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We study the time evolution of some momentum distributions for an infinite, dilute,
and spatially homogeneous system of fermions by solving the Uehling-Uhlenbeck equa-
tion. The initial nonequilibrium distributions examined are (i) a Fermi sphere with an
outer spherical shell, and (ii) a Fermi bisphere. It is found that the entropy of the system
approaches its equilibrium value in a nearly exponential manner. Such a behavior allows
an extraction of the relaxation times. The relaxation times decrease with increasing size
of perturbation and depend on the shape of the perturbation. Deviations from equilibri-
um in the initial momentum distribution persist into the late stages of the relaxation pro-
cess.

NUCLEAR REACTIONS Solution of Uehling-Uhlenbeck equation.
Approach to thermal equilibrium in fermion system. Relaxation time.

I. INTRODUCTION

In many-body dynamics an important quantity
is the length of time it takes for an excited system
to reach thermal equilibrium. This (thermal) relax-
ation time plays an important role in a proper
description of the dynamics. ' If the time scale is
short compared to the relaxation time, the dynam-
ics of an N-particle system must be described in

the 6-1V dimensional phase space. The situation is
greatly simplified when local thermal equilibrium
is reached. Then a macroscopic treatment in terms
of fields such as the local temperature T(r), the
local chemical potential p(r), and the average local
momentum P(r) is sufficient.

In order to get some insight into the magnitude
of the relaxation time, it is necessary to start with

a nonequilibrium system and to follow its dynam-
ics until equilibrium is reached. To study in a gen-

eral case the dynamics in the 6N momentum and
spatial coordinates is a formidable task. Here we
wish to examine the model problem of a spatially
homogeneous fermion system in which the spatial
coordinates do not enter. The system is taken to
be "dilute" in the sense that the mean free path

and the mean free time are long compared to the
respective spatial and temporal extent of the col-
lision process. Under these circumstances, three-
body collisions are much less important than two-
body collisions. For such systems the time evolu-
tion of the momentum distribution is described by
the Boltzman equation as modified by Uehling and
Uhlenbeck.

We restrict ourselves to initial momentum distri-
butions for which the equilibrium state after the
relaxation is still in the degenerate regime with a
temperature k~ T (ktt ——Boltzmann constant) much
less than the Fermi energy eF. Our work is thus
complementary to a recent statistical study of the
approach to equilibrium in very high-energy sys-
tems. Our study also supplements another investi-
gation in the low-energy regime where only the
temporal behavior of the moments of the collision
term is investigated.

This paper is organized as follows. In Sec. II,
we write the Uehling-Uhlenbeck equation in
dimensionless form in order to extract a natural
unit of time for the investigation of the dynamics.
In Sec. III and IV, respectively, we discuss the
cases of a spherical shell outside the Fermi sphere
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and a Fermi bisphere. We introduce a relaxation
time associated with the approach of the entropy
to its equilibrium value and study its dependence
on the size and the shape of the initial nonequili-
brium perturbation. In Sec. V we draw some con-
clusions on the thermalization process in the col-
lisions between heavy nuclei. The details of the
numerical evaluation of the collision integral are
discussed in the Appendix.

II. THE UEHLING-UHLENBECK EQUATION

Soon after the introduction of quantum mechan-
ics, a kinetic equation for quantum gases was put
forward by a heuristic extension of the classical
Boltzmann transport equation. The equation,
known as the Uehling-Uhlenbeck equation, has
been successful in describing the transport proper-
ties of gaseous He and He down to about 1 K.
It is also incorporated into the Landau theory of
normal Fermi fluids and provides the appropriate
description of quantum many fermion systems at
low temperatures. '

Starting with the Martin-Schwinger hierarchy'
of equations, Kadanoff and Baym derived the
Uehling-Uhlenbeck equation for a system with

slowly varying perturbations. Alternatively, the

Uehling-Uhlenbeck equation can be considered a
special case of the extended time-dependent
Hartree-Fock (ETDHF) approximation for an in-

finite homogeneous system. "However, the condi-
tions for the validity of the equation with regard to
the temporal duration and spatial extension of the
collision process are still subjects of continuing mi-
croscopic investigations. ' ' The Uehling-
Uhlenbeck equation is only the local limit of a
more general kinetic equation involving nonlocal
collision kernels. In this limit, the spatial exten-
sion and the duration of the collisions between the
particles are sxnall compared to the respective
mean free distances and mean free times between
the collisions. For fermions this condition is most
likely met at low temperatures in the degenerate re-

gime where the mean free path becomes large due
to Pauli blocking. Hence, the Uehling-Uhlenbeck
equation is found useful for the description of the
transport properties of a large class of fermion sys-
tems at low temperatures.

In order to formulate the equation with the
proper norInalization and scale factors, we wish to
treat the case of an infinite medium as a special
case of the ETDHF approximation where the nor-
malization is easily determined. The equation
governing the change in the occupation probability
n of state A, ~

is"

Blip

Bt R 2
5(t ) +c2—63 E4)[(1 n~ ( 1 —n~ )n ~ n ~— n~ n~ —( 1 n~ )( 1 n~ —)]—

1 2 3 4 1 2 3 4
Ar2kr 3Ar4

X
~

(A, )A,, ~

u'
~

)t,+4)„~ ' . (2.1)

Here the delta function expresses the conservation
of energy in the collision process. There is a gain
term in the square bracket due to the collisions of
particles at states A, 3 and A,4 changing into states A, ~

and A,2. The factors in the gain term take into ac-
count the Pauli exclusion principle properly.
There is a corresponding loss term due to the re-
verse process. The transition rate is given by
(2m/A')

~

(A, ~A2~u'
~
A+4)q ~, where u' is the residu-

al interaction between particles and the subscript A

denotes antisymmetrized matrix elements. The
single-particle wave functions in the matrix ele-
ment are normalized according to

(2 2)

and the occupation probability is normalized ac-
cording to

nq=N,
A,

(2.3)

where X is the total number of particles. Another
conserved quantity is the total energy

gexnz ——E . (2.4)

one factor —, in Eq. (2.1) accounts for the identity

of the colliding particles; the summation over
states A, 3 and k4 is then unrestricted.

For an infinite homogeneous medium in which
the mean field is independent of particle states, the
state X becomes a plane-wave state labeled by the
momentum k and the spin and isospin quantum
numbers X. We can change the notation n~ to
f(k, X). Because of the normalization condition of
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Eq. (2.3), the summation over A, becomes

(2.5)

where V is the volume of the system. Explicitly,
the Uehling-Uhlenbeck equation for a homogene-
ous system is given by

2m V d kid k2d k3
9 5(~i+e2 —&3 —&4)[( 1 —fi )( 1 —f2)f3f4 —fif2( 1 —f3)( 1 —f4)l

2 xxx (2w)

&&
) ( k &X &, kzX2 )

u'
[ k 3X3p k4X4) g (2.6)

where

Ak;
2m

(2.7)

It is more convenient to work with scattering cross sections than with matrix elements. Using plane-wave

states, we can relate the matrix elements with the scattering cross section by

2'm-'A - - - - do- --,7 5 4

~
(kiXik2X2

~

u'
~
k3X3k4X4)q

~

= 5(ki+k2 —k3 —kq) (k, k ', XiX2~X3X4),
m u dQ

]
where m is the mass of the fermion under consideration, k= —,(k& —k2) and k '= —,(k3 —k4). The
Uehling-Uhlenbeck equation becomes

(2.8)

af,
d k2d k3d k45(@i+ Ep —E3—E'4)[(l fi )(1 f2)f3f4——f)f2—(1—fg)(1 f4)]-

4am gyp

—+ ~ gfo
X5(k, +k2 —k3 —k~) (k, k', X,Xz~X3X4) .

dQ
(2.9)

We shall restrict ourselves to a distribution function which is independent of X. Upon introducing the dif-

ferential cross section der/d 0 (k, k ') as an average over the initial spin and isospin quantum numbers Xz

and sum over the final X3 and X4, we have

af, x3g I d k2d k3d k45(ei+e2 E3 e4)—[(1 —f) )(1 f2)f3f—g fif—2(1—f3)(1—f4)]-
4m m

)(5(ki+k2 k3 kg) (k, k ') (2.10)

~fi 1 g fi—I d k2 I dQ2k (k, Q)[(1 fi)(1—f2)f3f4 —fif2(1 —f3)(1 fg)] . ——d(7

Bt 2 (2~} m dQ
(2.11)

where g is the degeneracy of each single-particle state. We shall consider energies below the pion-production
threshold. Then, as the two-body collision process conserves energy and momentum, the cross section
do/dQ(k, k ') depends only on the angle between k and k ' and on the length of k.

The integration over the momentum and energy conserving 5 functions yields

One can define a natural time scale by transforming Eq. (2.10) into a dimensionless form This can. be
achieved by measuring all momenta in units of a Fermi momentum kz

x) ——k;/kp, i =1...4,

x = —,( x, —x2) =k/kF,
(2.12)



25 RELAXATION OF SOME FERMION NONEQUILIBRIUM. . . 1021

and

x '=-, (x3—x4) =k '/k~ .

One may further introduce the dimensionless angular distribution

(x,Q) = (x,Q)/
av

(2.13)

Here (do/dQ), „is the typical magnitude of the average differential cross section. We choose (do/dQ), „ to
be the angle-averaged differential cross section at an energy of 1 2' .which is the average relative kinetic en-

ergy between two particles taken randomly from the Fermi sphere. The dimensionless Uehling-Uhlenbeck
equation is therefore

Bf(x)) = —, f dx2dQI [1—f(x~)][1—f(x2)]f(x3)f(x4)

—f(x~)f(x2)[1—f(x3)][1—f(x4)] I2x (x,Q),
dQ

(2.14)

where the dimensionless quantity r=t/tp is given
in terms of the natural unit of time

tp ——(2m ) m/gkF Akp,
do'

av

(2.15)

which, in terms of a density n p gkF /(—6—vr ) and a
Fermi velocity u~ fikF /m, be——comes

do
tp ——4n /3np

av
VF . (2.16)

In the nuclear fluid the nucleon-nucleon cross sec-
tion is not well known. We estimate it by using
the bare nucleon-nucleon cross section of 1.2
fm /sr from the average of the (p,p) and (n,p)
scattering at an energy of 1.2'. ' With the bare
nucleon mass m, g =4 and kF 1.4 fm, we——get

tp 64 fm/c=2. 1——X10 s . (2.17)

The details of the relaxation process depend on
the effective interaction between the particles
bound in the system through the momentum and
angle dependence of the factor 2x ds/dQ in Eq.
(2.14). However, in this work we are rather in-

terested in the general features of the numerical
solutions of the nonlinear Uehling-Uhlenbeck equa-
tions for large perturbations. We therefore assume
for the subsequent calculations that the cross sec-
tion is isotropic and 2x ds/dQ = 1. For nucleons,
these assumptions are not unrealistic in the regime
considered here, where all momentum space far
from the Fermi surface is Pauli blocked. More-
over, our calculations can be extended in a
straightforward manner to more complicated force

laws, since the collision integrals are calculated
with the Monte Carlo method. We use the three-

step Runge-Kutta method for the integration of
the coupled integrodifferential equations (2.14).
The distribution functions are evaluated as a func-
tion of time on a grid in momentum space which
must be chosen sufficiently fine in comparison to
the perturbation in order to achieve numerical sta-
bility.

f(x)=8(1—x)+v][8(x —1.10)

—8(x —1.15)] (3.1)

as shown in Fig. 1(a). Because of the spherical
symmetry, it is sufficient to consider f(x~ ) as a
function of time. By choosing x~ as the polar axis
for the x2 ——(x2,8z,g2) integration and (x~+ x2)
as the polar axis for the dQ„,=(O', P') integration

[Fig. 1(b)], the two azimuthal integrations over Pz
and P' in the collision term become trivial. The
integral on the right hand side of Eq. (2.14) be-
comes a three-dimensional integral. The details for
the evaluation of the collision integral are given in

III. THE RELAXATION OF A MODEL SYSTEM
WITH A SPHERICAL SHELL

In order to see the details of how thermal equili-
brium is approached, we study first the model sys-
tem of a spherically symmetric initial momentum
distribution given by a sphere and an outer spheri-
cal shell. The sphere is taken to have the radius of
the Fermi momentum and a thin shell of height g
is located at the interval 1.10 &

~

x
~

& 1.15 so that
at t=O
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the Appendix.
We examine in some detail the case with g =1.

As the dynamics proceed, the density peak at the
spherical shell is rapidly reduced at the start of the
dynamical evolution. At time v.=t/tp=0. 2 this
peak is reduced by about 30%. However, the rate
of reduction of the height of the peak decreases as
time goes on. The change in occupation occurs
mostly in the top region of the momentum distri-
bution. As the distribution approaches the equili-

brium distribution, the momentum distribution
changes at a slower and slower pace (Fig. 2). This
is an expected result as the force driving the distri-
bution becomes weaker the closer one gets to
equilibrium. At time t/tp -0.8, although the peak
at x =1.1 is still discernible, the distribution as a
whole is not far from that of a completely ther-
malized system.

It is instructive to examine the temporal
behavior of the entropy density

kzgkF—f {f(x,r)lnf (x,r)+[I—f(x,r)]in[1 —f(x,r)] I . (3.2)

We compare this quantity with the equilibrium en-

tropy density as a convenient reference. At equili-
brium, the entropy becomes maximal and can be
evaluated independently from the thermodynamics
of a fermion system. The equilibrium momentum
distribution is given by

fi k —p (
2m

f(k)= !+exp ksT), (3.3)

and the energy density

E/V=g(2m) [A'/(2m)] f dkk f(k, t) .

(3.5)

Introducing the ground state energy density Eg/V
of a fermion system of density n

' 2/3
3 677

10 g m
(3.6)

we obtain in the regime of moderate perturbations
(where the equilibrium temperature is

kg T« p, =sf ), an excitation energy density'

(E Es)/V= , PT n—'~—
with

(3.7)

P=(gm. /6) ~ mk~~/R~ . (3.8)

In terms of the equilibrium temperature, the maxi-
mal entropy density is given by

$,„/V =PTn'~

In Fig. 3 we plot the dimensionless quantity
[S,„S(r)]/k~NO as —a function of r, with

(3.9)

where the temperature T and the chemical poten-
tial p are determined by the conserved density

n =N/V =g (2~) f d kf (k, t) =const . (3.4)

1Vp =np V. We see from the semilogarthimic plot
that in the range of times ~ considered the differ-
ence S,„—$(r) behaves very nearly as an ex-
ponential function of time

S,„$(r)= [S—,„—S(0)]exp( —r/r„) .
(3.10)

The quantity ~„can thus be conveniently called the
relaxation time (in units of to). In Table I we list
the size of the perturbation g, the entropy differ-
ences [S,„—$(0)]/(k~NO), and the corresponding
relaxation times ~,. We see that the relaxation
times decrease with increasing perturbation. This
effect is due to the exclusion principle. For larger
deviations from equilibrium, the Pauli blocking in-
volving the term 1 —f(x &) in the collision integral
becomes less effective in inhibiting collisions.

IV. THE RELAXATION OF A FERMI BISPHERE

Another type of perturbation we wish to consid-
er is that of a Fermi bisphere. It consists of two
Fermi spheres of reduced unit radii separated by a
reduced distance e=K/kz [Fig. 1(c)]:

f 9{1 —[p +(z —e/2) ]' for z )0
8{ 1 —[p +(z+e/2) ]'~ for z &0 '

(4.1)

where the z axis is chosen to lie along the symme-
try axis e and p is the radial coordinate perpendic-
ular to e. This resembles the momentum distribu-
tion in certain spatial regions of two colliding nu-
clei. ' There, before the boundary between the two
nuclei disappears, the momentum distributions at
various points in the two nuclei are single Fermi
spheres displaced according to the relative velocity
of the separate nuclei. The momentum distribu-

tion in the region of the spatial boundary becomes
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FIG. 2. Time evolution of the moment distribution of
the Fermi sphere plus spherical shell with ii =1 [see Fig.
Fig. 1(a)]. The long-dashed curve represents the momen-
tum distribution at r=t/to ——0.2, the short-dashed curve
at r=0.4, the dashed-dotted curve at r=0.6, and the
dotted curve at r=0.8.

1.0

FIG. 1. Perturbed initial momentum distributions.
(a): A Fermi sphere of reduced radius 1 with an outer
spherical shell of height q for 1.1 &x &1.15. (b): The
nonequilibrium spherical distribution in momentum
space. (c): The Fermi bisphere momentum distribution
obtained by joining two Fermi spheres separated by
e =K/k+. Because of energy and momentum conserva-
tion, the initial and final relative momenta
x =

z (x]—x~) and x '=
z (x3—x4) must be radii of the

same sphere R with centers at —X=—(x~+ xz). This is

depicted in (b) and (c).

similar to a Fermi bisphere consisting of two
joined, displaced Fermi spheres with reduced unit
radii.

Because of the cylindrical symmetry of the Fer-
mi bisphere, it suffices to consider f (p,z) a func-
tion of time. However, all five integrations in the
collisions term of Eq. (2.17) have now to be carried
out numerically. The details of the evaluation are
given in the Appendix. Similar integrals have al-
ready previously been done in a calculation of the
mean free path of one heavy nucleus in the other. '
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FIG. 3. Time evolution of the entropy difference
S —S(r) in units of kqNO, for different values of the
height g of the spherical shell of Fig. 1. Times r are in
units of to. Open-circle points are for g=1.0, open-
square points for g=0.75, solid-square points for
g=0.50, and solid-circle points for g=0.25.
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TABLE I. Maximal entropy changes in units of k&N0 and relaxation times ~„ in units of
t0, for various heights g of the spherical shell and various bisphere deformation parameters

e=E/k+. For the bispherical case, we also give the kinetic energy per projectile nucleon

E/A (with the target at rest) and the relaxation time v.,t0 in fm/c using the value of
tp ——64.01 fm/c [Eq. (2.17)].

spherical
shell

0.25
0.50
0.75
1.00

[S,„—S{0)]/ksNp
0.239
0.346
0.458
0.638

0.50
0.33
0.26
0.21

bisphere
0.2
0.3
0.4

E/A
(MeV)

1.63
3.66
6.50

[S,„—S(0)]/ksNp

0.181
0.290
0.410

2.76
1.38
0.73

~„t0(fm/c)

176.7
88.33
46.73

For sharp Fermi surfaces at the time r=O, the in-

tegrations with respect to Q„could, in fact, be
done analytically.

During the equilibration towards the spherically
symmetric final distribution [Eq. (3.3)], particles
will dominantly be scattered in a direction perpen-
dicular to the deformation e, so as to reduce the
density in the polar region of the bisphere, while
increasing the density near the equatorial plane. In
Fig. 4 the corresponding cuts of momentum distri-
bution are shown for e=0.4 and at times r=0, I,
and 2. The curves labeled f~~ give the momentum
distribution f (O,z) along the symmetry axis, while
the curves labeled ft give the momentum distribu-
tion f(p, O) along an axis in the equatorial plane.
The time evolution of the entropy is shown in Fig.
5. Again, an approximate exponential approach to
equilibrium is obtained. In all these cases, we in-

tegrated the Uehling-Uhlenbeck equations to very
large values of r until the entropy S(r) approached
its equilibrium value S,„closely. Because of the
numerical integration, only about three digits are
significant in S(r). This leads to large errors in
small differences S,„S(r)as shown in—Fig. 5.
In Table I we also list the differences
[S s —S(0)]/(ksNo) and the corresponding relax-
ation times ~„ for various values of the bisphere
displacement e. In the regime of moderate pertur-
bations considered here where the Pauli blocking
remains important during the entire time evolution,
the relaxation time decreases with increasing per-
turbation as measured by S,„—S(0). The same
momentum space effects have been previously
found in heavy-ion scattering. ' For large pertur-

1.0
'C = ].0

0.5—

0.5-

I

0.9 1.1 ).2
x ORx

FIG. 4. Time evolution of the momentum distribu-
tion for a Fermi bisphere with @=0.4. The dashed
curves give the longitudinal distribution [f

~~

=f{O,z)]
along the polar axis, and the solid curve gives

fz ——f(p, O) in the equatorial plane. Initially, the
momentum distribution is fi~ =0{1.2—z) and

fg ——8{0.98—p) at r=O.

bations, e && 1, the Pauli blocking becomes unim-
portant and the relaxation time increases with per-
turbation. ' A comparison of the bisphere and
spherical shell values of r„ for similar perturba-
tions S,„—S(0) shows that the relaxation time
depends on the shapes and the symmetry of the in-
itial perturbation. The cylindrical symmetric bi-
sphere perturbation relaxes slower than the spheri-
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FIG. 5. Time evolution of the entropy difference
S —S(s) in units of kgNp, for different values of the
separation parameter of e of the Fermi bisphere. The
diamond points are for @=0.2, square points are for
@=0.3, and circle points are for @=0.4.

cal shell which has already the symmetry of the
equilibrium distribution. It should also be noted
that the entropy and the associated relaxation time
~„are global measures of the equilibrium process.
An inspection of Figs. 3 and 5 shows that devia-

tions from the equilibrium momentum distribution
persist until very late stages. In the calculations,
these deviations take the form of a peak at the po-
sition of the spherical shell and of an anisotropy of
the momentum distribution in the bisphere case.

for every equilibrium temperature and chemical po-
tential. ' The deviation of the distribution func-
tion from equilibrium can therefore be expanded
into an infinite set of exponentially decreasing
functions with expansion coefficients determined

by the initial perturbation. Here the time depen-
dence of the entropy difference Smax S(—r) is dom-
inated by a single exponential except for the first
few steps, where one notices a steeper decrease (see

Figs. 3 and 5) and possibly for the very late stages,
where terms with large relaxation times may be
hidden because of the numerical uncertainties of
our calculation.

It must be noted that our calculations are ex-

pected to yield upper limits for the relaxation
times. Because of the collisions, the particles will

move off shell in a band of approximate width
iit'/r„so that energy need not be strictly conserved
in the collision term. Moreover, the single-particle

energies may vary with time as the mean field
does, which is important for finite systems like nu-

clei. With this provision in mind, we use our re-
sults to estimate relaxation times for nuclear sys-
tems. In the case of the spherical shell of pertur-
bation, the situation corresponds roughly to having
a fraction 0.16' of all the nucleons excited to an
energy of 0.27eF. The relaxation time ranges from
0.50to (=32 fm/c) for ran=0. 25 to 0.21to (=13.44
fm/c) for rt = 1.0. In the case of the Ferini bi-

sphere, the separation parameter e is determined by
the relative kinetic energy per projectile nucleon
E/A when the target is at rest

V. CONCLUSIONS AND DISCUSSIONS
fPkp e

E/A= =e e/.
2m

(5.1)

We examine the approach to thermal equilibri-
um for two model cases with special symmetries
and simplified assumptions concerning the
particle-particle differential cross section. We ob-
serve that the difference between the entropy and
its equilibrium maximum value varied approxi-
mately exponentially with time. It is reasonable to
define the relaxation time as the decay time param-
eter of this exponential function. In the region of
moderate excitation, where the nuclear temperature
is still less than the Fermi energy, Pauli blocking
leads to shape-dependent relaxation times which
decrease with the size of the perturbation or,
equivalently, decrease with increasing equilibrium
temperature. In this connection it should be noted
that the linearized Uehling-Uhlenbeck equation for
the deviation of the distribution from its equilibri-
um value yields an infinite set of relaxation times

We see that for a collision energy E/A of 1.63
MeV, the relaxation time is 176.7 fm/c while for
E/A of 6.5 MeV, the relaxation time is reduced to
46.73 fm/c (Table I). These estimates can be
represented approximately by

300
relaxation (E/A M V)

(5.2)

In a heavy-ion reaction time involved in the
dynamics depends on the sizes of the nuclei and
also on the impact parameters. The greater the
sizes, the larger is the reaction time. The smaller
the impact parameter, the greater is also the reac-
tion time. There are therefore peripheral processes
which do not lead to thermal equilibrium and also
central processes involving heavy nuclei in which
thermal equilibrium may be established. The result
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of Eq. (5.2) may be useful in separating the equili-
brium process from the nonequilibrium process.
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APPENDIX

The Uehling-Uhlenbeck equation (2.14) is

f(x),r) dS= f dx2 f dQE[(x~, x2 x3 x4, r)] [x,Q(x, x')] ~x ~,
a7

(Al)

where

F(xfyx ) 23xyx4, r)= I [1 f ( ~x, )r][1——f (x2,r)] f (x3,r)f (x4, r)

—f(xt,r)f (x2, r)[1—f(x3,r)][1 f(x4, r)] —I,
x = —,(xi —x2),

(A2)

(A3)

and

X = 2(X3—X4) . (A4)

We wish to write the explicit procedures whereby the collision integral can be evaluated numerically. We
discuss the two cases of spherical and cylindrical symmetry separately:

1. Spherical symmetry We cho. ose the vector x& to be on the polar axis so that its coordinate is (x&,0,0)
and the vector x2 is given by (x2, 82, $2). We label the angular coordinate of x ' relative to X=(x&+x2) by
8' and P'. Carrying out the integration over P2 and P', we get

a x ,r) 1 1

=2m f x2 dx2 f d(cos82) f d(cos8')E(x), x2, x3yx4, r) [x,Q(x, x )]
~

x~ —x2}

(A5)

where because of spherical symmetry only the magnitudes of x &, x2, x3, and x4, suffice in evaluating the
function F. We construct

X=(x) +x2 +2x)xzcos82)'

x =
2 (x] +x3 —2x~x2cos82)2 2 1/2

(A6)

(A7)

and obtain

x3 ———,(X +4x +4Xx cos8')'i,

x4 ———,(X +4x —4Xx cos8')'i (A9)

With these equations, all the variables in the integrand of Eq. (A2) can be expressed in terms of the indepen-
dent coord'inates xz, 82, and 8 when ds/dQ is isotropic. In this three-dimensional space the Monte Carlo
method of sampling is carried out.

2. Cylindrical symmetry We choose the c.ylindrical coordinate system such that xt ——(p&, 0~z&) and
x2 ——(p2, $2,z2). We designate the angular coordinates between x ' and X by 8' and P', using X as the polar
axis. The Uehling-Uhlenbeck equation is
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Bf(pt,zt, r) oo n' 1 dg=2 f p2dp2 f dz2 f dg2 f d(cos8') f dP'F [x,Q(x, x')]
i
x i, (A10)

where F is given by (A2) and is only a function of the p and z components of x&, x2, x3, and x4. We have
made use of the symmetry with respect to (()2. We construct the components of the vector X=(x,+x2):

Xt, ——(P, +P2 +2P&P2cosp2)'

X,=(z)+z2),

and also

x=-,
l
xt —x21=-, [pi'+p2' —2psozcosA+(zt —z»'1'".

Then, the components of x3 and x4 are

p3
——[ [Xo/2+ x (cos8' sin8»+ sin8' «sP' cos8» )] +(x sin8' sing') ]

'

z3 ——X,/2+x (cos8' cos8» —sin8' cosP' sin8» ),
p4 ——[ [X&/2 —x (cos8'sin8»+sin8'cosP'cos8»)] +(x sin8'sing') ]'~

and

z4 ——Xz /2 —x (cos8' cos8» —sin8' cosP' sin8» ),
where

r

Xp
L9g ——tan

Z

(Al 1)

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

(A 18)

By means of these relations, the integrand in Eq. (Al 1) can be expressed completely in terms of the indepen-

dent coordinates pz, z2, P2, 8', and P' when dsldII is isotropic.
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