SEPTEMBER 1981

PHYSICAL REVIEW C

NUCLEAR PHYSICS

THIRD SERIES, VOLUME 24, NUMBER 3

Calculation of ${}^{32}S(t, p)$ cross sections using sd-shell-model transfer amplitudes

H. T. Fortune and L. Bland

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (Received 10 February 1981)

We have performed distorted-wave Born approximation calculations for the ${}^{32}S(t, p){}^{34}S$ reaction, using two-neutron transfer amplitudes from a complete $2s \cdot 1d$ -shell-model calculation. Results are in good agreement with previously published data for low-lying 0⁺ and 4⁺ levels, but fail to account for mixing of strengths among 2⁺ levels. Location of $(fp)^2$ strength is confirmed.

NUCLEAR REACTIONS ${}^{32}S(t,p)$; calculated $\sigma(\theta, E_p)$ with shell-model transfer amplitudes.

Data for the ${}^{32}S(t, p)^{34}S$ reaction have been previously analyzed by Crozier *et al.*,¹ in the framework of the distorted-wave Born approximation (DWBA). However, at that time, microscopic two-nucleon transfer amplitudes from a shellmodel calculation were not available. Subsequently, Chung and Wildenthal² (CW) have performed shell-model calculations for nuclei throughout the 2s-1d shell and have calculated the needed transfer amplitudes.³

An analysis⁴ of absolute g.s. (t, p) cross sections for a number of *sd*-shell targets has revealed that the ${}^{32}S(t, p){}^{34}S(g.s.)$ cross section fits in well with the trend across the entire shell. It is thus appropriate to investigate the degree of agreement (or disagreement) between the data of Ref. 1 and the shell-model calculations.

Figure 1 displays all the known⁵ positive-parity levels of ³⁴S up to an excitation energy of 7.22 MeV, in comparison with the shell-model results³ for the lowest four states of each J^* . It is obvious from inspection of the figure that, at least as far as excitation energies are concerned, the correspondence between experimental and theoretical states is unique for all levels between the 0⁺g.s. and the 1⁺ state at 5.38 MeV. Above that energy the correspondence is not clear, but it has already been suggested⁶ that the 5.85-MeV 0⁺ state lies outside the *sd*-shell model space.

We have performed DWBA calculations for the four lowest states of each $J^{\pi} = 0^+$, 2^+ , and 4^+ using the optical-model parameters of Ref. 1 and two-nucleon transfer amplitudes³ from CW. The first

two columns of Table I list the experimental energies and J^{π} values from the latest compilation.⁵ The third column lists peak differential cross sections of Ref. 1, in arbitrary units. (The cross section scale of Table I is 2.0×10^{-4} of that of Ref. 1.) The absence of absolute cross sections

FIG. 1. Comparison of experimental (Ref. 5) and theoretical (Ref. 3) excitation energies and J^{τ} values for positive-parity levels of ³⁴S.

24

805

© 1981 The American Physical Society

	Experimental		Theoretical			
E_x^{a} (MeV)	$J^{r^{a}}$	σ_{\max}^{b} (a.u.)	E_x^{c} (MeV)	J ^{rc}	$\sigma_{\max}^{d} (mb/sr)$	€ ^e
0.00	0*	2.44	0.00	0*	2.67	0.98
3.91	0+	0.13	4.09	0*	0.099	1.28
5.22	0*	0.20	5.37	0*	0.088	2.25
5.86	0*	0.94	7.46	0*	8.8×10^{-4}	$\sim 10^{3}$
				$0^{+}(1f_{7/2})^{2}$	0.56	1.67
8.02	0+	0.33	7.46	0*	8.8×10^{-4}	3.30
\sum (first 3 0 ⁺ levels)		2,77	\sum (first 4 0 ⁺ levels)		2.86	1.03
2.13	2*	0.070	2.31	2*	0.017	4.0
3.31	2*	0.070	3.81	2*	0.20	0.36
4.12	2*	0.036	4.42	2*	8.8×10^{-3}	3.6
4.89	2*	0.029	4.90	2*	1.7×10^{-5}	$1.6 imes 10^3$
6.00	2*	0.56				
6.12	2*	0.13	<i>2</i>			
\sum (first 4 2 ⁺ levels)		0.205	\sum (first 4 2 ⁺ levels)		0.226	0.91
4.69	4*	15×10^{-3}	4.88	4 *	7.6×10^{-3}	2.8
6.25	4*	20×10^{-3}	6.90	4*	2.3×10^{-3}	0.9
6.73	$4^{+}(2^{+})$	0.043	7.24	4 *	4.8×10^{-3}	~9
6.74	(2-4)*)			.+	0.0.1.0-2	. 1
		0.10	7.76	4	2.3×10^{-2}	~2.1
7.24		0.18	7.76	4	2.3×10-2	7.5
\sum (first 3 entries)		78×10^{-3}	\sum (first four 4 ⁺ states)		58.4×10^{-3}	1.3

TABLE I. Comparison of experimental and theoretical results for ${}^{32}S(t,p)$.

^a Reference 5.

^b From Ref. 1. The present arbitrary unit scale is 2.0×10^{-4} of that of Ref. 1.

^c Reference 3.

^d Obtained from DWBA calculation, using $\sigma_{th} = 267 \sigma_{DWBA}$.

 $e \sigma_{exp} = \epsilon \sigma_{th}$.

presents no problem since (as mentioned above), the absolute g.s. cross section for ${}^{32}S(t, p)$ is in accord with that for several other *sd*-shell nuclei.⁴

Columns 4 and 5 of Table I contain the theoretical energies and J^{*} values and column 6 lists the maximum theoretical DWBA cross sections calculated from the shell-model transfer amplitudes. These are obtained from the expression

$$\sigma_{\rm th}(\theta) = N \sigma_{\rm DWBA}$$
, with $N = 267$.

Enhancement factors ϵ were then obtained for each state by comparing the experimental and theoretical cross sections for that state. The resulting values of ϵ are listed in the last column of Table I. They are not simply the ratios of the entries in columns 3 and 6 because the theoretical angular distribution may peak at an experimentally inaccessible angle (as, e.g., for 0^+ states), or the theoretical curve (after normalizing for a visual best fit) may not exactly pass through the data at the angle where the cross section is a maximum.

A few simple observations emerge from inspec-

tion of the ϵ 's. The shell model gives a reasonably good account of the cross sections for the three lowest 0⁺ states. However, the fourth model 0⁺ state is predicted to be much weaker (about a factor of 1000) than the measured cross section for the fourth experimental 0⁺ state. This is consistent with the suggestion of Ref. 6 that the 5.86-MeV 0⁺ state consists principally of excitations into the *fb* shell. In fact, the state has roughly the correct cross section to consist entirely of a $(1f_{7/2})^2$ neutron pair coupled to the ³²S g.s. [Inclusion of a small amount of $(2p_{3/2})^2$ known to exist in the g.s. of ⁴²Ca-would give an enhancement factor of unity.] The 8.02-MeV 0⁺ level is also considerably stronger than the fourth 0^+ model state—perhaps because of mixing with the $(fp)^2$ state, or perhaps implying that a weak 0^+ state remains to be identified near 7.5 MeV excitation.

Summarizing the situation for the 0^+ states, the three lowest experimental 0^+ levels contain approximately the same (t, p) strength as the summed strength for the three lowest model 0^+ states (the fourth model state contributes virtually nothing to the sum).

$E_{\mathbf{x}}$ (MeV)	$\sigma_{max} (mb/sr)$
6.46	0.002
7.01	0.013
7.38	0.13
7.72	0.018
8.21	0.041
8.53	0.009
8.65	0.005
9.29	0.006
Sum	0.224

 TABLE II.
 Calculated DWBA cross sections for higher-lying 2* CW states.

For the 2^* levels the situation is very bad. The shell model puts virtually all the (t, p) strength in one state (the model 2^+ level at 3.81 MeV), whereas experimentally the four lowest 2^* levels have comparable cross sections. However, the summed cross sections for the lowest four 2⁺ states are in good agreement. Thus, at least insofar as (t, p) strengths are concerned, the shell model completely fails to describe the mixing between the low-lying 2⁺ levels. It would be interesting to see if this failure shows up in other observables. It is very unlikely that the failure is due to mixing of other configurations [e.g., $(fp)^2$] into the low-lying 2⁺ states because the summed cross section is about right and because the lowest intruder 0⁺ level is at 5.86 MeV and the first four 2^+ states are all lower than this. In fact the next two 2⁺ states, at 6.00 and 6.12 MeV, must contain a lot of $(fp)^2$ strength, since their cross sections are so large-about 3.5 times as large as the summed cross sections for the first four 2⁺ states.

¹D. J. Crozier, H. T. Fortune, R. Middleton, and S. Hinds, Phys. Rev. C <u>17</u>, 455 (1978).

²W. Chung and B. H. Wildenthal (unpublished); W. Chung, Ph.D. dissertation, Michigan State University, 1977 (unpublished). Because the situation with the 2^+ levels is so bad, we present in Table II the calculated cross sections for the next seven 2^+ levels calculated by CW. This table demonstrates even more clearly that the 6.00-MeV level must be outside the CW model space. The summed cross section for *all* of the twelve lowest CW 2^+ states is only 0.45, less than that observed for the 6.00-MeV level.

Only two experimental levels (at 4.69 and 6.25 MeV) have unambiguous 4⁺ assignments.⁵ Their excitation energies and (t, p) cross sections are in fairly good agreement with predictions. States at 6.73 and 6.74 MeV have J^{*} restrictions⁵ of $4^{(2)}$ and $(2-4)^{+}$, respectively, and a combined (t, p) cross section¹ that could contain an L=4component (but another L value also appears to be present from the angular distribution of Ref. 1). The (t, p) cross section for the doublet is more in line with expectation for the fourth 4^* model state than for the third one, but the comparison is inconclusive. If the experimental 7.24-MeV state has $J^{\pi} = 4^{+}$, it must contain appreciable $(fp)^2$ admixtures, since it is so much stronger in (t, p) than the lower 4⁺ levels. But omitting this level, the summed 4^+ strengths are in reasonable agreement. This comparison also suggests that a 4⁺ state remains to be identified below about 8 MeV excitation.

In summary, a shell-model calculation in an entire 2s-1d-shell space reproduces adequately the excitation energies and (t, p) cross sections for low-lying 0⁺ and 4⁺ states, but completely fails to account for the splitting of strength among lowlying 2⁺ states. In addition, the presence of large $(fp)^2$ amplitudes is indicated for 0⁺, 2⁺, and 4⁺ levels at 5.86, 6.00, and 7.24 MeV, respectively.

- ⁴H. T. Fortune et al., Phys. Lett. 87B, 29 (1979).
- ⁵P. M. Endt and C. van der Leun, Nucl. Phys. <u>A310</u>, 1 (1978).
- ⁶D. J. Crozier, H. T. Fortune, R. Middleton, and S. Hinds, Phys. Lett. <u>46B</u>, 189 (1973).

³W. Chung and B. H. Wildenthal (private communication).