function for specific
two-body potentials, and found that a residual
Gaussian interaction with a hard core greatly im-
proved the elastic CO form factor. No predictions
were made for magnetic scattering.

The magnetic form factors are quite sensitive to
b,P, or the difference between the valence nucleon
parameters b;. If EP has a more fundamental ori-
gin, perhaps it comes in part from the spin-orbit
splitting of the 1p orbitals. For example, Cammara-
ta and Donnelly' managed to fit the 3.56 MeV M 1

form factor using a Woods-Saxon potential and a
1pl&2-1p3/2 splitting of about 3 MeV. Since these
authors were concerned with the physics of the
valence particles, no predictions were made for the
charge form factor.

The magnitude of b,P is difficult to understand
solely on the basis of the 1 s interaction when one
considers the general p-shell configuration ampli-
tudes. The amplitudes of the (I@3/2) terms are at
least 0.8 in the ground and 3.56 MeV states, so we
would not expect a large difference in the effective
b; when the 1pj~2 orbital is included, unless the
spin-orbit splitting is particularly large.

We now return to the u-d picture of Li and
speculate whether the n.-p tensor interaction could
contribute to b,P. Some time ago Satchler' showed
that the n-p tensor interaction plus the central
nucleon-nucleus interaction generates an effective
central-plus-tensor potential between the two nuclei.
The tensor potential has the form

Ur(R, S)=Up(R)[(S R) —
3 ], (19)

where S is the deuteron spin, R is the relative posi-
tion vector of the deuteron, and the caret denotes a
unit vector. The radial dependence Uz (R) is given
in Satchler's paper in terms of an integral involving
the deuteron internal S- and D-state wave functions.

Recently, Frick et al. ' studied the scattering of
20 MeV polarized deuterons by He and found that
Ur(R) was much stronger than expected, about
twice the folding-model predictions. Their analysis
indicates Ur(R) has a node at R =2.4 fm, and is at-
tractive beyond this point.

If we assume a similar potential operates between
the clusters in I.i, the ground state becomes a mix-
ture of S and D states and the tensor contribution
comes mainly through the (positive) off-diagonal
S-D matrix element. Since the rms a-d separation
is about 3.4 fm, the deuteron would be most strong-
ly influenced by the attractive region of Ur(R), and
the tensor force would tend to align the deuteron

spin along R. The degree of intrinsic cluster defor-
mation depends on the internal S-D admixture, but
in any case the major axis would likewise be aligned
along R. The distortion introduced into our
phenomenological model could be a reflection of
this deformation, even though we have not explicit-
ly included the D state.

To accommodate the 'PI state, which is part of
the general shell-model wave function, it would be
necessary to break with the usual a-d scheme and
include a 'PI-state deuteron in relative P-wave mo-
tion with the a cluster. However, no alignment
would occur since the tensor force vanishes in the
singlet state.

The 3.56 Me& (0+) level contains no D state, but
it does have an appreciable Po component in the
shell-model basis. Since the matrix element of Eq.
(19) is diagonal between triplet-P states and is posi-
tive, this level should also show evidence of an
aligned deformation. Similar arguments can be
made for the other levels.

Finally, one might expect the Coulomb repulsion
between the proton and the He core to polarize the
deuteron cluster along R. No doubt this happens to
some extent since there is about 1 MeV difference in
the valence-nucleon separation energies. However,
if the polarization is large, it would tend to destroy
the isospin purity of the levels in I.i, in contradic-
tion to experiment. Note that in our model we have
aligned the d cluster, not polarized it.

Whether any or all of these interactions is suffi-
cient to explain b,l3 can only be determined by de-
tailed calculations. Anyway, the important point
here is not whether the cluster model is a realistic
picture of Li, but rather that a simple model is ca-
pable of giving a unified account of the electromag-
netic structure. There is no reason, therefore, not to
expect at least as much from a more fundamental
treatment such as the O.-n-p model.

IV. COMPARISON OF THE ELASTIC
AND INELASTIC M 1

FORM FACTORS

The similarity of the elastic and inelastic (3.56
MeV) M1 form factors has already been noted.
Here we will make a specific comparison by consid-
ering their ratio, and this can best be done by work-
ing with phenomenological fits to the individual
form factors. The fitting procedure is described
elsewhere for the 3.56 MeV transition. We have
performed a similar analysis on the present elastic
data together with the Amsterdam results'; the
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parameters are summarized in the Appendix. As
before, the effective momentum transfers q,rr as de-
fined by Eq. (10) were used. From these analyses
the diffraction minima were accurately located,
namely q~j„141+0 03 fm ' and 1.40+0.01
fm ' for the elastic and inelastic form factors,
respectively.

The ratio of the phenomenological fits is
represented by the solid curve in Fig. 3. (This curve
does not take into account the uncertainties in the
q;„.) For convenience the ratio has been normal-
ized to unity at q =0 according to the relation

EM ) (3.56) I'~m~
,', =16.12,

E~) (gnd) q 02ap2co3
(20)

where I & is the M 1 radiative width (8.16 eV), co is
the excitation energy, and p=0.822 is the ground-
state magnetic moment. Also shown in the figure
are the inverse ratios of the elastic data to the in-
elastic fit, renormalized as above.

Two peculiar features are evident. First, the dif-
fraction minima are nearly coincident, and second,

J)

l.O -"=:=-:a:-.. ..
) p

0,8-
Lt

0.6-

0.4-

bx
—

bo

(a) 0.090
(b) 0.~40

0.5 l.0
I I

l.5 2Q

q(fm ')
2.5

I

5.0

FIG. 3. Ratio of the inelastic (3.56 MeV) to elastic
M1 form factors, normalized to unity at q=0. The
solid line is derived from the phenomenological fits to
the data. The indicated data points are derived from
the present experiment (black points) and the Amster-
dam work (open circles). The dashed curves represent
the harmonic-oscillator models modified by MEC as dis-
cussed in the text. The unmodified minima are at
qo ——1.41 fm ' and q =1.37 fm ' for the elastic and
inelastic form factors, respectively, while bo and b„are
the corresponding oscillator parameters, in fm.

the 3.56 MeV form factor decreases more slowly at
high momentum transfers than the elastic form fac-
tor. Both results are contrary to expectation as can
be seen from the following argument. In a (lp)
harmonic oscillator configuration space the form
factors satisfy

2

q

„,2)~2(p 2 p 2)
e 0 x'2

(21)

where qo and q„are the positions of the elastic and
inelastic diffraction minima, and (bo, b„) are the
corresponding effective oscillator parameters. The
constant A is the relative normalization at q =0.
Although the individual form factors are not well

represented in the harmonic oscillator basis, it
should suffice for describing the general features of
their ratio. The usual proton and c.m. corrections
tend to cancel in the ratio and are not included.

Now, the inelastic transition-density radius is ex-
pected to be larger than the corresponding ground
state quantity in view of the difference in binding
energies, and this implies qo & q~. From binding en-

ergy considerations one also expects b & ho which
according to Eq. (21) would result in a decrease in
the ratio with increasing q, contrary to experiment.

One possible explanation may lie in the various
two-body processes collectively referred to as meson
exchange currents (MEC). These contribute to the
inelastic transition because of its isovector character
but are much less effective in the ground state.
Haxton and Dubach' have computed the effects of
MEC on the 3.S6 MeV form factor for a variety of
harmonic oscillator wave functions, and we will
refer to their results for the Donnelly-Walecka am-
plitudes' since these yield a diffraction minimum
near q =1.4 fm

A measure of the MEC is given by the ratio

+sr i'(1+2)
R(q)=

FM& (1)

where the numerator contains both one- and two-
body terms, while the denominator retains only the
usual one-body terms. Inspection of R(q) vs q for
the Haxton-Dubach calculation shows that the one-
and two-body terms interfere constructively for
q&q;„and destructively for q&q;„; in other
words the inelastic diffraction minimum is shifted
to higher momentum transfers relative to the one-
body theory. Furthermore, R (q) increases uniform-
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ly from q;„ through the highest q values of our
measurements.

To compare with experiment we have scaled Eq.
(21) by R(q), treating q„and (b„2 b—o2) as vari-
ables, while qo

——1.41 fm ' was fixed by the elastic
Ml form factor. The normalization is unity at
q=O, that is, A =R '(q=0). The two variables

were then chosen to give the best overall agreement
with the experimental form factor ratio.

The results are summarized by the two dashed
curves in Fig. 3 which roughly bracket the data at
high momentum transfers. The minimum of the
one-body inelastic form factor is now q„=1.37
fm ', and b„&ho as one would expect. Although
some discrepancy exists at low momentum
transfers, the general trend of the experimental ratio
is reproduced. Until calculations are done with
more realistic wave functions, we can only conclude
that the theoretical two-body effects seem to be
operating in a direction which is consistent with the
experimental form factors.

V. GROUND-STATE CURRENT DENSITY

In principle, the ground-state charge and current
densities can be deduced from the experimental

Coulomb and magnetic form factors, providing the
data span a sufficiently large range of momentum

transfers. In practice, the data are limited and one
either fits to a phenomenological density, or, as in

the Fourier-Bessel method, one makes an assump-

tion about the asymptotic behavior of the form fac-
tor. The latter technique, applied first to charge
scattering and later to inelastic magnetic transi-

tions, ' ' is becoming more popular as the quality
and range of the electron scattering data expand.
Here, we apply it to the elastic M 1 form factor of
Li to deduce the ground-state current density.

The part of the nuclear current density which

contributes to the elastic MA, scattering from a nu-

cleus of spin Jmay be written

J(r)=[2J+1] '~ (JMAp
l
JM')J«(r)Y~gq~(Q„),

We expand J«(r) in a truncated Fourier-Bessel
series within a region r &R,

J„(r)= g a„j,(q„r), r &R,
v=1

=0, rgR, (25)

[10 fm I

0 I

I (
I

I

I
2

I ~ ~ II II ~ Illlll~
I

5 6

where q„R are the zeros of j~, that is, j~(q„R)=O.
The method for choosing N and R is somewhat sub-
jective and is described in detail in Ref. 7. Beyond
the last data point the form factor is assumed to lie,
with uniform probability, within the envelope

F,„=+3le ', where 3 I
——0.0206 and BI

=0.977 in the present case. This is a linear func-
tion on a logarithmic plot which is tangent to both
lobes of the experimental form factor. Finally, the
expansion coefficients a, are determined by a least-
squares fit to the data and again we refer the reader
to Ref. 7 for a more detailed explanation.

The M 1 current density obtained from the com-
bined Bates (present experiment) and Amsterdam'
data is shown in Fig. 4, and the Fourier-Bessel coef-
ficients are tabulated in Table II. The effective
momentum transfers q,rr were used, and the fit was
constrained at q =0 by the known magnetic mo-
ment of 'Li.

The ground-state (isoscalar) current bears a strik-
ing resemblance to the (isovector) Ml transition
currents of the 3.56 MeV state of Li (Ref. 7) and
the 15.11 MeV state of ' C (Ref. 21), aside from
overall scale factors. All have a node near

where J«(r} describes the radial distribution of the
current, and is the quantity we wish to determine.
It is related to the form factor by the expressions

(23}

FIG. 4. The radial dependence of the ground-state
current density of Li as determined from a combination
of the present and Amsterdam data. The error band
represents +1 standard deviation from the nomina1 den-

sity.
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TABLE II. Fourier-Bessel coefficients for the ground-state M 1 current density.

a, &10 (fm ') q, (fm-')

1

2
3

5

6
7
8

9
10
11
J„2(pdf) =0.61
N;=6, N —N. =5
R =7.600 fm

16.17+0.31
23.34+0.73

—1.96+ 1.65
—33.36+0.99
—44.75+ 1.17
—36.00+0.98
—17.48

5.78
—2.21

0.90
—0.38

0.5912
1.0165
1.4348
1.8508
2.2659
2.6804
3.0947
3.5087
3.9226
4.3364
4.7501

r = 1.7—1.8 fm and exhibit a "knee" around
r =3.5 fm. In part the similarity is due to the fact
that the three form factors have minima around

q =1.4 fm ' and the convection currents play a
minor role in each.

When normalized to a common scale, the 3.56
MeV transition current is slightly stronger than the
ground-state current on the first extremum of
J~~(r) (r =0.8 fm) but weaker in the region.
r =2.5—4.0 fm, although the error bands do over-

lap to some extent. One can show that this is pre-
cisely the behavior required to produce a form fac-
tor ratio which increases at high q. If the two-body
effects are indeed responsible, then they are
suppressing the nuclear current near the surface
while enhancing it deep within the nucleus.

Precise measurements of the M 1 form factors at
even higher momentum transfers are required if we
wish to reduce the statistical overlap of the error
bands to the point where the differences, if real, are
clear. Anyway, from the discussion in Sec. IV, even
the similarity of the current distributions is unex-

pected unless we invoke some device for increasing
the isovector cross section at high 'momentum
transfer.
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APPENDIX: PHENOMENOLOGICAL ANALYSIS
OF THE ELASTIC M 1 FORM FACTOR

The analysis formalism and notation have been
described in detail elsewhere and will not be re-
viewed here. The form factor may be written

FM I J Ã0 &JO(m) & +&2 (J2( P) & ]

where Ep and E2 depend only on the configuration
amplitudes (a,p, y), defined by

(gnd)=a S)+p'P)+y D) .

As before, we use
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ment. They give

Ep =3.326X 10 fm

E2 ——2.803 X l0

The parameters (b,a„) of the radial density
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[R(r)] were determined by a least-squares fit to
the combined Bates-Amsterdam data (27 points),
with the density normalized to unity. The results
are as follows:

X„(pdf)=0.68,

b =2.265 fm,

a, =9.870)&10-' fm-',

a3 ———3.854' 10 fm

a4 ——4.858 X 10 fm

a6 ———2.278 &(10 fm

as= 1 533 && 10 fm

The rms radius of [R(r)] is 3.24 fm, compared
with 3.46 fm for the 3.56 MeV M 1 transition.
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