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Bound and unbound particles in Griffin model state densities
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Errors in earlier derivations of the density of unbound particle-hole states in the Griffin

model are corrected. New expressions for the densities of states accessible in the two-body

interactions are also derived. State densities calculated with the modified equations are

compared with results of exact counting. Particle emission spectra calculated within the

Griffin model are essentially unchanged, but the equal a priori probability assumption,

found to be violated in the earlier work, is verified to a high degree of accuracy when the

revised state densities are used.

NUCLEAR REACTIONS Rederived densities of unbound particle-
hole states and two-body interaction rates in Griffin preequilibrium sta-

tistical model. Verified equal a priori probability assumption.

)

I. INTRODUCTION

A pair of recent papers, ' hereafter referred to as
I and II, dealt with the phenomenology of continu-
um angular distributions. The second of these pa-
pers, II, described modifications to the GriAin (or
exciton) preequilibrium model which allowed the
calculated reaction spectra to be divided into their
multistep direct (MSD) and multistep compound
(MSC) components. In this context, MSD
processes are ones in which the system passes ex-
clusively through a series of unbound configura-
tions. All processes involving bound states are
MSC. The present report is designed as an adden-
dum to II, correcting several points of physics in the
derivation of the densities of unbound states and of
the transition state densities. State densities calculat-
ed with the new formulas are compared with the
results of exact counting for some simple cases.
The implications of the changes for the reaction cal-
culations are discussed, and the validity of the equal
a priori probabilities assumption is reexamined.

II. DERIVATION OF STATE DENSITIES

A. Density of unbound states

The first difficulty in the derivation of the un-

bound state densities is one of bookkeeping in the

quantity Az ~ ~. Its parent quantity A~ ~ appears in
the total state density and is defined in II as

ApI, ——pm

go
p +h +n

4go

Cp-i, I = p + (p~ —i)

2go

(p —i) +h +(n —i)
4go

The change of A~ i ~ to C~ & I, effectively reduces
the unbound state density for the usual situation of
p ~ h. While the effect of this change is relatively

small in the early stages of the reaction, it becomes
quite significant for the more complex states of the
system populated in later stages.

Here p = max(p, h) and go is the single-particle
state density in the equispacing model. The quanti-
ties p and h are the numbers of particle and hole de-

grees of freedom, respectively, and n = p + h; The
first term in (1) represents the minimum energy re-

quired for the configuration by the Pauli exclusion
principle and includes the requirements of "passive"
or spectator particles or holes at the Fermi surface.
It is based on the fact that the total number of parti-
cles (active + passive) must equal the total number
of holes. When one of the particles is removed
from consideration by being constrained to be un-

bound, this is no longer true. Therefore, (1) should
not be used to evaluate A» I, in the unbound state
density as was done in II. Instead we replace it
with the quantity
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It should here be pointed out that while (2) is to
replace Ap, -

h in the unbound state densities and in

the transition state densities considered below, the
quantity A~; » evaluated using (1) should continue
to be used in calculating the total particle-hole state
densities for the residual nuclei which are used in

particle emission rates. In this case the reduction in

p is due to particle emission and results in a shift of
the Fermi level so that once again the total numbers
of particles and holes (active + passive) are equal.
Note also that C~; » reduces to A~ » when i = 0 so
that Cph =—Aph.

In addition to this bookkeeping error, two errors
dealing with distinguishability were made in II in

the derivation of the density of unbound states for a
given particle-hole configuration.

First, in introducing the quantities e (p) and
e „(p) in II, it was implicitly assumed that the
particle with the highest excitation energy could be
identified. This is, in fact, not possible since the en-

ergies of individual excitons or degrees of freedom

are not included in the bookkeeping of the Griffin
model. The quantities e (p) and e~„(p) should be
rePlaced by Ap h Cp & h and S, resPectively. The
average energy S required for a particle to be un-

bound is defined in II.
While the maximum energy particle degree of

freedom cannot be designated, the unbound particle
degrees of freedom can. This distinguishability
between bound and unbound particles was neglected
in the state density derivations of II. When it is in-

cluded, the p I in the denominator of the unbound
state density is replaced by 1! (p —1)!, thus effec-
tively introducing a factor ofp. Additional correc-
tions are needed if multiply unbound states are pos-
sible. When all of this is taken into account, the
unbound state density has much the same
mathematical form as the finite well depth correc-
tion of Betak and Dobes.

The final expression for the density of unbound
states containing p particle and h hole degrees of
freedom and excitation energy E may now be writ-

ten in a somewhat simplified form as

g~(p g," '(p)(E —&~ i »
—S)"

(p —1)!Ii!(n—1)!

For h & 2 we have
i

p h p
~(p) = —g g ( —1)'+1+'

p i=1j=0 l

n —1

8(E —iS —jV)J (4)

while for h & 2 only the j = 0 terms are included.
In these equations, gz and g„are effective single-

particle state densities for the unbound particle and
the remaining excitons, respectively, and are defined
in II. The potential well depth V is measured from
the Fermi surface. Finally, 0 is the heaviside func-
tion which is zero for a negative argument and unity
for a positive one. Note that F(p) has a different
meaning than in II, although in both cases it con-
tains the finite well depth corrections.

B. Transition state densities

The rates for the various residual two-body in-
teractions depend on the average density of final
states accessible from a single initial state. The
final-state densities are designated by the subscripts
+, 0, and —denoting pair creation, exciton

scattering, and pair annihilation, respectively. The
superscripts u and b are used to denote the unbound
or bound character of the initial and final states.
Thus co'+ '(p, h,E) denotes the average final-state den-
sity for pair creation from unbound states specified

by p, and h, and E to bound states specified by

p + 1, h + 1, and E.
The same errors which occurred in II in the

derivation of the unbound state densities occurred
also in the derivation of the transition state densities,
except that the distinguishability of bound from un-

bound states was included in the probability of hav-

ing the necessary excitons to initiate the transition.
Replacing e~ and e ~„,considering the distingui-
shability of bound and unbound particles consistent-

ly, and using Cp 'h in Place of Ap; h lead to new
expressions for the transition state densities. As in
II, the quantities x i(p) = E —Az»,
x2(p) = E —Cp i» —S, and

x3(p) = (E —C 2» —2S) 8(E —C 2» —2S)
are used as an abbreviated notation in expressing the
transition state densities. The effective single-
particle state densities g, g„, and gp are evaluated as
in II.

The final-state density for pair creation from un-
bound to unbound states is now
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co~+-'(p, h,E}=
271 n —i( )

g, (p+ 1)gg (p+ 1) x2+ (p+ 1) F—~(p+ 1)+ f(p+ 1)
n + n

1 —mp +

(6)m(p} =

Here f(p) is the finite well depth correction for the total state density defined in II. The probability m (p) that

an unbound state will have two or more unbound particles here takes the form
r

. p h
( —1)'+& . . 0(E —i's Jv)(E——iS jv)"—

forh (2
p

o( —1)'+1+' . . 8(E iS ——j V)(E —iS —j V)"

E —S —V

E —S
8(E —2S}

while for h & 2 only the j = 0 terms are included. The function F+(p) is

F~(p) =1— 0(E —S —V) ——E —2S
2 E —S

+. — O(E —2S —V) for h & 2
1 E —2S —V

2 E —S
n —1

E —2S
2 E —S

8(E —2S) for h & 2

The remaining final-state densities for pair creation are

co'+"'(p, h,E) = g (p + 1)f(p+ 1) [xi(p + 1) —x2(p)l'+ —[xi'(p + 1) —x,'(p)]
2n(n+ 1) 2 2

+ xi(p + 1)x2(p) .

x2+'(p + 1)—2g~(p + 1)g„'(p + 1)F+(p + 1)
n —i( )

gp(p + 1)g„(p + 1)h
(bu)( h E) P

'(p)f(p) —p x~ (p)F(p)

x2+ (p + 1) —pxq+ (p + 1)

2n(n + 1)
1

4n(n + 1)

)( [ Gi '[n(n —l)Gi —2(n + l)(n —1)Gix2(p + 1) + n(n + 1)xq (p + 1)]

—pG2 '[n(n —1)G2 —2(n + 1)(n —1)Gqx3(p + 1) + n(n + 1)xi (p + 1)] ]

(9)

with G i
——(E —V) 8(E —V) and Gz ——(E —S —V) 8(E —S —V) as in II, and finally,
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co'+ '(p, h,E) =
2"(" + 1) x "r '(p)f(p) —px2 '(p)F(p)

r

ng (p + l)x r
+

(p + 1)f(p + 1) —p (n —1)gg (p + 1)x2+'(p + 1)F(p + 1)

2
—pg'(p +1)x2 '(p)F(p) [x r(p + 1) —x2(p)]'

2

+ —[x r'(p + 1) —x 2'(p) ] + x r (p + 1)x2(p) .
2

—co'+"'(p, h, E)

For exciton scattering the final-state densities are

(„) [1 —m (p)]go p + 2h —1
coo" (p,h,E) = n [xr(p) —xz(p)]f(p)

7l 2

+ (p —1)x2(p)[f(p) —2FO(p)]

with

1 E —2S
FG(p) = 1 ——

L

'n —1

8(E —2S)

(su)( h
g~ pgr p() ()

(p)f (p) px 2 (p)F (p)

X ((p + 2h —1)I 2x2(p) + n [x r(p) —x2(p)]x2 '(p) ]f (p) —4(n —l)x2(p)F(p)

—(p —1)(p + 2h —1)I 2x3(p) + n [x2(p) —x3(p)]x3 '(p) JF(p)

+ 4(p —1)(n —2)x 3 (p)F„(p))

with the correction function for doubly unbound states given by

2F(p) m(p) E —S
(p —1) E —2S

forp &2andE g 2S,

co'" '(p, h, E) = [1 —m (p)] gr, h (h —1)/2

as in II and

and is unity otherwise. The pair annihillation transition state densities are
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(") h E gp p —l}hp(p —1)
N p,A,E

4 x i '(p)f(p) p—x 2, '(p)F (p)

X I x 2 (p —1)[(n —2)(n —3)x 2 (p —1) —2(n —1)(n —3)x p(p —1)x )(p)

+ (n —1)(n —2)x i (p)]f(p)

—(p —2)x & (p —1)[(n —2)(n —3)x, (p —1).—2(n —1)(n —3)x 3(p —1)x2(p)

+ (n —!)(n —2)x2 (p)]F(p)

—4[x 2 '(p}F(p) —(p —2)x 3 '(p)F„(p)] I

III. COMPARISONS WITH EXACT COUNTING IV. REACTION MODEL CALCULATIONS

Because the density of unbound states is a much
larger fraction of the total in this work than in II,
the calculations of the transition state densities
sometimes involve finding small differences between

large numbers. It thus becomes vital that the
correction functions be handled appropriately. For
this reason state densities calculated using the re-
vised expressions have been compared with values

obtained from the direct counting of states in a few

simple cases.
The sample system chosen has goE = 21. All

calculations are done in the strict equispacing model
with the effective g values assumed equal to go. The
total number of states for this case, co (p,h,E )I go,
is found from exact counting to be 90 for (p,h) =
(2, 1) and 9 for (p,h) = (2,0). The formula from II
yields values of 90.25 and 9.25, respectively, in ex-
cellent agreement with the exact counting numbers.
On the other hand, the results of II seriously un-

derestimate the densities of unbound states. The
discrepancy amounts to nearly a factor of 2 for (2,0)
states with gP' ranging from 2—14 and for (2, 1)
states with gP = 8 and goV = 4 to 12. For an in-

finite well depth, the agreement for (2, 1) states im-

proves as S decreases and the unbound state density
approaches the total one. By contrast, the revised

expressions of this work in all cases agree with exact
counting to within 15%, and the general level of
agreement is 2% or better.

For the transition state density calculations, g P'
was fixed at 5, and it was assumed that go V & 21.
The results obtained from (5) to (16) agree quite
well with the numbers of states found from exact
counting. The worst discrepancy is about 17%, and
in general the agreement is to within 10% or less.

The revised equations given here have been incor-

porated into the computer code PRECO —D, and

calculations have been run to test the effect of the

changes on actual reaction calculations. As in II,
results are shown for protons incident on "Fe to
form a Co composite nucleus at 43.3 MeV of ex-

citation. All input quantities are unchanged from

II.
State densities. The total and unbound state den-
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FIG. 1. State densities for 5Co at 43.3 MeV of excita-

tion as a function of particle and hole number. Circles
and squares denote, respectively, the total and unbound
state densities. The dashed line gives the corresponding
uncorrected unbound state densities from II.
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FIG. 2. Average two-body interaction rates for "Co
at 43.3 MeV of excitation as a function of the particle
and hole numbers of the initial state in the interaction.
(Compare with Fig. 3 in II.)

sities are shown in Fig. 1 along with the unbound
state densities of II. It is clear that while the
number of unbound states has increased, the peak of
the distribution falls at about the same particle
number as in II, and qualitatively things are quite
similar.

Quantitatively we find that there are several com-

peting effects. The factor of p due to the distingui-

shability of the unbound particle increases the un-

bound state density. At low particle numbers this is
partially offset by the factor F(p) which contains
corrections to the statistical factors due to multiply
unbound states, and is less than unity. At higher
particle numbers F(p) approaches unity, but the re-
placement of 3& & ~ and C& & I, becomes an impor-
tant factor in reducing the unbound state density.
In the present case, it just compensates for the extra
factor ofp around p =. 11 to 12.

I
1

I I I

Transition rates. The values for the transition
rates obtained using (5)—(16) are shown in Fig. 2.
The results are qualitatively similar to those from II.
The biggest changes are an increase in coo

"' at low
particle number and a decrease in co' "' at high par-
ticle number.

Equal probabilities assumption. Figure 3 shows

the fraction P'„/P' of the reaction strength which

passes through unbound states at different particle-

hole numbers compared with the expected ratio,
co'"'/co, if the equal a priori probabilities assumption

for all states of a given class is valid. %hereas the

corresponding figure in II indicated a serious viola-

tion of the assumption, the present work shows it to
have a quite remarkable degree of validity. The
violation of the assumption was, in II, attributed to
the fact that unbound states preferentially populate
unbound states in pair creation while bound states

prefer other bound states. This is still true, but the

degree of enhancement is now much less for un-

bound initial states than for bound ones, just oppo-
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FIG. 3. Fraction of the strength in unbound states and
fraction which is MSD compared with the fraction of the
states which are unbound. Calculations are for

Fe + p ~ ' Co at 43.3 MeV of excitation. (Compare
with top part of Fig. 5 in II.)
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FIG. 4. Calculated preequilibrium proton spectra for
' Fe+ p —+ "Co at 43.3 MeV of excitation. In the top
half of the figure, the two solid curves compare the

present results obtained in the MSD/MSC formalism

with the corresponding results from II. Also shown are
the closed form and master equation results from an ear-

lier formalsim where the MSD/MSC distinction was not
made. The lower half of the figure shows the present
preequilibrium spectrum separated into its MSD and

MSC components and may be compared with the lower

half of Fig. 6 in II.
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site from the situation in II. Thus in the crucial ini-

tial stages of the reaction, unbound states, which are
numerous, will slightly overpopulate unbound states

of the next degree of complexity while bound states,
which are much scarcer, will seriously overpopulate
bound states. The two effects largely cancel. Final-

ly, since the proportion of unbound states is greater,
both the fraction of the strength which is unbound

and the MSD fraction P'~/W are larger here than

in II.
Particle spectra. Figure 4 shows the calculated

preequilibrium components of the proton spectrum.
Whereas in II the MSD/MSC calculation showed
more low energy particles than the closed form and
master equation results of earlier formalisms, the
present corrected calculation shows fewer low ener-

gy particles. This reduction occurred as strength

was shifted from the MSC preequilibrium com-
ponent to the MSC equilibrium component which

has a similar spectral shape. The total (preequilibri-

um + equilibrium) MSC component and the MSD
component are virtually unchanged from II, as is

the total spectrum calculated. Only the division of
the cross section into preequilibrium and equilibri-

um parts has been altered.

V. SUMMARY AND CONCLUSIONS

The unbound state densities and transition state

densities have been corrected in three areas: (I) the

previously assumed ability to designate the max-

imum energy particle has been removed, (2) the dis-

tinguishability of unbound from bound particles has
been consistently included, and (3) a corrected ex-
pression for A&, ~ has been employed and designat-
ed Cp

The results of these changes are an increase in the
proportion of unbound states in the system, relative-

ly little shift in the two-body interaction rates, and a
restoration of the equal probabilities assumption.
Although the fraction of the cross section which is
preequilibrium is somewhat decreased, the MSD
component and the total spectrum are nearly un-

changed. As was pointed out in II, the MSD/MSC
division of the cross section is less sensitive to the
vagaries of the method used in calculation than the
preequilibrium/equilibrium division. Its stability in
the present case means that the analysis of the sys-
tematics of continuum angular distributions in I
should be unaffected by the results of this work.
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