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The formalism of hyperspherical harmonics is used to calculate several moments of the

triton photoeffect for a Volkov potential with Serber exchange. The accuracy of Clare's

calculations of moments o.o and o l is improved by including more terms in the hypers-

pherical harmonic expansion of the potential and of the ground state wave function. The
moment o 2

——8.9X10 MeV mb is calculated using one term in the hyperspherical har-

monic expansions of the potential and wave function. We invert four moments and find

reasonable agreement with Gorbunov's measurements of the 'He photoeffect.

NUCLEAR REACTIONS Triton photoeffect, hyperspherical har-

monics, moments of photoeffect, inversion of moments.

Sum rules were used by Clare' (CL) to find cr

cd and cr~ for the triton for a Volkov spin-
independent potential with Serber exchange charac-
ter. Only the first term in the hyperspherical har-
monic (hh) expansions of the potential and wave
function were used in the CL calculations. A
Laguerre inversion technique was developed to cal-
culate the dipole cross section from its moments,
0'p.

This work is concerned with calculating more
accurate values of op and 0.~. Our accuracy is im-

proved by including terms up to grand orbital
L=2 and L =4, respectively, in the hh expansion
of the potential and wave function. The calcula-
tion of the moment o.

2 is then made using sum

rules, using only the first term in the hh expansion
of potential and wave function. Moment inversion
is used, using four moments o ~, oo, a~, and oq
and the resulting cross section compared with ex-
periment.

We use the potential

The moment crp is given by

oo=(2m /Pic)(i
I (D, [HD]] Ii ) . (3)

Here D is the operator for electric dipole transi-
tions and H =T+ V is the nuclear Hamiltonian.
Using Eqs. (2) and (3) we find

o'o ——(4n /3)(fP/M)

(41T ax/3—)(i
~

V/2g ~i ) . (4)

We use the first three terms in the hh expansion
of Vi2 ——V(rip),

V&2 n/4g (——k+. 1)' 'Pz~(p)V2k(r) .
k=p

The hh expansion of the ground state wave func-
tion is truncated at two terms, giving

r'~'(, r, Q ~i )= uo(r)yo' '(0)
V=g V(rj )(1—x +xP(~ ),

+u4(r)y4' '(0) . (6)

P;; /i)=/i) . (2)

where (1 —x) is the fraction of Wigner exchange
force, and x the fraction of Majorana exchange.
We give numerical results for a Serber force,

1

with x= —,. We have a ground state i completely

symmetric for space exchange, so

The hyperradial wave functions uo(r) and u4(r) are
given by Ballot in graphical form. We use tabu-
lated values from Fabre de la Ripelle (private com-
munication). Explicit expressions for the hh YL

' '

are given in Lally. Substituting Eqs. (5) and (6) in
(4) and using the orthonormality properties of hh
yields the result
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oo ——(4ir /3)a(vari /M) —(4n. ax/3) ( —,)f r uo Vo«

—( —,
'

)f r'u O' V2dr+( , )f—r'u4V0«

—(3) ' f r uou4Vidr+(3) r uou4V&dr
0 0

The integrals are evaluated using Simpson s rule, and numerical values for the radial wave functions uo(r)
and u4(r) provided by Ballot and Fabre. We find

pro
——57.0 MeVmb .

This value is 14% less than Clare s results [which included only the first integral in Eq. (7)], and it is 3%
lower than the integrated cross section found by Fitzgibbon from the cross section for the same potential.

The next moment

(0) (x) (xx)
CTi=o& +0& +0&

'where

(9)

op'= —(4ir /iric)(i
i
[TD] ~i) =(Sir /9)a(vari /M)(i

i
T ii )=590 MeV mb,

o,'"'= (4m/—Pic)(.i
i
[TD][VD]+[VD][T,D]

~

i ),
o'i ' —— (4n/fi—c)(i .

i [V,D] ii) .

%e evaluate the term proportional to x as follows:

(10)

(12)

', '=(8ir /3' ) (A' /M)( )I('
~

8/Bib[V, (, )P, +V—( —3)P ] ~
)

+ (i
i [Vi3(Z Z3)Pi3+ V23(Z2 z3)P»]a/ai),

i
i ) j

=(ger /3)a(R /M)(x)I (i
i [V&3(Zi Z3)+ V23(Z2 Z3)]

I v, I
i & I (13)

Here the subscript g, means that the partial derivative with respect to the Jacobi coordinate g, is taken only
for the quantitites in the square bracket.

We evaluate Eq. (12) as follows:

o'i '=4' ax'[ (i
I

Vi3(zi —z3)'I i &+(i
I Vi3Vi2(zi —z3}(zi —z2}

I
i &

+ (i
i V»Vip(Z2 Z3)(Z, Z, )

i
i )+ (i

i V23(ZP Z3)
i

l )]

We evaluate (13) and (14) using the first two terms in Fabre's expansion

(14)

V1 ——V(r; ) =[1/I (D/2)] g (2k +D/2 1)[I (k +D/2 —1)lk.]-
k=0

X[2+i( k, k+Dl2 l, —,—, r,"j/r')]V2k (r) . —

Making use of the orthonormality of the hh gives us the results

o i" ———(8ir ax)(iri /M}[f uo (r) Vo(r)dr+( —, )f ruo (r)(d Vo/dr)dr

=579 MeV mb,

—( „)f uo (r)V2(r)dr+( —)f ruo (r)(dV2/dr)dr]

(16)
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and

o'i ' 4——ir ax [ —,f r up (r)Vp (r)dr+( ~)f r up (r)Vp(r)Vz(r)dr

+ f r up2(r)V2 (r)dr]

=551 MeV~mb .

Then the moment

0.) ——1720 MeV2 mb . (18)

(19)

Our result is 12% lower than the CL result of 1950 MeV mb and 10% higher than Fitzgibbon's result of
1566 MeV2 mb.

The moment 02 is given by

o2 (4' /f——ic)QEr
~
(i

~

D
~ f )

~

f
=(2' /Ac)(i

~
[[H,[H,D]],[H,D]], ~i ) .

The commutator [H,D] is

[H,D] = (2efi /M—v 39/dpi, +exVp(r)[(zi —z3)Pi3+(zp z3)P23] .

Evaluation of Eqs. (19) and (20) gives the long expression

o2 ——(4/a/3)(fi /M ) f up 7 Vpdr+(ger ax/3)(R /M)(8 48)f . up Vpdr

00
4 2

~ ] 2dVp+8/ax(fi /M )f up Vp dr (20ii—ax/3)(A /M )f r 'up dr
p dr

4 2
~ dup dVp dVp

+(8ir ax/3)(fi /M )f up dr —(8&ax)(A /M) f rup Vp dr
dr dr

00 dVp
+(34m. ax )(A /M) f up Vp dr+(14m ax )(vari /M) f rup Vp dr

(20)

(2/ax )(—A'/M) f r up Vp(V Vp)dr (4/ax )(f—i /M) f r upVp dr

(4' ax )(—I /M) f rupVp dr+(10m ax )(fi /M) f up Vp dr
dr p

—6ii ax f r up Vpdr=8. 93)&10 MeV mb. (21)

y QA„L„(E/D) . (22)

This result is 657% higher than Maleki's calcula-
tion for a Volkov force of pure Wigner character,
and is 48%%uo higher than Fitzgibbon's value. 5

We use the CL moment inversion technique. '
Also see related work by Langhoff. The triton
photoeffect cross section is given in terms of coef-
ficients A„, Laguerre polynomials, and a decreas-
ing exponential, as follows:

o(E/D) = (E+B)D 'exp( E/D)—

t

CL developed this equation on the assumption that
at high energies the cross section is the product of
a polynomial and a decreasing exponential. The
polynomial is expressed using Laguerre polynomi-
als, since they forn an orthonormal set with this
interval and weighting function.

The coefficients A„are calculated, as algebraic
expressions' involving the moments. E is the en-

ergy above threshold, and B is the (three-body)
threshold energy of 8.48 MeV. The scale parame-
ter D is introduced to make the arguments of L„
and the exponential function dimensionless. We
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use cr &, oo, o&, and o.
2 from Eq. (21), so we use

four terms in the sum in Eq. (22).
Two criteria are applied to find the best values

for the parameter D: the cross section given by
Eq. (22) should be non-negative, and it should be
zero at threshold. The figure shows our inversion,
choosing D=12.4 MeV, as a solid curve. We
chose this value of D so that the cross section
would be zero at threshold; but the cross section
does go slightly negative at an energy of about 50
MeV above threshold. Our inversion gives reason-

FIG. 1. The solid curve gives the cross section vs

photon energy for Laguerre inversion using four mo-

ments, with parameter D=12.4 MeV. The dashed curve
shows Clare's inversion (Ref. 1) using three moments
with D=8.8 MeV. The x's with errors show
Gorbunov's data.

able agreement with Gorbunov's data, but not as
good agreement as that found by CL (dashed
curve) using only three moments, with D=8.8
MeV.

The large difference between the solid and
dashed curves suggests that Laguerre inversion

may not be a satisfactory technique to find the
cross section from a small number of moments.
Perhaps the assumption of an exponential decrease
with energy of the cross section at high energies is
invalid. There are indications' that the asymptot-
ic form is exp( E'~—lD'~ ). We are developing
alternative inversion techniques on this assumption.
Of course the values of the moments found in this

paper will be useful using alternative inversion
techniques. Two other sources of disagreement
with Gorbunov's data are (i) our use of the spin

independent Volkov potential, and (ii) our calcula-
tion is for H, the data for He.
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of partial waves. This work is based on a thesis
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for the degree of MS at Rensselaer Polytechnic In-
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