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Roothaan approach in the thermodynamic limit
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A systematic method for the solution of the Hartree-Pock equations in the thermo-

dynamic limit is presented. The approach is seen to be a natural extension of the one

usually employed in the finite-fermion case, i.e., that developed by Roothaan. The new

techniques developed here are applied, as an example, to neutron matter, employing the
so-called V~ Bethe "homework" potential. The results obtained are, by far, superior to
those that the ordinary plane-wave Hartree-Pock theory yields.

NUCLEAR STRUCTURE Hartree-Fock approach; nuclear and
neutron matter.

I. INTRODUCTION

The exact solution, analytically or numerically,
of an N-fermion (N » l) problem with realistic in-

terparticle interactions will not be available in the
immediate future. As for approximate treatments,
two general microscopic approaches have been at
our disposal for some years now: (l) variational, '

of the Jastrow type, Fermi-hypernetted-chain ap-
proximation method, etc., and (2) perturbation
theory, based mainly on diagrammatic methods of
the "ladder, " "ring, " or other infinite partial sum-
mations. More recently, the so-called "expS"
method has been shown to present us with a viable
alternative.

All these general approaches begin with an as-
sumed one-particle, "zeroth-order" state, about
which one then perturbs in one manner or another.
This unperturbed ground vacuum state (u.g.s.) can
be selected in several ways, that is, a conjecture
must be made in this respect, and usually such a
state is taken to be a single Slater determinant of
plane-wave (PW) one-particle "orbitals, " with occu-
pied "k vectors" spanning a spherical Fermi sea in
(momentum) k space [the "Fermi sphere" of radius

kF (the Fermi vector), which is related to the parti-
cle density p]. However, most authors would agree
in considering that the best unperturbed, one parti-
cle Hamiltonian is that leading to the Hartree-Fock
(HF) problem. This is nonlinear, thus giving rise
to not one, but several solutions which may display
quite different qualitative properties. The P%' or-
bitals constitute just one of the possible HF solu-

tions, and the investigation of the properties asso-
ciated with other such solutions is thus a task that
may bear interesting results.

Much work has been devoted in recent years to
this particular aspect of the many-body problem,
and several non-P% HF solutions have been con-
structed and applied to diAerent problems in the
thermodynamic limit. ' It has been found that
orbitals giving rise to a spatially ordered, "crystal-
like" structure yield, in many instances, a more
tightly bound ground state (gs) than the spatially
homogeneous ("fluid" ) PW one ' at the HF
stage.

The HF solutions studied in Refs. 5 —12 have

been found in a heuristic fashion, i.e., no systematic
procedure was available that would- allow one to
derive them. They constitute a posteriori solutions
to the HF equations, and only for occupied states, a
fact that has caused some concern related to their
stability against one-particle —one-hole excitations.
Clearly, it would be of interest to have at our
disposal a systematic way of generating non-P%
HF solutions in the thermodynamic limit, and,
moreover, to obtain orbitals of that kind that
would be solutions both for occupied and for emp-

ty states. An attempt in this direction has recently
been made, in the one dimensional case, ' and ap-
plied to the attractive delta gas' problem.

The purpose of this work is to present a general
treatment of the type prescribed in the previous

paragraph, for any number of dimensions. The ap-
proach will be illustrated with reference to a semi-

realistic problem: neutron matter, in the so-called
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Bethe "homework" framework.

II. FORMALISM

as a guide (H =g T;+ 2 g,.+.VJ is the many-

body Hamiltonian). A study of the HF problem in

one dimension along these lines resulted in a defin-

ite prescription for obtaining nontrivial HF
states. ' We shall consider here the three-dimen-

sional problem (and it will be seen that extension

to any dimensionality is straightforward), but from

a different perspective, somewhat less mathematical

and more physical, than that of Ref. 13.

In view of the experience gained by previous

workers on the field, ' we shall look for periodic

HF orbitals
~ pk & that are able to give rise to a

"lattice" structure with vectors a&, a2, and a3.
This lattice should be invariant under translations

R=n
& a~+n2a2+n3 a3

so that the unitary translation operator T „,which

commutes both with H and with the HF Hamil-

tonian P, will give

TR

leak&=e'"

" I(t}k&. (3)

Moreover, TR should not affect whatever particu-

lar occupation (among the available orbitals) one

may choose in building up the Slater determinant

4o——(¹!)'~ det[pk. (x;)]

that is going to represent the HF ground state.
Consequently, the solutions of (1) that are also

eigenstates of TR should be Bloch functions:

))))+x) =e'"'"u-„(x), (5)

with u k ( x+R}=uk (x), i e., u has the same

periodicity as the lattice (notice that for the sake of
a lighter notation we are omitting spin and isospin
subindexes). Now, in order to find the self-

In utilizing non-PW solutions to the HF equa-
tions (sometimes referred to as "nontrivial" ones}
in the thermodynamic limit, as is done, for exam-

ple, in Refs. 5—12, one is making a definite,
heuristic conjecture as to what the nonperturbed
ground vacuum state is. It has been suggested in

Ref. 13 that in order to look for nontrivial HF
states in a systematic fashion, one should employ
the HF equations themselves:

&Wk I
T

leak&+

g &Akk I I'l)Ikey'I 414'k& sk~kk' ~

l(occ)

consistent Bloch orbitals u that we are looking for,

we expand P in plane waves:

~ pk„& =pc„o (k)
~
k+G&, (6)

with

~

k+G& ei(k+6) x

where G is a vector of the reciprocal lattice and k
belongs to the first Brillouin zone. The index n in
(6) labels the rows of the unitary matrix which per-
forms the transformation implied by this equation.
The problem of finding nontrivial HF. orbitals
reduces itself to that of finding the coefficients

c„G of (6).

The idea is now to introduce the transformation

(6) into the HF equation (1), which leads to an

eigenvalue problem for the desired coefficients c:

In Sec. III we give the explicit form of the ma-

trix elements of A for the case that we discuss as
an example in the present work.

Our prescription for obtaining HF states in the
thermodynamic limit would then read: (i) choose as
a starting point the PW orthonormal set (a trivial
HF set~), (ii) consider now the following set of or-
bitals: (a) e'" '", with k belonging to the'first
Brillouin zone and (b) (M —1) vectors of the re-
ciprocal lattice, (iii) subject the members of this set
to the unitary transformation (6) and obtain a new

set
~

((} k „&, which is to be completed by adding

plane waves to it beyond the Mth Brillouin zone,
and (iv) select the relevant unitary transformation
[that yields the coefficients c„o(k) in (6) in such

a way that, within the subspace reached by the
transformation, the

~
(() k, & constitute a HF set].

This is a definite prescription which is easily
seen to yield HF solutions both for occupied and
empty orbitals. Equation (8) presents us with a
nonlinear problem entirely similar to the one posed
by Roothan's scheme, ' usually employed for solv-

ing the HF equations in the finite fermion prob-

lem. The solution is to be obtained here as in

g & k+G
i ~i k+G' &c,(k)=e„(k)c„o(k) .

6

(8)
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Roothan's case, namely by an iterative diagonaliza-
tion of the HF Hamiltonian A (an M XM prob-
lem). Enlarging the single-particle basis in the fin-

ite case has in our case its counterpart in taking a
larger number M of Brillouin zones into account.
The fact that we are working in the thermodynam-
ic limit has as a consequence, in practical calcula-
tions, the necessity of "discretizing" the first Bril-
louin zone, selecting a sample of m points from it.
Our iterative process involves, then, m simultane-

ous M &(M diagonalizations at each step. It is
easily seen that the orbitals (6) constructed with
the eigenvectors arising from these m diagonaliza-
tions are orthogonal among themselves, because of
the orthogonality of the PW set.

III. A SIMPLE APPLICATION
TO NEUTRON MATTER

The values of the coeAicients a~ are found, e.g., in
Ref. 18.

B. Specialization of the theory
to CSSDW orbitals

We shall deal in this section with orbitals of the
type employed in Ref. 10, under the name of
"corrugated-sheet-spin-density waves" (CSSDW).
However, we shall treat them self-consistently ac-
cording to the theory of Sec. II.

In the present situation the direct lattice is
characterized by a single vector a3 of modulus P, P
denoting the interval (period) between two succes-
sive spin-up particles along the Z axis. In the re-
ciprocal lattice we have just one vector, a3* ——q, of
modulus

~ q ~

=q=2~/I' The v. ectors 6 of Sec.
II are given here by

A. Introductory remarks G=m q, m integer . (10)

The plausibility of non-plane-wave HF orbitals
in a nuclear context has been studied, for example,
in Refs. 7—10. Effective two body interactions of
the Skyrme type were employed to that end in
Refs. 7—9 and shown to lead to such nuclear ef-
fects as alpha-particle clustering at subnuclear den-
sities. It would be of interest now to ask whether
nontrivial HF orbitals are relevant when used with
realistic (i.e., bare) two body forces, in view of the
decisive role that the repulsive cores in the
nucleon-nucleon force play for the establishment of
long-range order in the form of crystallization.
The importance of these repulsions (hard or soft) is
well accepted both classically' and quantally, '

and a step in the direction outlined here is that of
Ref. 10, where some heuristic nontrivial HF states
are studied in connection with the so-called home-
work potentials. '

Our present purpose is twofold: On the one
hand, w'e wish to explore the consequences of using
nontrivial HF orbitals in conjunction with two-
body forces containing a repulsive core, and, on the
other hand, it is our goal to provide a simple illus-
tration of the formalism presented in the preceding
section. With these objectives in mind we shall ap-

ply our techniques to neutron matter, employing
the so-called Vi homework potential, ' defined by
an interaction of the form

where x =pr, p=0.7 fm ', and A, =1, 4, and 7.

The CSSDW orbitals are characterized by an an-
tiferromagnetic symmetry along the Z axis, togeth-
er with the following point-symmetries:

(a) R(P); a rotation, according to the angle P,
around the Z axis.

(b) cr„; reflection with respect to planes contain-
ing the Z axis.

(c) os, reflection with respect to a plane perpen-
dicular to the Z axis (an atom of the lattice lies in
this plane).

(d) inversion I=R (vr)crl, .
These are symmetries of the total Hamiltonian

H. They will also be symmetries of the HF Ham-

iltonian if we choose our occupied states in a con-
venient fashion. This entails occupying states with

both rotation and reflection symmetry with respect
to a plane perpendicular to the Z axis. As a
matter of fact, it suffices to find those HF solu-

tions lying on the surface of the volume generated

as a (in principle arbitrary) figure, drawn on the
x-z plane, rotates around the Z axis (only the posi-

tive semiaxis is needed). The remaining states can
afterwards be obtained with the help of the rela-

tionship'

Rgq(x)=gk(R 'x)=Pgq(x) .

The spin degree of freedom must be dealt with

explicitly here, on account of the antiferrornagnetic
symmetry (see Ref. 10). This entails adding to our
previous list of symmetries the following:

(e) ETp&2, a half-period translation ( Tp~2) and
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time-reversal (K), which produces "spin flip. "
We have'

AA

k l/2(x) =e' KTF/20 k, l/2(x), (12)

0 k, n, l/2 x Xcn, m(kp~kz~ 2 )8 Xn, l/2
m (17)

for k, )0. The inversion symmetry gives

where the phase factor is to be selected so as to
simplify our calculations.

It should be clear now that we need to look just
for those solutions corresponding to the k„k, plane

with kz, kz & 0, and o2 ———,, i.e. [see Eqs. (6) and

(10)],

(x)=pc„m(k, o2)e' "+ q ' "X~~, (13)

where X~ ~, denotes a spin wave function, for

k =(k„,O, k, ) with kz, kz )0, and os= —,. Thus,

(k+mq) x=k„x+k,z+mqz

~—k, 1/2 ~ k, 1/2

which implies

c„(—k, z )=c„(k,—, ) .

If we now employ the result (12), we can write

k 1/2( x ) =e ( l vrE—OTP/2)4' k l/2( x )

=e' ( ior—)p'k l/2 x+—

(18)

(19)

(20)

=k„pcosP'+(k, +mq)z . (14)
and, remembering that io.„P g/g P ]/2 we ob-

tain, with the choice a=~+ k P/2,

We use now the relationship (11)

(I)P(~)+k x ) =()I) k [R ( —P)x],
c„m(k, ——,)=(—1) c„' m( —k, —,),

or, according to (19),

(21)

which is tantamount to replacing in (14) the angle

P by the angle P' —P. Moreover, since k„ is the
projection of k onto the x-y plane, it can be identi-

fied with that projection corresponding to the
cylindrical coordinate p, i.e., with kz, which allows

one to write, instead of (14),

c„(k,—z)=( —1) c„' (k, z ) . (22)

If we now restrict ourselves to working with real

coefficients c„m, and, furthermore, only the first
Brillouin zone (n =1) is occupied, filling a Fermi

sphere of radius k~ such that

(k+m q) x = kFp cos((tp' zt))+(k, +m—q)z, p() kF /3n—— (23)

and, consequently,

(16) the usual selection '
q =2kF allows us to write

the matrix elements of the HF Hamiltonian P of
Eq. (8) in the form

(k+G' ~P
~
k+G) =(k+rq ~A

~
k+sq)

kF [z +4s(s+ )z]ut) zz

2pl

kF 1

+ I x dx I dypa (x,y)a +„,(x,y)I
m

] =pa, . 2[1+(—1)'-"] —[I(m —s, 1)+I(—m r, —1)] . , —
(Ay/kF) +4(s r)—

(24)

(25)

where

I(a,p) = I [ ( kp/kF ) +(2a —zu +pxy) 2

and

a;(z,u)=cl;(k, /kF, cos8, —, ) . (27)

+x'(1—y')+z'(1 —u') ]'

—4x z (1—y )(1—u )] (26)

C. Results

The integrals in (26) were evaluated according to
the Gaussian method, which entails the evaluation
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of the a's [Eq. (27)] in those rn points required by
the integration method. The HF Hamiltonian ma-
trix A was then diagonalized iteratively, until
reaching self-consistency. For this we choose the
criterion that all a's involved in the problem
should agree, when evaluated in two successive

iterations to eight digits. Up to five Brillouin
zones were used in order to define the HF transfor-

mation, i.e., our self-consistent HF orbitals were

linear combinations of PW belonging to five dif-
'

ferent Brillouin zones. In order to sample the first
Brillouin zone, as described in the previous section,
several selections of the corresponding number of
points m were made. It was found that the results
are independent of m for m & 7&(7, up to four sig-
nificant digits. (Notice that one is dealing with a
double integration problem. )

Our main results are displayed in Fig. 1. We
show there the HF binding energy per neutron as a
function of density, for M = 1 (PW case), 2
(Overhauser-type' ), 3, 4, and 5. The new

results are those for M & 3, where saturation is at-
tained. The energy gain obtained for M & 3, with
respect to the cases M =1, 2, is enormous (more
than 100%). Surprisingly enough, taking into ac-
count the strong repulsion that characterizes the
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FIG. 2. Variation along the z axis of the spin-up
spin-down {dotted lines) and total (solid line) spatial
densities (fm ) for the (V~ Bethe homework potential)
HF solution corresponding to the case M =2
(Overhauser-type orbitals). The horizontal scale is nor-
malized to 2m/q. The total density (E/V) is 1.33 fm

4
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V~ potential, the system is bound for M )3. The
main qualitative difference between the cases M & 3
and M & 3 lies in the fact that in the former, the
spatial density is constant, while in the latter, de-
finitely, inhomogeneities are observed. An example
is shown in Fig. 2. Concerning the spin density
along the z axis, we have an homogeneous distribu-
tion for M =1 and an antiferromagnetic structure
for M =2, but with an homogeneous net spin den-

sity. For M & 3 we have still an antiferromagnetic
structure with a nonvanishing net total density (see
Fig. 3).
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FIG. 1. Binding energy per particle {MeV) as a func-
tion of the total density (fm ) obtained with the V~

Bethe homework potential for different HF solutions. M
denotes the number of Brillouin zones taken into ac-
count in the calculations. M =1 corresponds to the
trivial plane-wave HF solution.

FIG. 3. Variation along the z axis of the spin-up,
spin-down (dotted lines) and total (solid lines) spatial
densities (fm ) for the (V~ Bethe homework potential)
HF solution corresponding to M =3. The horizontal
scale is normalized to 2m/q. The total density (N/V) is
1.33 fm . Notice that there is an inhomogeneous total
spatial density.
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IV. CONCLUSIONS

In the finite-fermion problem, the method com-
monly employed in order to tackle the Hartree-
Fock equations is that developed by Roothsan. '

We have in the present paper presented a natural
extension of Roothaan's approach to the thermo-
dynamic limit. A definite prescription is thus ob-
tained in order to generate nontrivial (non-plane-

wave) solutions to the HF equations in that limit,
which should replace the heuristic approach usual-

ly followed in this connection. ' Moreover, the
orbitals generated with the techniques introduced
here are HF solutions both for occupied and for
(some, but the most important ones) empty states,
which is not the case for the heuristic orbitals.

The power of the new approach has been illus-
trated by an application to neutron matter, in

which the v i Bethe homework potential is em-

ployed. The results are much better, energy-wise,
than those one obtains with the trivial, plane-wave
HF solution.
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