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This paper considers the conceptual problem of describing the physics of a many body

system in terms of a two body S matrix. Projection of the many body problem onto a two

body channel results in a potential which is nonlocal. We demonstrate that for a nonlocal

potential the analytic structure of the Jost function differs from that associated with a local

potential. Moreover, the Jost function, and thus the S matrix, is shown to be an incom-

plete description of the information in the two body channel. This is accomplished by con-

sidering Fredholm determinants associated with scattering integral equations.

NUCLEAR REACTIONS Scattering by a nonlocal potential, Jost

functions, S matrices, and Fredholm determinants and their analytic

character in the complex plane.

I. INTRODUCTION

An operator S relating the initial and final stages

of the nuclear scattering process was introduced in

1937 by Wheeler. ' In 1943 Heisenberg set forth a
program for deriving all observable quantities in nu-

clear reactions (the cross sections for all possible
collision processes, the energy levels of bound states,
the lifetimes and decay energies of unstable states,
etc.) in terms of the properties of S. Since that time

considerable progress has been made in developing
nuclear physics along these lines. Summaries of this

progress have been given, for example, by
Nussenzveig and by Newton. Extensive informa-

tion is now available about the relationship between

nuclear processes and the analytic properties of the

S matrix.
In much of the above work, emphasis has been

placed on the connection between the analytic prop-
erties of the S matrix in the complex k plane and

nuclear phenomena which can be described by a

Schrodinger equation with a central local potential
'tf. For such a potential it is the radial equation for
the partial wave l which provides the link between

the S matrix for that partial wave and the potential.
Considerations in the present paper are restricted to
l = 0, for which the radial equation with the poten-

tial '4 is

d + k u(r) = 'u(r)u(r)
dI"

Throughout this paper we also restrict the analysis

to potentials which are real.
A consequence of Eq. (1) is that S(k) can be

written in terms of the Jost functions g +—(k). That

1s,

S(k) = Z -(k)/g+(k),

where the Jost functions 2+-(k) are the Jost solu-

tions f+-(k, r) of Eq. (1) evaluated at r = 0,

7 +-(k) = f+-(k,r)
~
„o .

Thus, for a central local potential a discussion of the

analytic properties of S can be phrased in terms of a

discussion of the analytic properties of 2 -+(k).

Furthermore, Jost and Pais have shown that 2 +—(k)
are identical to the Fredholm determinants D +—(k)
associated with the kernel of the integral equation

for the physical solution of Eq. (1) and its conjugate.

Therefore, any discussion of a physical system

described by Eq. (1) in terms of the analytic proper-

ties of S(k) can equally well be carried out in terms

of the analytic properties of the Fredholm deter-

minants D+—(k).
In the case of nucleon-nucleus scattering, Fesh-
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bach has derived a formalism in which the many

body Schrodinger equation is reduced to an effective
two body equation. When formulating nuclear
reaction theory in this manner, the effective interac-
tion in the two body Schrodinger equation is nonlo-
cal. In Feshbach's formalism, nonlocality of the po-
tential results not only from the many body charac-
ter of the complete interaction but also follows from
the identity of the incident nucleon with nucleons in

the target.
It thus becomes necessary in the context of nu-

clear physics to investigate the properties of the S
matrix for a radial equation similar to Eq. (1), but
for which the potential is nonlocal. In the descrip-
tion of nuclear phenomena, significant differences

may occur when a nonlocal potential comes into

play as compared with the situation with a local po-
tential. As mentioned above, for a local potential
there is a simple relationship between the S matrix,
Jost functions, and Fredholm determinants. For ex-

ample, in the case of a local potential only the

Fredholm determinants D +—(k) are of interest; the

Fredholm determinants associated with kernels of
integral equations for other solutions of Eq. (1}ei-

ther are directly related to D+-(k) or are unity.

For a nonlocal potential, however, a system of
Fredholm determinants must be considered. ' Also,
when an interaction is nonlocal, the Jost functions

Z -+(k} are no longer equivalent to the Fredholm

determinants D+-(k) generated by the nonlocal in-

teraction. ' In the case of a symmetric nonlocal po-
tential the Jost functions are the ratio of D+-(k) to

D(k), ' the Fredholm determinant associated with

the kernel of the integral equation for the regular

solution. Furthermore, the Jost functions for a non-

local potential do not contain as complete a set of
information about the nuclear system as do the
determinants D +—(k) and D (k), since zeros and

poles of D+-(k) can be canceled by zeros and poles

of D (k) in taking the required ratio to find 2 +—(k)."
For this reason, we initiate here a study of the an-

alytic properties of the Fredholm determinants
D+-(k) and D(k) in the complex k plane. Before
undertaking this study, integral equations incor-

porating various boundary conditions for scattering

by a nonlocal potential are discussed. These equa-

tions are presented in Sec. II, along with their asso-

ciated Fredholm determinants. The Jost functions

and Jost solutions are discussed in particular.
An important aspect of these considerations is

that many authors, as part of their derivation of re-

lations for Jost functions, have assumed that Jost
solutions exist. It is now known that this assump-

tion may not be true. Recently, an anomaly'
associated with-nonlocal potentials (as compared
with local potentials) has been discussed by Mulli-

gan et al. ' If for a nonsingular local potential the
initial conditions imposed on the radial part of the
wave function u (r) were u (0) = u '(0) = 0, the

solution would be zero everywhere. Mulligan et al.
showed that for nonlocal potentials a nontrivial

solution with u (0) = u'(0) = 0 can exist. A (non-

normalizable) state whose wave function satisfies the

condition u (0) = u '(0) = 0 has been named a
"spurious state. " It is found that Jost solutions do
not exist at the energy at which a spurious state oc-
curs. A spurious state also results in an ambiguity
in the definition of the phase shift at the energy of
the spurious state.

Other conditions occur under which Jost solu-

tions may not exist. In discussing states excluded

by the Pauli principle, Swan' noted that these sites
appear as solutions of the scattering integral equa-

tions at all scattering energies. Such redundant

states are simply continuum bound states ' which

appear in the spectrum of the scattering solution at
'

every positive energy,
' and can be expected in any

scattering calculations which take into account an-

tisymmetrization between the incident particle and a
target described by antisymmetrized single particle
states. Such states are a consequence of the fact that

any row of a Slater determinant can be added to
any other row of the determinant without changing
the value of the determinant. Thus, the scattering
solution is nonunique because any arbitrary amount
of filled states can be added to the scattering state.
It has been shown that under these conditions Jost
solutions do not exist at any energy, although Jost
functions can be defined at all energies. "

II. INTEGRAL EQUATIONS, FREDHOLM
DETERMINANTS, AND JOST FUNCTIONS

A nonlocal potential is an integral operator which
enters into the l = 0 radial equation in the following

way

d2 00

+ k u(r) = f V(v, r')u(r')dr'

(43

This integrodifferential equation can be converted
into integral equations by the use of Green's func-
tions which satisfy appropriate boundary conditions.
Several integral equations, their solutions, and relat-
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ed quantities are defined in analogy with the local
potential case.

The regular solution q(k, r) is defined by the

boundary condtions

p(k, O) = 0; y'(k, O) = 1 (5)

p(k, r) = k 'sinkr
ao

+ 6' k,r,r' V r',s k,s ds dr'

The integral equation for the regular solutions(k, r)
is

In the case of a local potential, no ambiguity
results from defining the Jost functions Z+-(k) in the
standard manner indicated in Eq. (3). It is known

that for a local potential Z +-(k) +0 for real k Q 0."

It can also be demonstrated that for a local potential
2+-(k) is analytic in k in the upper half plane. '"'
Many of the important properties associated with a
local potential can be shown to follow from these
facts.

As discussed in the previous section, for a local
potential the Jost functions g +—(k) and the
Fredholm determinants D+-(k) are equal,

2 +-(k) = D+-(k) (local potential) (10)
where G(k, r,r') is the Green's function and is

equal to k ' sink(r —r') Th. e Fredholm deter-
rninant associated with the kernel of this integra1

equation is denoted by D (k).
The physical solution P+(k, r) is defined by the

mixed boundary conditions that g (+k,r) have the

asymptotic form

g+(k, r) ~ —[e ' ' —S+(k)e' "]
2

as r ~ co, and that g+(k, r) be regular at r = 0.
S+(k) is the s-wave scattering matrix element. The
physical solution P+(k, r) and its conjugate P (k,r)
satisfy the integral equations

itj+-(k, r) = sinkr

+ I J G+-(k, r,r') V(r', s)p+ (k,s)ds dr', -

Therefore, for a local potential all properties associ-
ated with 2+-(k) are equally true of D+—(k), and vice
versa. Also, with the exception of Eq. (8), the in-

tegral equations for a local potential are Volterra in-

tegral equations. This is the reason the Fredholm
determinants D (k) and A(k) must be unity in the
case of local potential. It is also consistent with the
point of view that for a local potential the scattering
information is contained in the Fredholm deter-
minants D+—(k).

For a symmetric nonlocal potential, it has been
shown' ' that D+-(k) and 2 +—(k) are related by
the expression

D +-(k)
Z+-(k) = (symmetric nonlocal potential)

D(k)

where G —(k,r,r') = —k e ' sinkr & with+, ~
+ikr

r = max (r,r') and r = min(r, r'). The asymp-
totic form of g (k,r) for large r is given by Eq. (7)
with S+ replaced by S (k) = [S+(k)]*,where *
represents the complex conjugate. The Fredholm
determinants associated with the kernels of Eq. (8)
are denoted by D +—(k).

The integral equations for the Jost solutions are

f-+(k,r) = e-+' "

—I I G(k,r, r')V(r', s)f+(k,s)ds dr'-
(9)

The Fredholrn determinant associated with the ker-
nel of Eq. (9) is denoted by b, (k).

The Fredholm determinants have the following
properties: ReD +—(k), D(k), and b, (k) are even
functions of k while ImD +—(k) is an odd function of
k. Both D (k) and b (k) are real for k real, and
D(k) = b, (k) for a symmetric nonlocal potential. '

Thus the local potential result (10) is a special case
of Eq. (11). For a nonlocal potential, the integral
equations with which D(k) and A(k) are associated
are Fredholm integral equations rather than Vo1ter-

ra integral equations. The Fredholm determinants
D (k) and A(k) are not unity in such a case and

may have zeros for real or complex values of k,
whereas in the case of a local potential the
Fredholm determinants D +—(k) do not have zeros
for real values of k. Since for real k, g, +-(k) Q 0 for
k + 0, it is clear from Eq. (11) that for k real the
zeros of the Fredholm determinants D—+ (k) and
D(k) are not independent. Whenever there is a
zero of D+-(k) for real k, D (k) is also zero at that
same real value of k.

A zero of D+-(k) for real k +0 is associated' ' '

with a continuum bound state, often referred to by
the abbreviation CBS. From the above discussion it
is clear that a continuum bound state is character-
ized by simultaneous zeros of both D+—(k) and
D(k). The existence of a continuum bound state



24 NONLOCAL POTENTIALS AND INADEQUACIES OF THE JOST. . . 877

results from the fact that solutions of the homogene-
ous integral equations associated with Eq. (8), name-

ly

ft,
+(k,-r) = f f G (k,r-,r') V(r', s)gt,-"(k,s)ds dr',

(12)

exist and are normalizable solutions for real k Q 0
when D +-(k) = 0. Trivial solutions gh+-(k, r) = 0 are
the only solutions allowed when D+-(k) Q 0.

A zero of D (k) for real k + 0 is associated with
a spurious state. ' Since D (k) is also zero for a
continuum bound state, we maintain here the
nomenclature that a CBS occurs when at a real
value of k both D+-(k) and D (k) are zero, and a
spurious state occurs when at a real value of
k D (k) is a zero and D +-(k) is nonzero. It is
demonstrated in Ref. 8 that at a spurious state the
regular solutions(k, r) does not exist, although it is

possible to obtain a solution of Eq. (4) regular at the
origin. Also, as discussed earlier, the Jost solutions

f+-(k,r) do not exist at a spurious state. On the
other hand, g+(k, r) and g (k,r) do exist at a
spurious state. At a continuum bound state P+(k,r)-
and P(k, r) always exist while f+(k,r) may or-may
not exist.

Problems with the existence of Jost solutions clear-
ly are of importance in discussing the analytic char-'

acter of the Jost functions 2+—(k) for a nonlocal po-
tential. The derivation of Eq. (11), which was based
on the existence of f+-(k,r), will break down when

f+—(k,r) do not exist. Correspondingly, the defini-
tion of the Jost functions as given in Eq. (3) will no
longer hold if f+—(k,r) do not exist. This is especial-

ly a problem in the case of redundant states, since it
would mean a failure of the existence of the Jost
functions at any energy. However, the results in
Ref. 11 demonstrate that the Jost functions g +-(k)

can be directly related to the kernels of integral
equations by means of Fredholm determinants
without referring to the solutions of the integral
equations involved. It is in this way that in defining
the Jost functions the question of the existence of
Jost solutions at a CBS or in the presence of a
redundant state can be avoided. Thus, in what fol-

lows we take Eq. (11) as the definition of 2 +-(k).

Tf(y) = f t(y~)f(x)dx (13)

In order that T be a compact operator the following
conditions must be satisfied:

jugation. Thus only the character of 2+(k) will be
explored here. In comparing g+(k) for a nonlocal
potential with 2+(k) for a local potential, we will

see that for a nonlocal potential zeros of D (k) [and
thus poles of the Jost function 2+(k)] are found on
or above the real axis in some cases. For this
reason, the techniques from complex analysis used
to obtain the character of the Fredholm determinant
D+(k) and the lost function Z +(k) for a local po-
tential are not suAicient for a general discussion of
D (k), D+(k), and Z+(k) in the case of a nonlocal
potential. Consequently, we turn to functional
analysis in order to discuss the existence of solutions
of the scattering integral equations and the analytic
properties of the Fredholm determinants associated
with them.

The kernels of integral Eqs. (6), (8), and (9) are
not square integrable. Thus, the usual derivations
of the Fredholm alternative do not apply. Howev-

er, Riesz and Schauder have shown that the
Fredholm alternative easily can be extended to in-

tegral equations for which the operators are
compact. Their proof is a "determinant-free" proof,
and the conclusions of the Riesz-Schauder theory
are the "determinant-free" Fredholm theorems.

To make use of these results, the following con-
cepts from functional analysis are needed. A
transformation is defined as completely continuous
if it transforms every bounded set in a Banach space
into a compact set in a Banach space. For this

reason, completely continuous operators are also
known as compact operators. An operator T is said
to be bounded with respect to the set of functions

pb„(x) if, for all P„, / f TP„/ /
& N/ /P„/ /, where

[ g /

denotes the norm off chosen subject to the condi-
tions of a norm for a Banach space.

Following the approach of Iwasaki and Mulli-

gan, we apply the theorem which states that a
bounded operator takes a compact sequence over
into a compact sequence. Let f(x) be a function
from the set Ck(0, co ) and let

III. FUNCTIONAL ANALYSIS AND ANALYTIC
PROPERTIES OF FREDHOLM DETERMINANTS

lim t y,x dx =0
y

(14)

For a real potential the analytic character of
(k) is related to that of 2+(k) by complex con- and

sup f ~t(y,x) ~dx & co
y&O 0
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lim sup f ~
t(yips) —t(y2&) ~dx = 0

5-+0 )y] —y2) ( 5

y)y2 & 0

(16)

The integral Eqs. (6), (8), and (9) all can be written
in the form

(8), and (9) can be related directly to the complete
continuity of the kernels of those integral equations.

Using this approach, we examine the question of
complete continuity for the kernel of the physical
integral equation. For this Green's function we get

r,r dr

X(r) = go(r) + f E(r,s)X(s)ds

where

K(rp) = g(r, r')V(r', s)dr'
0

(18)

r k—'e' "sinkr'p '(r') dr'
0

+ f ~

—k 'sinkre'"'p '(r') ~dr'

From the inequality

(26)

In order to establish complete continuity of the ker-
nel E, it is convenient to rewrite Eq. (18) as

E(r,s) = g(r, r')p '(r')p(r')V(r', s)dr'
0

(19)

We then pick p '(r) to be a continuous function
which will bound the kernel g on the infinite inter-
val. Defining a kernel g as

(
sinz

(
& (z (exp(Imz)

we find that

f ~
9(r,r') ~dr'

—(Imk)r i ( Imk)r'
~

—((
0

00

+ r e(Imk)r f e
—(Imk)r'

~ p
—1(r )

~

dr (27)

8(r,r') =g(r, r')p '(r'), (20) Since for Imk ) 0,

we require that there exist an A such that

f ~
g (r,r') ~dr' & A (21) and

e
—(Imk)r (Imk)r'

Ly (28)

The conditions for compactness of E then will be
satisfied if the operator U, defined by

( Imk)r —( Imk)r '.

Ly

we get the inequality

(29)

U(r, s) = p(r)V(r, s)

is compact. Thus only potentials for which

lim ~p(r)
~ f ~

V(r,s) ~ds = 0
r~oo 0

(22)

f i
Q(rr') idr' & f r'(p '(r') idr'

(30)

(23)

will be considered.
For a completely continuous operator T satisfying

the function equation

(24)

(g given, P to be determined), Riesz and Schauder
showed that principles completely analogous to
those for Fredholm's integral equation hold. That
is, the resolvent of Eq. (24) exists and can be writ-
ten as

The integral r' p ' r' dr' is bounded if as
0

r ~ oo the function
~ p '(r)

~

goes to zero faster
than 1/r2. Eguation (23.) thus implies that as
r ~ oo if

~

V(r,s)
~

ds goes to zero faster than
0

1/r, the operator E will be completely continuous
for Imk ) 0. Under these circumstances, the
Fredholm determinant D+(k) will be analytic for
Imk ) 0.

Considering now the integral equation for the regular
solution we have

f ~

8 (r,r')
~

dr'

(25) r
= f ~k 'sink(r —r')

~ ~p '(r') ~dr''

where b (A, ) is analytic in the A, plane. Thus the ex-
istence and analytic properties of the Fredholm
determinants associated with the integral Eqs. (6), This yields the inequality

(31)
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r,r dr

r

~

e
—(Imk)(r —r') (Imk)(r —r')—

2/k
/

Xi@ '(r') idr' (32)

of

f, i g(r, r') idr'

(Imk)r ( Imk)r' —1(
1

—
2/k

/

r

2[k
f

(33)

For Imk = 0, the right-hand side of Eq. (33) be-

comes zero. However, for Imk & 0 or Imk & 0
the right-hand side of Eq. (33) is unbounded as
r +()0, indepe—ndent of the choice of p(r).

This means that the technique used to discuss

complete continuity for the kernel of the integral

equation for the regular solution, that of breaking the
kernel down into the product of a bounded operator
and a completely continuous operator, can work in

the case of the regular solution only on the real k
axis. This implies that for Imk Q 0 the operator

may not be completely continuous and hence the
Fredholm determinant may not be analytic. As we
shall see, D (k) normally will have poles in both the

upper and lower halves of the k plane; it would,
therefore, be expected that any proof to the contrary
would fail.

On the real k axis, however,
00 r

r r dr ( r p r dr
r

—f r'~p-'(r') ~dr' .
(34)

The right-hand side is bounded if as r —+ Oo the
function

~ p '(r)
~

goes to zero faster than I/r .
Therefore, gnder the condition that as r ~ oo the

integral
~
V(r,s)

~

ds goes to zero faster than
0

1/r, the kernel of the integral equation for the reg-
ular solution will be completely continuous for real
k. Using the same reasoning as that employed in

the discussion of D+(k), we conclude that the
Fredholm determinant D (k) will be analytic on the
real axis.

Complete continuity of the kernels of the integral
Eqs. (6) and (8) is crucial to establishing the ex-
istence of the Fredholm determinants D+(k) and
D (k) for a nonlocal potential. Since these kernels

are completely continuous for k real, it necessarily
follows that the Fredholm determinants D+(k) and
D(k) exist for k real. Fredholm determinants can
then be defined for complex k by extending these
definitions, established on the real axis, to the com-
plex plane. In this context, the above discussions of
the character of D+(k) and D (k) in the upper half
plane show that D+(k) when so extended will be
analytic in that portion of the k plane, while D (k)
may not.

Complete analysis of the character of a physical
system described by a symmetric nonlocal potential
requires a discussion of the poles and zeros of
D+(k) and D (k) in both the upper and lower half
planes. We restrict our discussion here to the upper
half plane only. The character of D+(k) and D (k)
in the lower half plane will be discussed in a
separate paper.

'

IV. ZEROS OF D+{It:)AND D {k)
IN THE UPPER HALF PLANE

In the case of a local potential, there is a well-

known relation between the zeros of D+(k) and

negative energy bound states. As discussed earlier,
a nonlocal potential can exhibit not only negative

energy bound states but also continuum bound
states and spurious states. Such states are related to
zeros of D+(k) and D (k).

The discussion of zeros of D+(k) for a nonlocal
potential follows the same lines as that for a local
potential. Consider the following equation:

00

+ k' I)'j(r) = f V(r,r')p(r')dr',
dr

(35)

where V is a real symmetric nonlocal potential.
The notation

00

H = — + f dr'V(r, r')
dr

brings Eq. (35) into the form

(36)

Hg= k t/i, (37)

identifying k as the eigenvalue of the Hamiltonian
H. Equation (37) can also be written as an integral
equation for the solutions f If the physical .Green's
function G+ defined in connection with Eq. (8) is
used in constructing this integral equation, then for
Imk ) 0 only the homogeneous forin of this in-
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k = iy (y real), P(k, r) —e r as r ~ ao

and

D+(k) =0 . (3&)

Since bounded solutions of Eq. (37) follow only
from Eq. (38), a negative energy bound state corre-
sponds to a zero of D+(k) at k = i y, as is the case
with a local potential. Also, for a local potential
the possibility of a zero of D+(k) for k real, not ex-

cluded by the above discussion, can be excluded on
other grounds. Since for a local potential
g+(k) Q 0 for real k +0, it follows that for a lo-

cal potential D+(k) must not be zero for real
k +0. On the other hand, the modified definition

of 2+(k) in the case of a nonlocal potential, given

by Eq. (11), allows for a zero of D+(k) on the real

k axis as long as such a zero is accompanied by a
corresponding zero of D (k), resulting in a bound

state in the continuum. It should be noted that
since the eigenvalue of H is k, zeros of D+(k) and
of D(k) on the real k axis will occur in pairs, sym-
metric about the imaginary axis.

That such a zero of D (k) is possible has been es-

tablished by many examples. In general, because
the boundary conditions associated with the equa-
tion for the regular solution are not the same as
those associated with the physical solution, it would
not be expected that D (k) would be zero for the
same values of k as is D+(k). Indeed, for a local
potential D (k) is unity at all zeros of D+(k). Thus,
as mentioned earlier, a zero of D (k) at the same

tegral equation will have bounded solutions. " It is
well known from the theory of integral equations
that the zeros of the Fredholm determinant associat-
ed with any homogeneous integral equation are the
eigenvalues of the integral operator of that equation
and are the only values of the Fredholm deter-
minant for which the equation has solutions. Thus,
in the upper half plane the zeros of D+(k), the
Fredholrn determinant associated with the physical
solution, correspond to the eigenvalues of the Ham-
iltonian H. Physical considerations dictate that the
Harniltonian H be Hermitian with respect to bound-
ed solutions of Eq. (37). Therefore in the upper half
plane the eigenvalues of. II, and thus the zeros of
D+(k), can occur only for values of k which are
real.

It follows that the zeros of D+(k) in the upper
half of.the complex k plane must lie either on the
real axis or on the positive imaginary axis. A nega-
tive energy bound state is defined as occurring when

the following conditions are satisfied:

value of k as that for which D+(k) is zero is a spe-
cial circumstance; usually zeros of D (k) can be ex-

pected to occur at values of k for which D+(k) is

not zero.
To establish the character of D (k) we note that

the integral equation for the regular solution is a
function of k . Changing k to —k in Eq. (6) yields

y( —k, r) = k 'sinkr
oo

+ f f G(k, r,r') V(r', s)p( —k,s)ds dy,

(39)

where we have used the fact that

G(k, r,r') = G( k,r,r')— (40)

Equation (39) is the same as that with which we

started. Therefore D (k) = D ( —k), which implies
D is a function of k . Thus if D(k) is zero for
k = ko, where ko is real and positive, D (k) is zero
also for k = —k0.

For k complex, it follows that if D(k) is zero for
k = ir + i@, then D (k) is zero for k = —a. —i@
Another symmetry property also exists with
respect to zeros of D(k) in the complex plane. Re-
placing k in Eq. (6} by k* yields

p(k*,r) = (k*) ' sink*r

+ f f G(k*,r, r')V(y', s)p(k*,s)ds dr'
0 0

(41)

[D(k*)]*= D(k) (43)

Therefore, if D (k} is zero for k = i~+ i y, then

D(k) is also zero for k = ir —i y This, com.bined
with the above result for zeros of D (k) for complex
k, establishes that zeros of D (k) are symmetric with

respect to both the real and imaginary k axes.
Since D(k) is a ratio of two polynomials of the

same order, the number of zeros and number of
poles in the entire complex plane are equal. We al-
ready have demonstrated that D (k) will not have

poles on the real axis. Its poles will be symmetri-
cally distributed in the upper and lower half planes.
If a pair of zeros of D happen to occur on the real
axis, then the number of poles in either of the half

Taking the complex conjugate of Eq. (41) gives

[y(k*,r )]* = k 'sinkr

+ f f G(k, r,r') V(r', s)[y(k*,s)]"ds dr'

(42)

It follows that



NONLOCAL POTENTIALS AND INADEQUACIES OF THE JOST. . .

planes, excluding the real axis, exceeds the number
of zeros by l. If 2m zeros of D(k) lie on the real
axis symmetrically located about the imaginary axis,
then in either half plane the number of peles
exceeds the number of zeros by m, excluding the
real axis.

V. EXAMPLES

The behavior of the zeros and poles of D+(k)
and D (k) in the upper half plane in the case of a
nonlocal potential will now be demonstrated using
two examples of potentials designed to describe the
nucleon-nucleon interaction. Both examples will
make use of nonlocal potentials of the form

A 2k)2 ——+ —a2'

' 1/2

(53)

k)2 ———icz (54)

Thus D (k) can be zero for a wide range of values of
A, and a. Although the values of A, and o.'used by
Yamaguchi do not generate a spurious state at any

energy, if A, & 2o. a spurious state will occur.
As pointed out earlier, both D+(k) and D (k)

must be dimensionless and must reduce to unity as
k becomes real and large. Thus both D+(k) and
D (k) must be ratios of polynomials of equal order.
The zeros of M+(k) are

V(r,r') = Ag(r)g(r')

A. Potential with Yamaguchi form factor

(44) The zeros of M (k) are

k) 2 ——+-i(z (55)

In 1954 Yamaguchi introduced a nonlocal po-
tential of the form (44), with

g(r) = e (45)

D+(k) = N+(k)/M+(k)
where

(46)

N+(k) = 2ak +i4a k —(A, + 2a } (47)

and

to describe nucleon-nucleon scattering. The expres-
sions for D+(k) and D (k) for this potential are
given in Ref. 8. They can be written in the form

As predicted, the poles of D+(k) are confined to
the lower half plane, while those of D (k} are equal-

ly divided between the upper and lower half planes.
This potential will not exhibit a bound state unless A,

is negative, and unless
~

A,
~

) 2a . The zeros of
D+(k) are otherwise restricted to the lower half of
the k plane. The zeros of D (k), on the other hand,

may be equidistant from the origin on either the
negative and positive real axes or on the negative

and positive imaginary axes.
From this example we see that a zero of D (k) can

occur on the real axis or in the upper half plane
and that a pole of D (k) can occur in the upper half
plane.

M+(k) = 2a(k + i a)

D (k) = N (k)/M (k)

(4&)

(49)

B. Beregi potential

Beregi has suggested a nucleon-nucleon one-
term separable nonlocal potential of the form given

by Eq. (44} with

where

N(k) = 2ak —(A, —2a ) (50)

g(r) = e ' —ae

This potential yields a continuum bound state at
259.3 MeV and a. bound state at —2.225 MeV.
The parameters for the Beregi potential are

(56)

M(k) = 2a(k —ia)(k + ia) (5l)

From these expressions it is clear that the roots of
N+(k) are

k = —302.73 fm

o.)
——2.67 fm

1/2

k)2 = —&&+
t

(52)

o.2
——5.34 fm

a = 3.0854

No values of A, ,a will make D+(k) zero for real
values of k; therefore no continuum bound state can
be associated with the Yamaguchi form factor. The
roots of N(k) are

D+(k) = N+(k)/M+(k), (57)

where

The Fredholm determinants for this potential are
given in Ref. 9. They can be written as
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E+(k}= k [2a]az(a] + aq)) + ik (ai + az)[4a] a& + 4a]az ]

+ k [(a] + az)( —2a] az —2a]aq —Aaq —«a] —8a] aq ) + 4«a]aq]

+ k [( 1 + 2}( «1 2 2«ai —4a] z
—4ai az —2Aaz ) + 8«a] ax+ 8«a]az )

+ [(a] + ap)(2a] ap + Rap + «a]') —4«a] ap ] (58}

M+(k) = 2a]a&(a] + a&)(k + ia])'(k + iap) (59)

D(k) = N(k)/M(k) (60)

where

&(k}= k [2a]az(a] + az}]+ k [(ai + az}(2a]az + 2a]'az —«z —«ai)+ 4a]ai«]

+ (a] + aq)[2a] az —«.z'+ 2a]az«(a] + aq) —«a]'] —4a] a& « (61)

and

M(k) = 2a]aq(a]+a&)(a] + k )(az + k )

(62)

The zeros of X+(k) and M+(k) are tabulated in

Table I, while the zeros of N(k) and M (k) are ta-
bulated in Table II. Again we find that D+(k) has
no poles in the upper half plane, and has zeros in
the upper half plane only on the positive imaginary
axis (corresponding to the bound state at —2.225
MeV) or on the positive and negative real axes (cor-
responding to the continuum bound state at 259.3
MeV). The zeros of D (k) in the upper half plane
are on the positive and negative real axes (corre-
sponding to the continuum bound state) and on the
positive and negative imaginary axes. The poles of
D+(k) [the zeros of M+(k)] are confined to the
lower half plane, while the poles of D (k) [the zeros
of M (k)] are equally distributed between the posi-
tive and negative imaginary axes.

VI. CONCLUSIONS

Based on general considerations from functional

analysis, we have demonstrated that for a nonlocal

potential the behavior of the zeros of D+(k) is dif-

ferent than that for a local potential, since zeros can

appear in pairs, one on the positive real axis and

one on the negative real axis. With nonlocal poten-

tials, as with local potentials, poles of.D+(k) are

confined to the bottom half of the complex plane.

For a local potential the Fredholm determinant

D (k) is unity. For a nonlocal potential, D (k) will

have zeros and poles symmetrically distributed with

respect to the origin, thus occurring in both the

upper and lower halves of the complex plane.

Part of the motivation for studying the Fredholm

determinants D+(k) and D(k) for a nonlocal poten-

tial, rather than the Jost function 2+(k), is the as-

sertion that for a nonlocal potential g+(k) contains

a less complete set of information about the nuclear

system than does the combination of D+(k) and

D(k). This can be demonstrated in terms of the

calculations presented in the examples. Using Eq.
(11) for 2+(k) this Jost function for the Yamaguchi

potential is

D+(k)
D(k)

(k —ia)[2ak + i4a k —(A, + 2a )]
(k + ia)[2ak —{A, —2a )]

(63)

TABLE I. Zeros of N+(k) and M+.(k). TABLE II. Zeros of N(k) and M(k).

Zeros of N+(k) Zeros of M+(k) Zeros of N (k) Zeros of M (k)

(1.77,0)
( —1.77,0)

(0,0.23)
{0,—16.25)

(0,—2.67)
(0,—2.67)
(0,—5.34)
(0,—S.34)

(1.77,0)
(—1.77,0)
(0, 11.49)

{0,—11.49)

(0,2.67)
(0,—2.67)

(0,5.34)
(0,—5.34)
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In forming the ratio D+(k)/D (k) the pole of
D+(k) at k = i—a has canceled the pole of D (k)
at that same value of k.

The same situation occurs when using Eq. (11) to
calculate 2+(k) for the Beregi potential. From
Tables I and II it is clear that in forming P. +(k) the
poles of D+(k) and D(k) at (0, —2.67) and
(0,—5.34) as well as the zeros of D+(k) and D (k)
at (1.77,0) and ( —1.77,0) have canceled one another.

On this basis, we conclude that standard analyses
of nuclear scattering processes may be incomplete if

based directly on the analytic properties of Jost
functions or the S matrix. Due -to the intrinsic non-
locality of many nuclear interactions, it seems advis-

able to study further the properties of the Fredholm
determinants D+(k) and D(k) in the complex
plane. In particular, a fruitful line of investigation

might be to understand the analytic properties of
2+—(k) and S(k) under circumstances in which the
potential is known in principle to be nonlocal, but
for which a local potential description of the nuclear
process is known to be adequate empirically.
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