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Charge and transition densities for the samarium isotopes by electron scattering
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We analyzed 251.5 and 401.4 MeV electron scattering data on '""""""Sm.The momentum transfer ranged from
0.6 to 2.5 fm '. These isotopes span the transition region from the spherical '"Sm to the deformed '"Sm. Ground
state charge distributions and lowest 2+ state transition charge densities were determined via a phase shift analysis
for elastic scattering and distorted-wave Born approximation calculations for inelastic scattering. Our analysis used

charge densities described as a sum of spherical Bessel functions over a radius interval from zero to a cutoff of R,
with densities zero at larger radii. The fitting for the ground and 2+ states included constraints in the form of
measured Barrett moments from muonic experiments and measured 8(E2) transition rates from muonic and other
experiments. Error bands were determined for the densities including statistical and normalization uncertainties,

and model dependent uncertainties associated with contributions from higher terms in the spherical Bessel function
form. We find that as neutrons are added from isotope to isotope, the charge is displaced from the region of 4.0 fm

to the region of 7.5 fm. The rms radii of """"""Smwere deduced with uncertainties of about 0.006 to 0.009 fm.

NUCLEAR REACTIONS 4 ~ ' 5 ' Sm(e, e') analysis. Determination of
charge and transition densities via Fourier-Bessel analysis.

I. INTRODUCTION

The electromagnetic interaction has long been
recognized as one of the best tools for studying
nuclear structure effects. Coulomb excitation
with heavy ions is used to determine transition
probabilities. Muonic x-ray energies determine
nuclear charge moments and electron scattering
data can produce nuclear charge distributions and
transition charges. The first two methods men-
tioned above have been in use for a long time for
the study of deformed heavy nuclei. The electron
scattering on those nuclei had to wait for the
unique combination of high energy electron accel-
erators and good energy resolution capability.
Our paper deals with a phenomenological analysis
of electron scattering data at 251.5 and 401.4
MeV.

'The even-even Sm isotopes form one of the most
attractive regions for the study of nuclear defor-
mations. Much information has been gathered
over the years from heavy-ion studies. We know

that the Sm nuclei span a transitional region from
the almost spherical nucleus '"Sm to the strongly de-
formed nucleus "4Sm. 'This prior knowledge was
an important asset in undertaking a systematic
study of electron scattering which probes more
detailed shapes of the charge densities. The cap-
ability of electrons of varying the momentum
transfer, while the energy remains fixed, is es-
sential for obtaining detailed structure informa-
tion on the nuclear interior. The relevant pre-

vious studies of the Sm isotopes include heavy ion
scattering below the Coulomb barrier. The re-
sults were summarized in the papers given in
Ref. 1. The scattering of e's and 'He above the
Coulomb barrier were used to obtain the matter
distributions of the Sm isotopes. ' Hendrie '
showed that it was necessary to treat the elastic
and inelastic scattering in a coupled channel cal-
culation. This is due to the fact that the levels in
the rotational bands are strongly coupled and, due
to the strong interaction of the projectile, multiple
excitations are prevalent. Low momentum trans-
fer electron scattering was done by Cardman
ef, al. ' and by Bertozzi et al. '

Recently, muonic x-ray data for the Sm isotopes
have become available. ' ' These very accurate
data can be used to restrict the number of free
parameters in the description of the charge densi-
ties. Bertozzi et al. ' measured the electron
scattering on '"Sm for momentum transfers from
0.3 to 1.2 fm '. The data were analyzed in a
parametrized deformed Fermi model for the in-
trinsic charge distribution. We previously com-
pared their deformation parameters with those
obtained from a similar analysis of our data for
this nucleus. These results appeared in an earl-
ier publication. ' Recently, Hofmann et al. '
studied the ground state rotational bands of '"Sm
and "Sm.

We base our analysis on elastic scattering angu-
lar distributions'" for ' Sm, ' 'Sm, and "Sm
in the momentum transfer range of 0.6-2. 5 fm ',
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the inelastic scattering angular distributions to
the 2' states in "'Sm and '"Sm in the same q
range, and the angular distributions to the rota-
tional band (0', 2', 4', and 6' states) in '"Sm in
the range of 0. 6 to 2. 1 fm '. The charge and
transition charge densities of all the isotopes
were obtained from an expansion in terms of sums
of spherical Bessel functions. For all the charge
distribution analyses, recent measurements ' ' of
muonic Barrett moments were used as con-
straints. For the 2 transition densities, the
B(E2) values from muonic and other experiments
served the same purpose. Cardman et al. "used
the '"Sm data' in their evaluation of dispersive
effects calculated in a coupled channel formalism
which takes into account the virtual excitation of
intermediate states.

II. CHARGE AND TRANSITION CHARGE DENSITIES

The elastic scattering cross sections" and
muonic Barrett moments ' were fitted with a
phase shift analysis calculation in which the Dirac
equation was solved numerically. Various "model
independent" charge distribution parametrizations
exist in the l.iterature. The "sum of Gaussians"
technique ' has been used in many cases. An ex-
pansion of the charge distribution in terms of La-
guerre polynomial, s for "C data is reported to
give good fits. ' However, the sum of spherical
Bessel functions, the Fourier-Bessel analysis
(FBA), has been studied the most" ";we have
chosen this parametrization for the extraction of
densities.

The Coulomb potential is generated from the
ground state charge distribution, parametrized as

where the q„are given by the condition j,(q R) =0
(i.e. , q =nv/R), N is an integer given by
N~ q,„R/w, R is the radius cutoff beyond which
the density is zero, the normalization is given by
&=4v f p, (r)r'dr, and q is the largest q of the
measurement. The error bands on the charge
distributions are obtained from the error matrix:

where

1 (So(8, ) (So(8,)
[no(8, )j' ~( ac ~( ac„

and &o(8, ) are the uncertainties in the experi-
mental cross sections at angles 8, . For the
ground state densities, the derivatives (Bp/Bc, )
are calculated with the constraint of a normalized
distribution. The error bands only represent the
error on the charge densities at any given radius
r, and it must be understood that there are very
strong correlations in charge densities at differ-
ent radii. "

It is important to estimate the model dependent
contribution to the error band due to the trunca-
tion of the FBA densities after only N terms.
This can be done by fitting the data also with FBA
densities having more terms. "" For such fits
to converge one needs "data" (i.e. , pseudodata)
at momentum transfers higher than the maximum
measured in the experiment. Our approach was
to generate pseudodata at q =nv/R, with n =N+1,
N+ 2, N+ 3, by estimating first the upper limits
to the form factors.

We chose the upper limits by considering our
form factor to be E(q) = [(do/dQ), „,/(do/dQ)„, «]'~',
making an exponential extrapolation with the
matching done at the crests of the high momentum
part of the form factor. Such an extrapolation and-

other more conservative ones have been consider-
ed extensively by Dreher et al. " They have
shown that the final densities and error bands are
not sensitive to the extrapolation due to the fact
that the various forms do not differ very much
over the small range of extrapolation. The
pseudodata cross sections were taken to be one-
half the upper limit at the new q values, with the
uncertainties equal to the cross sections. These
pseudodata points then correspond to the estimate
that the true data at these new q will be bounded
by our exponential extrapolation with high proba-
bility. The extension of the number of terms in
the FBA expansion, together with the addition of
the corresponding pseudodata, has a negligible
effect on the X „,~' since the pseudodata were taken
with a 100$o uncertainty.

The major source of systematic errors appears
to be the choice of the cutoff radius R. For the
present analysis, this is mainly due to the lack of
low momentum-transfer data (0-0.6 fm ') which
could determine the large radius part of the den-
sity. In Born approximation, the coefficient c, in
the FBA series is determined by the data in the
region of q, =m/R fm '(q, =0.3 fm ' for R =11 fin).
As R is increased beyond 11 fm, the value of q,
becomes progressively smaller compared to the
first data point at q = 0.6 fm ' and one cannot get
converging fits. We approached the problem in
two ways. In our first analysis, we chose the
maximum value of R possible which does not give
negative densities at large radii. When and if the
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density becomes slightly nonmonotonic, the error
bars are sufficiently large as to make the density
consistent with a monotonic behavior. Our atti-
tude was to allow R to be as large as possible in

order not to arbitrarily exclude charge at large
radii. This procedure produces different values
of R„ for each nucleus. The values R„ for' ' ' ""Sm were found to be 11.0, 9.25,
10.25, and 11.0 fm, respectively. Note that the
different R„do not imply different sizes for the
nuclei. In Fig. 1 are shown the normalized
ground state charge distributions for

"Sm. The error bands were obtained
from the errors in the fitted parameters c„with
the constraint that the overall charge distribution
be normalized —with consideration for the very
significant correlations between the parameters,
as obtained from the error matrix in the fitting
procedure. In order to present a more sensitive
display of the error band, we show in Fig. 2 the
quantity Dp/p = —,'(p —p, )/p for '"Sm.

In our second analysis, we determined best fit

GROUND-STATE

CHARGE DIST RIB.

FBA densities for a common minimum cutoff value

R(R~ =9.25 fm) lower than the R„maximum value
for each isotope. The difference in the densities
obtained by the two methods for '"Sm are given in

Fig. 2, where y„,~'(Rl. ) =y„«'(R~)+ 2.7. The
difference in these densities are larger than

standard deviations, and can be considered upper
limits to the error due to the R ambiguity. We

note that the differences are large in regions of
low and high charge radius. This means that
these extreme regions are less reliably deter-
mined than the middle region. Similar checks
were carried out for ' Sm and '"Sm. For ' Sm,
the R~ —R„densities differed considerably (=10/~
at r=0) without any significant change in y'. We

did not perform analyses with R & RM, which would

better define the X' curve. Such analyses, allow-
ing negative charge at high radius, would tend to
raise densities at lower radii in order to preserve
the overall normalization. In conclusion, we sug-
gest that the po(r) distributions analyzed with R„
are the ones that should be compared with theo-
ries, such as Hartree-Fock calculations. On the

other hand, the analysis with a common R is bet-
ter for the extractions of density differences be-
tween the nuclei. This becomes quite obvious for
r & R~ where the density differences are arbitrary.

Other systematic uncertainties in the error band
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FIG. 1. The ground state charge distributions and er-
ror bands for Sm, Sm, ~ Sm, and ~ Sm, obtained

by the Fourier-Bessel analysis, and R =RM.
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FIG. 2. The dashed curve is the relative error band

6p/p=&(pmgx pmlg)/p vs r for Sm, in percent. The full
curve is the relative change in p(r) for cutoff radii
RM =10.25 fm and RJ =9.25 fm: &p/p=[p(r, RM)

p(r ~z, )~/p(r RM)'
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mere considered by Dreher. " These include the
effects which depend on the energy calibration and
the uncertainty in the scattering angle. These
effects, considered in the mentioned paper for the
Mo isotopes, were found to contribute mainly at
small radii. We expect that in the case of Sm the
effects will be similar.

We will discuss now, in some detail, the con-
straints imposed by muonic x-ray data. In those
studies, the energy shifts can be interpreted di-
rectly" to determine the so called Barrett' mo-
ments (M, ) of the charge distribution, defined as

(r"e ")= Ms(k, o!)=f p(r) r'"e 'dr
pr dr (2)

TABLE I. (a) The Barrett moments (r~e ~~) used as
constraints in the elastic scattering analysis. (b) The
B(E2) values used as constraints in the analysis of the
2& inelastic scattering.

(a) Barrett moments (Mz)
A k Mg Ref.

'4'Sm
'4'Sm
'"Sm

'"Sm

0.1246
0.1246
0.125
0.125
0.1246
0.125
0.125
0.125
0.1246
0,125

2.2771
2.2771
1.5118
2.2206
2.2271
3.5482
1.5173
2.2245
2.2271
3.5534

19.710 + 0.013
20.057 + 0.013
5,728 + 0.005

18.390 + 0.011
20.263 + 0.013

179.79 +0.74
5.814 + 0.005

18.757+ 0.012
20.546 + 0.013

186.33 + 0.60

'44Sm
'4'Sm
'"Sm
'"Sm

(b)
Constraint value

(8 fm)
{3.00 + 0.70) x10
(7.00 + 0.70) x103
(1.33 + 0.03) x104
(3.44 + 0.01) xl04

Ref.

22
23
7, 24
6, 7, 25

The experimental uncertainties in these moments
typically are very small (=0.03'/o), but the major
uncertainty (=0.08'/o) is actually due to the large
theoretical uncertainty in the calculation of the
nuclear polarization (NP) contribution to the x-ray
shifts. " We took a 40% uncertainty in the calcu-
lated NP shift for each level, and added the un-
certainties for pairs of levels in quadrature. This
uncertainty was then added in quadrature to the
experimental uncertainties. The M~ used in our
analysis are from the experiments of Powers
et al. ' and Yamaz&i et al. ' and are shown in
Table I. The 40+ NP error is a systematic er-
ror, and is important in the determination of ab-
solute charge densities for a given isotope. How-

ever, for isotopic density differences a large part
of the NP error would cancel. Thus our error
bands, including the 40@ NP error, are really
upper limits when density differences are consid-
ered.

The M~ constraints were applied by including
them as data points in the fitting procedure.
There are several M~ values for a given isotope
and they are not all independent. Only some of
the available M~ were used as constraints. We
chose the M~ values determined with the smallest
experimental error bars and also covering the
largest range of k values, not taking more than
one M~ for a given k range, except for '" '"Sm,
where the k = 2.2 moment was available from both
Refs. 6 and V. The final results did not depend
significantly on the specific choice of moments.
For '" '"Sm, four M~ values were used in the
fitting, while for ' "'Sm only one M~ was avail-
able. The best fit parameters, with the resulting
rms radius values, X„~', the number of data
points (including the extra terms which were de-
termined by the inclusion of pseudodata), and the
cutoff radii are shown in Table $I. The densities,
shown in Fig. 1, are calculated from the best fit
parameters (shown in Table II). The model de-
pendence increases the error band by 40 to 10/o
for the region 0-4 fm, respectively, and is negli-
gible at larger radii. The isotopic differences in
the ground state charge distributions are shown in
Fig. 3. The densities were calculated with the
common R =R~ =9.25 fm. The fit parameters are
given in Table III. We see that with the addition
of pairs of neutrons, the charge migrates from the
region around 4 fm to the region of 7.5 fm. This
result is similar to the observation by Dreher"
for the Mo isotopes. The density differences
given in Fig. 3 have been interpreted in terms of
the interacting boson model, as described in Ref.
21.

The rms radii were calculated previously' using
a Fermi form, whereas in our calculations they
were calculated in a more model independent way.
The uncertainties in the rms values (due to the
b, c„uncertainties) are reduced from about 0.0035
to 0.003 fm when the Barrett moments are included.
The equivalent reduction in the density uncertainty at
different radii is a factor of 2 to 3. For '"Sm,
theR~ density gave an(r)'~'value about 0.004 fm
smaller than the R~ density. Considering the R
variation as well as the &c„variation, we esti-
mate total uncertainties of about +0.006 fm for"""'"Sm and +0.009 fm for '"Sm. For "'Sm our
rms result is larger than that of Cardman et al. "
for the same electron scattering data. However,
their analysis did not include the Barrett mo-
ments.
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TABLE II. Best fit parameters for FBA from combined analysis of muonic and elastic
scattering data. The values C; are the coefficients in Eq. (1);8 is the cutoff radius for the
fit, , g«t@2 is the total y2 value of the best fit; the number of data points includes the pseudo-
data and the Barrett moments. (r2)'~ t are the values obtained from the fit and systematio
errors are included.

'"Sm '4'Sm '"Sm '"Sm

Cg

C2

C3
C4
Cg

Ce
CY

C8
Cg

Cio

C)2
8 (fm)

2
Xtotal

Number of data points
(~')'~' (fm)

0,05175 '

0.055 98
-0,03518
-0.038 69

0,019 63
0.014 28

-0.009 71
-0.006 21

0.001 38
0.000 15
0.000 90

-0.001 18'
11.0
11,8

24
4.947 + 0.009

0.073 85
0.024 02

-0.059 43
0.010 76
0.017 02

-0,01140
-0.001 81

0.000 93
0.000 98

-0,001 26
-0.001 74~

9.25
15.1

27
5.002 + 0.006

0.059 61
0.044 98

-0.043 81
-0.015 80

0.022 58
0.000 85

-0.007 98
-0.000 75

0.001 15
0.00025~

-0.000 77

10.25
9.5

30
5.045+ 0.006

0.050 73
0.051 25

-0.032 77
-0.030 82

0.01716
0.01149

-0.004 98
-0.00642

0.00100
0.000 04
0 00040

11.0
10.3

27
5.093 + 0.006

~ These parameters were fitted but mere kept fixed in the last iteration.

r' p((5z)-p((zz)
4-

The inelastic cross section data to the 2; states
of ' ~ ' SD1 were fitted ln distorted-wave
Born approximation {DWBA) analysis with a para-
metrization similar to that for the ground state.
The best fit ground state charge distributions of

TAB/K III. Best fit parameters for FBA from com-
bined analysis of muonic and elastic scattering data.
The values C& are the coefficients in Eq. (1). The cut-
off is 8=9.25 fm. y«~ is the total y value of the
best fit. The number of data points includes the pseudo-
data and the Barrett moments. The 4 Sm coefficients
are the same as in Table II.

$44s '"Sm

6-
W

4

p (ap

(' P( w3) -P(w4)

FIG. 3. The differences between the charge densities
multiplied by r2. The fits use the common R =BI =9.25
fm. The errors shown for some values of x are de-
termined by adding the individual errors in quadrature.

C)
C2

Cs
C4
Cg
Ce
Cp

C8
C9

X«tat
Number of
data points

0.074 72
0.026 14

—0.063 82
0.01043
0.01918

-0.012 57
-0.003 97
-0.001 87

0.001 26
-0.001 19
-0.001 57~
11.5

24

0.073 32
0.024 62

-0.052 76
0.010 58
0.01535

-0.009 56
-0.001 88
-0.000 79

0.001 01
-0.002 66
-0.001 83
12.2

30

0.072 63
0.021 82

-0.054 10
0.009 83
0.01621

-0.006 56
0.005 36

-0.001 41
-0.000 99
-0.002 30

24.0
27

~ These parameters were fittedbutmere kept fixed in
the last iteration.
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Rt = pL t d1' pl r (4)

TABLE IV. Best fit parameters for FBA from analy-
sis of 2~ scattering and B(E2) data. The values C& are
the coefficients in Eq. (3); Xtot~ is the total X value of
the best fit; the number of data points includes the
pseudodata and the B(E2) value; Rt, is the transition
radius defined in Eq. (4). A common R = 11.0 fm is
used.

'44sm '4'sm '"s '"sm

C)
C2

C3
C4

Cg
C6
C7
Cs
Ce
Cto
Cgg

2
Xtotal

No. of data
tr (fm)"
B(E2)
(e'fm4)

0.024 97
0.023 25

-0.020 72
-0.016 36

0.006 44
0.013 62

-0.003 97

6.6
13
6.12

0.034 09
0.025 30

-0.034 41
-0.007 62

0.025 49
0.006 22

-0.013 81
-0.003 31
-0.007 86

0.003 61
-0.000 52~

20.5
25
6.34

0.044 55
0.033 86

-0.046 37
-0.018 58

0.031 47
0.002 69

—0.016 02
-0.003 97

0.004 27
0.004 73
0.000 86

23.9
26
6.70

0.069 92
0,049 72

-0.073 09
-0.020 89

0.047 11
-0.001 31
-0.023 87
-0.020 89

0.006 00
0.007 44

7.9
24

6.80

3.28 x103 6.92 x103 1.33 x104 3.44 x 104

~ This parameter was fitted but was kept fixed in the
last iteration.

" The statistical error bars are approximately 0.04
fm for '5 2sm. The total error, including sys-
tematic errors associated with the choice of R, is sig-
nificantly larger.' These values are determined mainly by the B(E2)
constraints of Table I and are not the values associated
with the (e, e') experiment alone. The error bars are
of the same order as for the constraint values.

Eq. (2) were used to calculate the distortion of the
incomimg and outgoing waves. Here the transition
charge densities are expanded as

N
c„j,(qp), r ~ R

p, (r) = (&)

0, r~R,
and the q„are given by the condition j,(q„R)=0,
with a common radius cutoff R =11 fm. The cut-
off was chosen at the high side of the values found
in elastic scattering since it is known that the
transition radius is larger than the rms radius.
Simultaneous fits for the data at both energies
were done with constraints on B(E2) values. The
constraining B(E2) values are given in Table I and
were introduced as extra data in the fits. The
best fit parameters are shown in Table IV, toget-
her with the values of y„„,'. Also shown in the
table are the values of the transition radii which
are defined as

The 2' transition charge densities may also have
ambiguities related to the choice of the cutoff
radii R. In this case we did not study the magni-
tude of these uncertainties. Parameters such as
the transition charge radius, which depend on an
x weighting, may be sensitive to R variations and
other types of model uncertainties. For example,
one could have a modified FBA form where an ex-
ponential tail is matched to the density at some
large radius. Such a model could alter the shapes
of the resulting densities and it would be difficult
to argue in favor of one form or another. Still,
such an approach would take us further from mo-
del independence. One could say that the utiliza-
tion of different forms can give a measure of the
model sensitivities involved in using a particular
form. Figure 4 shows the transition charge dis-
tributions pf i44, i4s, iso, zs2Sm. These distributions
have also been interpreted in terms of the inter-
acting bpson mpdel.

For ' Sm, where the data extended only to q
=1.2 fm ', the deduced 2' transition density has
larger uncertainties than for the other isotopes.
The limited q range allowed FBA fits, without
pseudodata, with only three Bessel functions. The
fits shown involved seven Bessel functions and in-
cluded four pseudodata points at momentum trans-
fers ranging up to 2.3 fm '. The addition of the
four pseudodata points increased the size of the
error band compared to the FBA fit with three
Bessel functions, as is the case for all other fits.
The shape with seven Bessel functions is similar
to that determined with three Bessel functions,
but whould be preferred. Still, because the num-
ber of pseudodata points was comparable to the
number of real data points, the ' Sm 2' transition
density and error band should be considered less
reliable than the results for the other isotopes.

III. DISPERSIVE EFFECTS

A coupled channel calculation, based upon the
experimental data for '"Sm, was performed by
Cardman et al. ' The calculations took into con-
sideration all the allowed transitions between the
lowest 0', 2', 4', and 6' states. They found that
for the 0' and 2' states of '"Sm, the contribution
of these second order effects is at most 5% in the
regions of the minima and is negligible elsewhere.
Even though these dispersion corrections are not
negligible in the regions of the minima, their ef-
fect on the charge density and the 2' transition
charge density is small. A comparison of the
D%BA and coupled channel analyses showed that
the contribution of second order effects to the
transition densities fall w' l within the experi-
mental errors. The covpling of collective states
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(6)p, , (r, 8) =p, (r)+gp, &„(&),

where the terms p~(r) are the transition charge
densities for exciting the states of the ground
state rotational band. The density p, , (r, &) sat-
isfies

ground state charge distribution can be described
by

Z= p g, 8 d0=4z p d~

p (r)=2wfp, , (r, 8)i' sin8d6 (l 40)

with

(6)

p, (r)r "dr

0

qN

O
g

//
//

//
//

//
//

//
z/0» ~ r&'

/
/

0 2

~448m

I

Ip

r (fm)
FIG. 4. The transition densities and error bands for

the first excited 2+ states in ~ 4Sm, Sm, ~ Sm, and
Sm. The Sm transition density is presented by a

dashed curve to indicate the smaller reliability, as ex-
plained in the text.

IV. ROTATIONAL MODEL DESCRIPTION OF ~52SI

A description of the "~Sm results in terms of a
rotational model has 'ready been reported else-
where. In the rotational model, the intrinsic

in ' ~ '4""Sm to the ground states is smaller than
for 5 Sm. Thus second order effects in these
nuclei will be even smaller than for 528m. Hence,
the use of the DWBA procedure &or analyzing the
experimental results is adequate for the present
level of experimenta, l accuracy.

In previous work, we assumed a deformed Fer-
mi shape for p, , (r, 8). In the present analysis,
no initial shape was assumed for the intrinsic dis-
tribution. We determined p and p, for the 0' and
2' states of '"Sm. The transition densities p, and

p, ca,n be determined from the FBA analysis of the
4' and 6' form factors. These form factors were
reported in Ref. 8 and by Hofmann et aE. ', and

have recently been remeasured'~ and extended
also to higher momentum transfer. The transi-
tion densities p, and p, will therefore be reported
at a later date. Together with po and p, deter-
mined here, Eti. (6) will then give the deformed
intrinsic ground state charge distribution. This
charge distribution is limited in its correctness
by the extent to which the low levels of ' Sm are
indeed described by a pure rotational model. The
density of Eq. (6) is superior to the deformed
Fermi shape in that it gives a better y' fit for the
0', 2' data [y„„,= 18 for Eq. (6) compared to
y„„~3=101 for the deformed Fermi shape].

V. SUMMARY AND CONCLUSIONS

We analyzed 251.5 and 401.4 MeV electron
scattering data on " """""'Sm. The momentum
transfer ranged from 0.6 to 2.5 fm '. We ex-
tracted ground state charge distributions in a
phase shift analysis of the elastic scattering
cross sections and muonic Barrett moments.
Such an analysis determines the best density that
can be obtained from experimental data. Our
analysis used charge densities parametrized as a
sum of spherical Bessel functions over a radius
interval from zero to a cutoff of R, with densities
zero at larger radii. We found that the resulting
densities are sensitive to the choice of the cutoff
radius. We explained how the sensitivity to cut-
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off radius is related to the absence of low-q data.
For a given isotope, we chose for the optimum
cutoff radius the largest cutoff radius possible
subject to the condition that the density at large
radii would not be negative.

We determined error bands for the charge dis-
tributions from the error matrix of the X fit,
where these error bands depend on the statistical
and normalization uncertainties in the experi-
mental cross sections, as well as the uncertain-
ties associated with the truncation of the Fourier-
Bessel series. We discuss in detail the charge
distribution uncertainties due to the cutoff radius
ambiguity; generally, the uncertainties are larg-
est for very small and very large radii. The
Barrett moment constraints impose severe limit-
ations on the choice of charge distributions, also
reducing the density uncertainty at different radii
by a factor of 2 to 3. We discuss in detail the de-
pendence of the error bands on the truncation of
the Fourier-Bessel seris.

The rms radii of ' '"' '" '"Sm were deduced
with uncertainties of about 0.006 to 0.009 fm. The in-
crease in rms values is faster than A' . The
charge density differences show that charge mi-
grates from the region around 4 to 7.5 fm with

the addition of pairs of neutrons.
The irielastic cross section data to the 2, states

of '~ ' ' '""Sm were fitted in a DWBA analysis

with a parametrization similar to that for the
ground state. We used measured B(E2) values
from other experiments as a constraint in the fit-
ting determination of the transition densities. The
error bands for these densities include statistical,
normalization, and truncation errors, as in the
ground state analysis. The 2; densities are very
similar in shape for all isotopes; the main differ-
ence is in their amplitudes. There is a slight but
steady increase in the transition radius between
' Sm and "'Sm. The results are consistent with

an increase in the coupling strengths of the 2,
states to the ground states in the transition from
the spherical ' ~Sm to the deformed '"Sm. For"Sm, we show how to obtain the intrinsic deform-
ed charge distribution from the charge and transi-
tion densities of the ground state band.

The densities we determined here should be
compared to Hartree-Fock calculations and can
also be interpreted in terms of the interacting bo-
son model.
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