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The Gross approximation to the Bethe-Salpeter equation is investigated using a one-boson-exchange model for the
nucleon-nucleon interaction. In particular, it is shown that the inclusion of corrections from the two-pion direct-box
diagram to the driving force in general does not yield phase shifts closer to those obtained from the Bethe-Salpeter
equation. Moreover, the cross-box contributions lead in the quasipotential approach to a non-Hermitian interaction
at all energies. The electromagnetic form factors of the deuteron are calculated for various sets of potential
parameters which give reasonable scattering parameters. A detailed analysis is presented of the relativistic and
mesonic exchange current corrections to the nonrelativistic limit. As a result it is shown that the usual treatment of
mesonic exchange currents for both pseudovector and pseudoscalar pion-nucleon interaction is not correct since
other non-negligible contributions should be taken into account.

NUCLEAR STRUCTURE NN system, quasipotential equations compared with
Bethe-Salpeter equations. Effect of one-loop diagrams. Electromagnetic form
factors. Comment on meson-exchange-current calculations.

I. INTRODUCTION

The problem of meson-exchange-current (MEC)
effects on the electromagnetic properties of nuclei
has attracted considerable attention in recent
years. In particular, it was found that the so-
called pair excitation current contributes a large
correction to the charge form factor of the deuter-
on at moderate momentum transfers, if the esti-
mates are made within the framework of pertur-
bation theory. However, it is not clear whether
this treatment is consistent since some aspects
of the relativistic and dynamical effects are neg-
lected in this approach. In a previous paper,!
hereafter referred to as I, we reported on calcu-
lations of the electromagnetic form factors of the
deuteron using a field theoretical one-boson-ex-
change (OBE) model, where all these aspects are
treated in a correct way. We have shown that
within such a model the resulting form factors are
close to the ones obtained from a nonrelativistic
calculation, suggesting that a consistent treatment
would lead to smaller corrections than those found
from the conventional perturbative calculations.

Since it is not clear how to compare the results
from the Bethe-Salpeter equation (BSE) with those
obtained from a nonrelativistic potential model in
direct way, it is natural to investigate this prob-
lem in a quasipotential (QP) model which approx-
imates the four-dimensional BSE by a relativistic
three-dimensional equation. In this paper we
study various aspects of one particular QP model,
introduced by Gross.? In Sec. II we briefly intro-
duce the QP equations. The driving force for
these equations consists of the exchange of 7, 7,

24

€, p, 6, and w mesons and is the same as inI.

In Sec. III we discuss the convergence of the phase
shift parameters in the Gross model to the BSE
results by introducing correction terms in the
driving force arising from the direct-box diagram.
In general, we find that the inclusion of the pion
direct box does not bring the results closer to
those of the BSE.

Since all two-pion-exchange (TPE) contributions
are expected to be important for the description of
the nuclear force, we may consider the inclusion
of the cross-box diagram in the Gross model. In
Sec. IV we discuss the specific problems encoun-
tered. In particular, it is found that the Gross
approximation leads to a spurious imaginary part
of the potential which is present at all energies.
In Sec. V the electromagnetic (em) form factors
are calculated for the various potentials obtained
in the study of the two-nucleon system. In gener-
cl, they are close to the nonrelativistic results of
the Reid soft-core interaction. Section VI is de-
voted to the study of the various corrections to the
nonrelativistic limit. Both pseudoscalar (PS) and
pseudovector (PV) theory for the pion-nucleon
coupling are analyzed. We show that, for psuedo-
scalar coupling, there is a non-negligible contri-
bution from the two-pion-exchange current. It is
of the same order as the so-called pair-excitation-
current contribution and of opposite sign. As a
result the various contributions compensate each
other leading to much smaller effects than origin-
ally suggested. These results are in accordance
with those found previously® for PV coupling. In
the last section some concluding remarks are
made.
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II. THE GROSS APPROXIMATION

The general procedure used to approximate the
BSE by a quasipotential equation (QPE) is well
known.* For convenience we shall recapitulate
some essential formulas.

The BSE for the T matrix, in operator notation,
reads

$=K-KS¢, (2.1)

where S is the two-nucleon propagator and K the
driving term, which consists of the sum of all
two-nucleon irreducible diagrams. The first step
towards a QPE is to replace the BSE by a set of
two coupled equations,

P=W-Wgo,
W=K-K(S-g)W,

(2.2a)
(2.2b)

which are competely equivalent to the BSE, as-
suming that all equations allow for solutions. The
new propagator g is chosen in such a way that it
reproduces the two-particle elastic unitarity con-
dition at all energies s> (2m)?, when W is Her-
mitian:

p-¢'=¢'(g"-gp=27i) ¢'¢, (2.3)

where the sum runs over all on-mass-shell inter-
mediate states. Furthermore, g is required to
reduce the four-dimensional integral in Eq. (2.2a)
to a three-dimensional integral, resulting in an
equation analogous to the Lippmann-Schwinger
equation of potential theory.

These two requirements are certainly not enough
to determine g uniquely. There still exist several
families of solutions, as was first pointed out by
Yeas.® Two families have been used extensively,
the Blankenbeckler-Sugar (BbS)® and the Gross?
type of propagator. The main difference between
the two is the way in which they treat the relative
energy variable in the intermediate states, i.e.,
the reduction to a three-dimensional integral. The
BbS propagator divides the energy equally over the
two nucleons in the center of mass (¢.m.) frame,
i.e., puts them equally far off the mass shell, by
setting the relative energy equal to zero in that
frame. In the Gross approximation one of the nu-
cleons is put on the mass shell in all intermediate
states.

We may now assume that a reasonable approxi-
mation to the kernel W is obtained by taking only
the lowest order term in Eq. (2.2b),

WK . (2.4)

Using for K the same OBE model as in Ref. 1,
the equations reduce after partial wave decompo-
sition to a coupled set of integral equations in one

continuous variable. In most of the calculations,
unless otherwise stated, we use the pseudovector
coupling for the pion-nucleon interaction. The
reduction is completely analogous to that of the
BSE.’

Instead of the propagator of the BSE,

ste.p)=(5 s ) (T s m)
(2.5)

we have the Gross propagator, given in the c.m.
frame as

8(p,— E +Eyp)

2 i
2Ep[<21—3+p) -m? +z‘e]

with E=+s/2. The 6 function restricts particle
two to the mass shell, and selects only positive-
energy spinors for this particle:

X (=273) (2.6)

g(P,p)=27id(p, — E +E,)

ZUnE0nE) §Wu(§)Wn(§)]
2, <E=i0) ~ 2F

><[§ UA2<§)@2<5>] , 2.7)

where the helicity spinors are defined in Appendix
B of I. As a result the number of intermediate
states is reduced from eight (for the BSE) to four.
In the spectroscopic notation 5L°}, where p, is the
energy-spin index for the off-mass-shell particle
(conventionally taken as particle 1), the states for
J#0 are

3(J-1),, AT +1)5, I, 35 (coupled triplet),
35, WY, 3J-1);, 3(J +1); (uncoupled triplet),
gy, 3J%, 3 ~-1);, ¥J+1); (singlet), (2.8)

and the states for J=0 are

8p;, 's; (coupled triplet), (2.9)

1Sy, 3P, (singlet) .

In addition to the physical channels, there occur
channels which either contain a negative-energy
state or are odd in the relative energy, which
means that they vanish on the mass shell. In the
following we will also consider the situation that
we keep only the physical channels in the inter-
mediate states. This will be called the two-
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channel approximation, although there is, of equations is found by employing the Noyes-Kowal-
course, only one channel in the uncoupled waves. ski technique.! The resulting equations are solved
This truncation has no effect on the two particle by discretization and matrix inversion. As a
unitarity. check, the solution is also calculated by constiruc-
The solution of the one-dimensional integral ting the Padé approximants to the multiple scatter-
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FIG. 1. The phase shifts for the BbS (:**) and the Gross equation (— ~) compared with those of the BSE ( )} with
the same driving force. For Gross we show the results for the 4 ch equation and of the 2 ch equation (- - -). In the

3P2, 3P1, and 3F3 channel the 2 ch Gross results are identical to the BbS results. The 4 ch results coincide with those
of BbS in the 3F2 and 1F3 channel, and with the 2 ch Gross equation for ¢;. For the ’G; wave the 2 ch Gross is between
the BbS and the 4 ch Gross. The data points are the energy-independent fits of Ref. 9, (&), and of Ref. 10, (X).
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ing series. Both solutions are compatible to three
or four decimals. The results are stable with re-
spect to the number and the distribution of mesh-
points when typically 14 integration points are
used.

To get some insight into the effects of the QP
approximation, the phase shifts from the Gross
equation have been calculated with the same coup-
ling parameters as used in the BSE. The results
are plotted in Fig. 1, where, in addition, the ef-
fect of the negative-energy states is demonstrated.
For comparison we have also drawn the results
for the BbS equation with only positive-energy
states. The effects in the higher partial waves,
such-as the F and G waves, are small. This re-
flects the fact that they are essentially given by the
Born approximation. The most drastic changes
are found in the 'S, 3S,, and 3D, channels. The
latter is somewhat disturbing since it is a D wave.
It should be noted, however that the Born approx-
imation to the D, channel is rather bad and that
the two- and higher-boson exchanges are very im-
portant. The strong deviation indicates that the
QP approximation does not do a very good job in
simulating these higher order diagrams. The
large changes in the S waves are less worrisome
because in these channels short range effects are
important. The same holds for the ¢, because this
parameter is extremely sensitive to the details of
the interaction.

The Gross equation with the negative-energy
states included gives for the D waves a better
approximation to the BSE than without. In general,
these states are not negligible, especially at high-
er energies, and they give rise to an overall re-
pulsion with the exception of the 'F; wave. On the

TABLE I. Comparison of the phase shifts obtained
from Bethe-Salpeter equation with (8 ch) and without
(2 ch) negative-energy states at two different energies.

150 MeV 250 MeV
2 ch 8 ch 2 ch 8 ch
15, 14.03 16.23 -1.12 0.91
38, 27.62 27.31 9.66 9.14
Dy -17.06 -17.07 -22.15 —-22.21
€ 0.60 0.59 0.15 0.034
P, 6.20 2.83 —-3.87 -9.11
p, -13.23 -13.37 -15.34 -16.17
3py -17.37 -17.83 -23.71 —24.66
’p, 12.69 11.96 13.76 12.46
7, 0.96 0.96 0.75 0.73
€ —2.95 -2.93 -2.24 -2.24
p, 4.91 4.82 7.06 6.79
°D,y 23.35 22.34 26.87 24.72
D4 3.02 3.00 6.06 6.00

other hand, solving the BSE in the approximation
that all the negative-energy states are dropped
yields results which are close to those of the com-
plete BSE calculation with exception of the *P,
wave. Some results are given in Table I. These
results indicate that especially in the uncoupled P
and D waves a strong cancellation should take
place in the Gross equation between the contribu-
tions from negative-energy states and the off-
mass-shell p, dependence in order to recover the
BSE results from the QP model.

The two-channel Gross equation gives a reason-
able fit to the data with the parameters used in
Ref. 3, to fit the °S,-°D, channel, when g ?/47 is
set to 6.55 to get the bound state energy at —2.225
MeV. The fit is shown in Fig. 2, while the nu-
merical values of the parameters are summarized
in Table II.

Inclusion of the negative-energy states increases
the splitting between the 'S, and 35, phase shifts,
and gives a strong repulsion in the P and D waves.
We have varied the g, g,, g7 /gy, and A to obtain
a new qualitative fit. The procedure thereby was
that g7/ gy was set to obtain the correct splitting
between the 'S, and °S, phase shifts. The g was
fixed by the binding energy so that only the g, and
the cutoff mass were free to vary. The other
parameters are of less importance since they do
not change the phase shifts strongly. The new
parameters for the four-channel fit are given in
Table II. The very bad shape of the 3D, and the
€, is the price paid for obtaining a good fit for the
P waves and the 'D, and ®D, waves, and is assoc-
iated with the low value for A and the rather high
gT/gl. The strong attraction in the °D, is unsen-
sitive to all the variations of the parameters so
that we are led to conclude that it is a deficiency
of the approximation. Figure 1 shows that the
BbS approximation has the same problem but not
as strong.

The fact that the negative-energy states have a
relatively small influence is due to the use of PV
coupling for the pion. The more commonly used
PS coupling gives similar results when we restrict
ourselves to positive-energy states only. The
coupling to the negative-energy states is so strong,
however, that it seems to be impossible to refit
the phase shifts within reasonable variations of the
parameters. For example, to obtain a bound
state at the deuteron energy g,2/4r has to be in-
crease to about 25 while g ?/47 is lowered to 5.
The %S,-°D, channel is then relatively well de-
scribed, although the S-wave phase shifts are
about 8° too low, but the other channels remain in
poor condition. A similar behavior is found in the
the BSE, so that this is not a particular feature
of the QP approximation.
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FIG. 2. The phase shifts for the 2 ch fit ( ), and the effect of including the negative-energy states (- - -). The

dotted curves are the result for the 4 ch fit. For the 351 the 4 ch result lies between the other two curves. In the 1P1
and 3Pl waves the refitted 4 ch equation gives results identical to the 2 ch equation, while for the 3F2 wave the refitting
had no effect. The experimental data are the same as in Fig. 1.

TABLE II. The coupling parameters for the Bethe-Salpeter equation, the Gross equation
with only positive-energy states, and for the Gross equation with all states.

gl &' &b &5 25 &t & A2
dr 4w 4r 4w &Y 4r  4m  (nucleon mass?)
BS 14.2 7.3 11.0 0.43 6.0 0.33 3.09 1.9
Gross 142 6.55 12.0 0.43 6.8 0.33 3.09 1.5
(positive energy only) »
Gross 142 7.02 10.0 043 7.6 0.33 3.09 1.2

(including negative energy)
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III. THE DIRECT BOX

In the previous section we studied the Gross
equation in the scattering region assuming that the
kernel of the equation may be approximated by Eq.
(2.4). As is seen the results can be quite different
from those obtained from the BSE. One may hope
that the situation is improved by the introduction
of the next order correction to W in Eq. (2.2b),
resulting in a better representation of the BSE.
The quality of such an approximation has, to our
knowledge, only been investigated for the case of
scalar nucleons interacting via scalar mesons.!!

J

1) (2)
yél)]éél)(z +k+m) ]él(l)yél) 7;2)%;2)(_*;_%4_7”) %{2).),;2)

In this section we examine this approximation for
the more realistic case with spin by replacing the
kernel in the Gross section by

WK _K(S-g)K. (3.1)

Moreover, we will confine ourselves to contribu-
tions to the second term from pion and omega ex-
change. In order to calculate W we need to evalu-
ate the direct-box diagram, shown in Fig. 3, for
the general case of particles with spin.

A detailed account of the calculation will be re-
ported elsewhere. Here we give only the essential
steps for the two-pion box diagram:

. 2 \2
B(q,p;E):-#(%) Fw .-r(z))zqule(kz)

where F (k) is a shorthand notation for the pion
propagator with the cutoff factor

AZ
(B2 - p2+ie)(kR?2 - A%4i€)?”

F(k)= (3.3)
The momenta 2, %,, and &, are defined in Fig. 3.
The expression (3.2) is reduced to a set of inte-
grals of the form

;
DO = —'477?5 fd4klA N

i
Dl =7 fd"klkm A, (3.4)

Z
Dzuuz _57—3 fd4k1k1uk1uAs

where A contains the denominators of (3.2); i.e.,
D0 is essentially the direct box for scalar parti-
cles. We also need the same type of integrals
where some of the factors in the denominator have
been canceled against scalar products of the mo-
menta, which are encountered in working out the
nominator of (3.2). The integrals (3.4) can be ex-
pressed in terms of scalar form factors and tens-
ors formed from the external momenta P, ¢, and

P

E’ —_“k E*‘
P.q 2 ' B0
| I
| |
v
kp:k-q ¥ ¥ Ky=p-k
| |
| |
E-q | ' P-p
2 P 2
Bk

FIG. 3. Definition of the momenta used in the direct
box.

(=D

F(k,),

(3.2)

aEen

p, as described in Ref. 12. These scalar form
factors can be calculated with the program FORMF
written by Veltman.?

The partial wave projection of the resulting ex-
pression is, in principle, similar to that of the
one-boson-exchange kernel, but algebraically
more complicated. It is carried out with the help
of the algebraic program SCHOONSCHIP,'* The
angular integration cannot be performed analytical-
ly since the form factors are angle dependent. In
practice it is very advantageous to calculate all
partial waves in one run, because the angular inte-
gration takes only about one percent of the time
needed to evaluate the scalar form factors, which
are (of course) the same for all partial waves.

We calculated all partial waves up to and including
J =3, which makes eleven partial waves. It takes
approximately 11 min on a Cyber 175 to calculate
the potential matrix elements of one box diagram
for a set of 14 off-shell momenta at a given c.m.
energy.

The code has been tested by comparing the re-
sults with the box diagram calculated by iterating
the BSE, which is slower and less accurate. With-
in the numerical accuracy the same results were
found. We also checked the imaginary part which
can be evaluated by hand and also by FORMF.,

In Fig. 4 we show the phase shifts calculated
from the Gross equation with the kernel (3.1),
where we took only the pion contribution to the
term K(S - g)K. Again, all parameters are the
same as those for the BSE fit used in I. For ref-
erence we also plotted the BSE and Gross OBE
result. For S, P, and D waves we find no con-
vergence to the BSE phase shifts. In general, the
effect of the pion box is very strong. Depending
on the partial wave channel, the difference between
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FIG. 4. The phase shifts for the BSE ( ) compared to those for the Gross equation (---) as in Fig. 1, and the
effects of the pion box (— —) and of the pion plus omega boxes (- - -). The 3P0 phase shift for Gross coincides with

the BSE on this scale. For the €, the Gross equation with the pion box included gives the same result as the BSE.

the QPE and the BSE is either overcompensated or

becomes larger. This should be contrasted with
the results obtained in the case of scalar nucleons
interacting in S waves."* Also note the strong in-
fluence on the °D,. Furthermore, the difference
between the Gross direct box and the two-pion box
is repulsive for all partial waves shown in Fig. 4.
We have also calculated the effect of the w meson;

This does not improve the situation, as can be
seen from Fig. 4. There is a very strong effect in
the S waves, but even in the D waves the changes

are appreciable. We clearly need more attraction
We must conclude that cor-

in the P and D waves.

i.e., we now have four correction terms in (3.1):

(K, +K_/)(S-g)(K,+K) . (3.5)
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FIG. 5. The crossed box.

recting the kernel of the QPE for the direct box of
pions does not yield results that are closer to
those of the BSE. A possible improvement might
be found in the inclusion of other mesons like p and
¢ into the direct box graph. However, since the ef-
fects are generally so strong, we should also ex-
pect that the corrections from the multiple-loop
diagrams are also important. The calculation of
both types of corrections will be very time con-
suming and as a result the QP approach would not
be advantageous anymore as compared to the use
of the original BSE.

IV. THE CROSSED BOX

Analogous to the direct box we may evaluate the
crossed-box contribution to the quasipotential W.
However, due to the specific choice of the relative
energy variable in the external momenta, we en-
counter spurious singularities which destroy two-
particle unitarity at all energies.

In general, there exist two kinds of singularities
in box diagrams for real off-mass-shell momenta.
The first kind is the unitarity type of singularity.
For the direct box they give rise to the cut for Vs
>%n and for V¢ >2u. For the crossed box the
singularities lie in the crossed channel Yu >2m
and also in the ¢ channel V¢ >2u. The second kind
is of the instability type, i.e., the mass of one of
the incoming or outgoing particles is larger than
(m + ). The singularities arise because the poles
of certain propagators pinch the integration con-
tour of the loop momentum.

For the BbS choice of the relative momenta, we
find

<0 and <0 4.1)
for all values of the external momenta, which is
most easily seen in the c.m. frame. This assures
that there are no unitarity type singularities in the

boxes. The “masses” of the external particles are
given by

P 2 /P 2 s -
o)) 57

10

ag(nucleon mass)
o
T

0 5 10

P(nucleon mass)

FIG. 6. The boundaries of the area where ImX # 0
in the p -¢ plane for different angles z =cos 6 between
p and q. Vs=2. The dotted line represents the range
of on mass shell values as E,, runs from 0 to 350 MeV.
ImX is different from zero above the curves.

and 4.2)

P 2 /P 2 s -
(o (-
in the c.m. frame. This means that for Vs
<2(m+p), i.e., Ey <580 MeV, there are no in-
stability type singularities.
For the Gross choice we have

t=(p-q)?<0
and 4.3)
u=(p+q)*=(E +E,-Vs)? - (§+9)?,

where u can become arbitrarily large, independent
of the energy (take, for example, p=-q). Furth-
ermore, we find that the instability type of singu-
larity occurs for Vs >2m + p, i.e., E,, 280 MeV:

(Izi +p>zs (Vs =m)? and (; —Q)zs <‘[§"””)2'
4.4)

The existence of the u-channel singularity is
serious because it destroys two-particle unitarity
at all energies when we approximate the quasipo-
tential to fourth order in the coupling constant. In
fact, one needs an infinite set of terms to restore
unitarity in the elastic scattering region, 2m <Vs
<2m + p; apart from this the singularity presents
numerical complications.

The condition v > 2m is satisfied when

E,+E Vs> [@m)*+(p+9?*V?, (4.5)

which is the condition that the poles of the two nu-
cleon propagators can pinch the x -integration con-
tour. Taking the variables as defined in Fig. 5, in
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the c.m. frame, the poles are at

3Vs

xc‘,l’:T —E,~E +E 4 ~ic,
(4.6)

Vs
(2) ;
Xo =" -E_+ie,

]

X=-i fa% { (b =) =y +ie][(q - x)° - p? “f][(

For the imaginary part we find

ImX =~ fd3xE oy —[E-E,) —w; 3° +ie] [(E,-E ) —~wg 5" +i€e]6(Vs ~E ,~E ,+E,+E; 3 3)
*q -x

where wy = (p° + u?)!/2.

where the superscripts label the particles. The
condition (4.5) defines a region in the (p,q) plane
for a fixed angle between p and q and a given ener-
gy. This is sketched in Fig. 6.

Apart from constant factors, the crossed box
for scalar particles (spin is irrelevant for this
singularity) is given by

P_ )2 —m? HG}[(% +p+q —x>2 —m2+i(:|}-1 .4

(4.8)

The fact that the imaginary part is symmetric in E anda makes the crossed box contribution to W non-
Hermitian and thus destroys unitarity. Evaluating, in the usual way, the imaginary part of the T matrix

for a non-Hermitian potential we find

o' -9 =0"(g" -2)¢ -2i¢ " ImW)g¢ ,

where we used the fact that ImW vanishes when one of the external relative momenta is on shell.
Take, for example, E,:«/—s_/z, then the argument of the & function becomes

be seen from (4.8).

Vs Vs

—2 —Eq+E +ED§‘1‘X /—2——Eq+[(2m

so that ImX =0.

On the other hand, we expect that the contribu-
tion of ImX to (4.9) will be small because it exists
only for relatively large values of the momenta p
and ¢g. In principle, one could ignore this imagi-
nary part and calculate the contribution of the real
part of X to W. But then there is the numerical
complication that the real part of X has a kink as
shown in Fig. 7, for the value of cosb,,, where the
imaginary part becomes different from zero:

";4 ~VS(E,+E,)+E E ,-m®
bq

—1scosb,, <
(4.11)

This forces us to split up the 0,, integration as a
function of p,q, and vs. In view of the above con-
siderations we decided to examine the crossed
box contribution only in the BbS approximation
which will be discussed in a forthcoming paper.

V. THE DEUTERON FORM FACTORS

Having determined two sets of potential parame-
ters which give a reasonable fit to the phase
shifts at least in the S waves, we can now calculate
the em properties of the deuteron. As usual we
start from the expression for the matrix elements
of the deuteron current in the Breit frame. We
use the transformation properties of the vertex
functions and the propagator to shift the boost op-

(4.9)
This can
1/2
)2+(1>—11)2]”22‘/—?——13=¢—§——(i —mz) >0 (4.10)
2 2 4
[
erators to the em vertex, as explained in I. It can

be shown that the vertex functions satisfying the
Gross equation have the same transformation
properties under Lorentz transformations as the
BS vertex functions:

PHp, P)=ADE)AD (LRI LT, £7P)
Here p and P are, respectively, the relative and
the total momentum of the two-particle system and
A is the spinor representation of £. The relativ-
istic impulse approximation to the deuteron cur-
rent can now be written in a form in which only the
c.m. vertex functions appear, just as in I:

(P+q,M'|J%|P, M)y
=fd3k¢c;,,*(i )s( +k)

xf“(q)S(% +k)A*<—E)¢£”.m.<E> - (52)

(5.1)

The em vertex contains the boost operators

fu(q>=A“(£')r1“(q)A(£>

@)

1)
=[Mo)r A(ub)] [A%9)] (5.3)

where we used the fact that £'=4£ in the Breit
frame. For I', we used the on-mass-shell form
(Q) _qu (CI ) -

2 Oud "Fy(q?). (5.4)
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The propagator in the Gross approximation reads

Pom ,,)\__ APK  ALE)
S( 2 +k>“2(E,-E-z'e)‘ E

where E =M p/2. The positive- and negative-ener-
gy projection operators A*(E) are defined in the
Appendix. In Eq. (5.2) we absorbed all normaliza-
tion factors into the vertex functions. Owing to
symmetry one only has to consider the diagram
with the photon coupled to particle one. The rela-
tive momenta k' and k in (5.2) are related by the
boost transformation

(5.5)

k’=£(£k+%>, (5.6)

where the zeroth component of # and &’ is deter-

1.0 T
(a)
Im
0.5t ~
0 1
-0.25 -0.20 -0.15
cos O pg
2.0 T
(b)
Re
15| a
1.0 L
-0.25 -0.20 -0.15
cos O pq

FIG. 7. (a) shows the threshold behavior of ImX for
p=q=3 and E;;,=100 MeV, for the scalar crossed box.
(b) shows the behavior of the corresponding real part.
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P(nucleon mass)

FIG. 8. The 351 and 3D1 components of the wave
functions discussed in the text. The dashed line is the
4 ch Gross wave function of the PV model. The solid
line is the Reid wave function. The wave function for
the PS model discussed in Sec. VI is given by the dotted
line.

mined by the Gross prescription
ky=E -E, and k(; =E -E, . (5.1

For more details we refer to I.

We have calculated the vertex function for the
two-channel and the four-channel fit described in
Sec. II. The positive-energy components can be
compared with the Reid wave functions in Fig. 8.
The smaller D-wave component is characteristic
for OBE models, which in general have a D -state
probability varying from 4-5%, while for the
Reid model Pp=6.4%. The negative-energy com-
ponents are shown in Fig. 9. The static properties
for the two models are given in Table III. We find
that the results of the two-channel model are bet-
ter as compared to experiment than those of the
four-channel model. This is mainly due to the bad
fit of the *D, phase shift. In models which are
fitted to the %,-°D, channel and the higher partial
waves, but not to the 1S(,, we find, in general,
static properties which are closer to the experi-
mental values than those of this particular model.
The electromagnetic form factors, Fig. 10, show
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FIG. 9. The 3P{ components of cthe wave function,
calculated from the 4 ch PV model ( ) and in the
OPE approximation (- - ~). The dotted line is the result
when we take the OBE instead of the OPE.

qualitatively the same behavior as the Bethe-
Salpeter form factors calculated in I.

VI. CORRECTIONS TO THE NONRELATIVISTIC
LIMIT

In I we have shown that the em form factors as
calculated for a Bethe-Salpeter model of the deu-
teron are very similar to those obtained from a
nonrelativistic theory. The same result is found
in the previous section for the Gross equation.
These results are clearly in contradistinction to
those of perturbative calculations carried out by
several authors, 15:'° but essentially in agreement
with calculations for model wave functions.'” In

this section we analyze the various corrections

to a nonrelativistic potential calculation within the
QP approach using perturbation theory. We shall
try to set up a more comprehensive and consistent
calculation of the MEC and relativistic effects.

In this analysis we shall allow for the possibility
that the pion-nucleon interaction is given by either
a PV or a PS coupling theory. For PS coupling we
shall give arguments that the usual lowest order
perturbative treatment of the negative-energy com-
ponents is not sufficient, but that there are “high-
er order” corrections which are larger than the
first order contributions.

The corrections to the nonrelativistic limit can
be divided into the contributions arising from the
negative-energy states in the deuteron wave func-
tion and the difference between the positive-energy
state contribution and its nonrelativistic limit.

We first consider the terms in the current matrix
element that contain negative-energy states. To
do so we write the deuteron current, Eq. (5.2), as
in Eq. (A10) of the Appendix:

(P +q,M'|Jp| P,M)

= [ 6 RS (RIE oS5 ()6 (R,
(6.1)

where the sum runs over positive- and negative-
energy states. The negative-energy-state con-
tribution to the current is thus given by

A(J%)neg:fd3k[¢>ff'7(f<')s+(k’)f"‘_S_(k)qbi’(E)
+ oM T(RNS_(RNTE, S, (k) (K)

+ oM T(RNS_(RNTE_S_(R)¢M(K)] .
(6.2)

Since we consider this as a perturbation on the
positive-energy part we expand all expressions
to the lowest order in k/m and ¢/m. In the follow-
ing we restrict ourselves to the charge operator
u=0. To lowest order we find

TABLE III. The static properties of the deuteron for the various models discussed in the

text.
e
[J, —
Q (mb) D(zMN) Pp/s Py, P1P1 P3P1
Gross 4 ch 2.67 0.8726 0.0243 3.95 0.017 0.025
Gross 2 ch 2.71 0.8525 0.0250 4.74
exp 2.86 0.857 406 0.0263(13)
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FIG. 10. The charge, quadrupole, and magnetic form factors of the deuteron for the 4 ch PV model ( ) and the
truncated model (- - -). For reference we also show the results for the Reid wave function ¢--).
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q
’ 4
k E+2’

1

S+(k)5k2 >

— + E

My ", (6.3)
0 =0 q-o Ei s)1(2)
I'j_=-T2,~ o, \2 + F3)11%

0~ -1 I(Z)Ff .

To obtain an estimate for ¢_ we use the Gross
equation

20 =55 [ K-, (KBS, (0)64E)
+K__(k,D)S_(p)9%(D)] . (6.4)

We expect to get a good approximation for ¢_ by
dropping the second term because K __ is of sec-
ond order in 2/m, both for PV and for PS coupling,
while ¢_ is of the order of the first term.

Let us now evaluate Eq. (6.2) for the case of PS
_J

-

- 1 g% o = -
Og*(p/’ P, q) = EF(I‘%)Q‘ ot )kTr . 0(2)7-(1) . T(z)(

8712 M,°
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coupling. The lowest order approximation to K _,
is

_1__g_2_ 10 (p -Kk) -of?
2M, 41~ (P -K)Z + 1

A2 2., -
x [m] TORR, (89

K, &, p=K_ (bk). (6.6)

K—+(E, -ﬁ) =

Counting powers of 2/m in Eq. (6.2) we find that
the term proportional to I'__ is not a priori small
as compared to the other two terms due to the
fact that I"°_ is essentially the unit operator. In-
serting Eq. (6.4) into Eq. (6.2) and using Eq. (6.5)
we find

AT = [ @@ 64T (5105, (")
x ok, (B, 0, S, () (D), (6.7

where the effective two-body operator O is given
by

S+FS) +~1—fd3kK <5' E+§>(——F!-S— K_.(K,p). (6.8)
2 2 4TT4 - b 2 MD2 Lt A St ] M M

The pion momentum is denoted by kK, =p+q/2~ p’ and the pion propagator and cutoff factors are collected
in F(K,) = (2 + u?)™(k,>+ A*)2A*. The second term is, in fact, logarithmically divergent, due to the neglect
of factors 1/E,, without the strong form factors introduced in Eq. (6.5). This term can be written as

———-—I—FS iz z(-_;u).;(2))2fd3k(k2_le_ﬁ)F(E_
167°M,2M 2~ *\4n 4

which shows that it is a function of K, only. The
easiest way to evaluate this contribution to the
charge operator is to make a Fourier transform
to configuration space. This “box” terms gives

a nonzero contribution at zero momentum trans-
fer because it measures the probability of the
deuteron to be in a !P; or in a *P] state, and thus
we have to renormalize the total wave function.
In Fig. 11 we show the absolute values of the con-
tributions from the two terms in Eq. (6.8) to the
charge form factor separately. Since they are
of opposite sign there are significant cancellations,
resulting in a positive net result.

One might wonder whether the negative-energy
components of the wave function are well approxi-
mated by the iteration with the one-pion-exchange
(OPE) kernel. Since, for PS coupling, the OPE
kernel is of order 2/m and the effective coupling
in an isospin zero state is about 42, and all other
bosons have a smaller coupling, a larger mass
and, most important, are of higher order in %2/m,
we expect this to be a good approximation. This
is demonstrated in Fig. 12 for a model in which
we fitted the 3S,-D, channel as well as possible.

B )r(ReKs), (6.9)

I
We took the OBE kernel as for PV coupling and

found a reasonable fit, with the d;5 overall too
low by about 8°, for g 2/4n=23.2, g %/4w =5,
gl/gy=4.0, and A*=1.2; the other coupling con-
stants are the same as for the PV model. The
negative-energy components obtained from this
model are very similar to the approximated ones.
They also agree with those obtained from a differ-
ent model in Ref. 18.

We now turn to the positive-energy state con-
tribution to Eq. (6.1), again restricting ourselves
to the charge form factor. The most obvious dif-
ferences between this expression and the nonrela-
tivistic one consist of the boosted argument in
the final state wave function, the boost operator
in the photon-nucleon vertex, and the occurrence
of a relativistic propagator instead of the Lipp-
mann-Schwinger Green’s function. The last two
differences do not lead to significant changes in
the nonrelativistic result for moderate momentum
transfers. The difference between using the full
relativistic vertex and the nonrelativistic one is
shown in Fig. 11. It is much smaller than the
other contributions but, due to cancellations, still
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FIG. 11. The absolute values of the corrections to
the charge form factor for a PS theory. The sign is
given in brackets with each curve. The solid curve is
the total contribution. The other corrections are the

“box” current (- - -), the terms linear in ¢_(- * - *),
the boost effect on the final-state wave function (— —),
and the effect of a relativistic vertex operator (- - *).

We also plotted the pair-current contribution (++).

of some significance. The effect of the boosted
argument is calculated from the approximated
Gross equation

o e a 1 2 ¥adl ’
AgY *(k, %)TF f ap' ¢Y(0"S.(p")

< [K(B’,E')—K(”,E+g)],
(6.10)

where we keep only the contribution from the OPE
term. Expanding Eq. (6.10) to lowest order in
k/m and q/m we find for both PV and PS coupling
as the effective two-body operator

-
On(p: p"E)

g° AR ¢ A3 A 6B} "(2)_1'_‘5
=_—872MN3177F(1")‘1"’ k- 0#ITH 7@ =0 (6.11)

At this point we note that the first term in Eq.
(6.8) is not exactly equal to the effective operator
corresponding to the so-called pair excitation
term, in contrast to what one may naively have
expected. The part proportional to F§ should be
twice as large. Usually the pair term is calcu-
lated in the Breit frame, starting from the two
diagrams shown in Fig. 13 with the intermediate

PS

1

. . 1 1 .
0.0 0.4 0.8 1.2 16

L

P(nucleon mass)

FIG. 12. The negative-energy components of the PS
wave function for a model calculation ( ) and ob-
tained from iteration of the positive-energy components
with the OPE kernel (- - -).

nucleon being in a negative-energy state. The ex-
ternal particles are taken to be on mass shell and
are described by the positive-energy spinors de-
fined in the Appendix. In our formalism the mis-
sing term is found as the correction arising from
the boosted arguments of the final state and given
to lowest order in Eq. (6.11). This is due to the
way we evaluate the various contributions. Al-
though we started from the charge operator in the
Breit frame, we moved the boost operators, which
relate the c.m. frame of the two nucleons to a

q
g P

NUU
ol

sial
ol
o

INFY)

- q
P ‘2
. Hn
ke LS
=.a 54 5.4 5.4
2 P72 Pz “P 2

FIG. 13. The diagrams used in perturbative calcu-
lations to estimate MEC contributions to the deuteron
current. The external particles are on mass shell,
indicated by a cross, and the intermediate nucleon can
be in a positive- or negative-energy state.
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moving frame, to the photon-nucleon vertex. Part
of the pair term is now disguised as a boost effect.

Instead of taking'the lowest order correction
(6.11) we may calculate the difference A¢, exactly
for the OPE kernel. This leads to small differ-
ences between the PV and the PS theory. Further-
more, we used the Reid wave function in Eq.

(6.10) to calculate A¢,. Taking a relativistic wave
function instead of the Reid wave function gives
virtually the same results for the charge form
factor. The contributions to the charge form fac-
tor are shown in Fig. 11 for PS coupling and in
Fig. 14 for PV coupling.

In the foregding analysis of the boost effects in
the arguments of the wave function we started
from the OPE iterated Eq. (6.10). We may also
try to estimate this correction by replacing direct-
ly the argument of the wave function by the appro-
priate boosted one, i.e.,

. q - -
Aqu(k, E)': tera®) - ¢;eld<k+%)>

where kK’ is given by Eq. (5.6). The result is shown
in Fig. 14 and is remarkably almost identical to
the estimate from the OPE iteration. A closer
examination reveals that this can be understood
by noting that the largest contributions come from
the low momentum parts of the wave function,
which are dominated by the OPE.

We now discuss the different effects in a PV
coupling theory., We already noted the boost
effects on the arguments of the wave function are

(6.12)

10-2 : T T T3

i
10_4§ '\ E
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FIG. 14. Same as Fig. 11. The dotted line is the
boost effect calculated directly from the Reid wave
function, Eq. (6.12).

the same as for the PS coupling theory and quali-
tatively no differences occur in an exact calcula-
tion. The negative-energy-state contributions are
shown in Fig. 14. In this case we find much
smaller contributions since K_, is now of order
(k/m)® and accordingly the term with I'__ will be
smaller than the terms with I'_,. For the same
reason the negative-energy components of the
wave function are not approximated very well by
the iteration with the OPE model. Figure 9 shows
that there are indeed significant contributions from
the other bosons.

In Ref, 3 we presented slightly different argu-
ments for the smallness of the exchange-current
effects at moderate momentum transfers in the
case of PV pion-nucleon interaction. It was found
numerically that there is a cancellation between
what we called dynamical and exchange effects,'®
This cancellation can be understood in the follow-
ing way. Consider the OPE diagram for PV
coupling. Restricting ourselves to the positive-
energy states, and using the Dirac equation, the
operator describing this diagram can be written
as

P,,-E
ov=£ [vpre - BamBeypyonp

+2 ZMNE y(ol)yg’y(sz)]/.& ) (6.13)
The momenta are defined in Fig, 15 and a factor
4M,* has been absorbed into the coupling constant
so that it is identical to the one for PS coupling.
Furthermore, A represents all the factors coming
from the cutoff form factor, the pion propagator,
and the isopin operators. For on-shell particles,
P =E, and @,,=E, only the first term in Eq.
(6.13) survives, demonstrating the equivalence
between PV and PS coupling for on-mass-shell
positive-energy states. When we use the Gross
equation we have P,,=2E -~ E, and @,,=2E-E,_.

As a result the second and the third terms tend to
cancel each other. Since the OPE diagram occurs
in the relevant diagrams describing the correc-
tions to the nonrelativistic limit of the charge
form factor, this cancellation should also take

Q0. @) (Pg.P)

ke

Fem - ——€ == = ==

(Eq.-@) (Ep,-P)

FIG. 15. Definition of the momenta for the OPE dia-
gram; particle 2 is taken to be on the mass shell.
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place there. In the usual MEC calculations® the
leading correction is obtained from the diagrams
in Fig. 13, with the intermediate nucleon propa-
gating in a positive-energy state. The external
nucleons are assumed to be on the mass shell.
Furthermore, since the intermediate nucleon is
in a positive-energy state the nonrelativistic con-
tribution has to be subtracted. As a result only
the second term in Eq. (6.13) is taken into account
in the calculation. The correction found in this
way is essentially the same as the pair term in a
PS theory and is given in Fig, 16, However, the
assumption that the external particles can be put
on the mass shell in such a MEC treatment can
lead to erroneous results. The off-mass-shell
correction to the charge form factor, corres-
ponding to the third term in Eq. (6.13), can
readily be calculated in the Gross model. The
result is also shown in Fig. 16. The contribution
is of opposite sign and of the same order of mag-
nitude as the MEC contribution leading to signifi-
cant cancellations, as expected from our discus-
sion of Eq. (6.13). This shows explicitly that it
is not correct to put the external nucleons on the
mass shell for PV coupling as is usually done in
a MEC calculation.

Two remarks are in order. Firstly, the dynami-
cal correction does not vanish at zero momentum

10'1L_- T T
CH| PV

10

103

10

a2(fm2)

FIG. 16. The various contributions from the positive-
energy states, for PV coupling, to the charge form
factor: MEC (---); dynamical correciion (- - -). The
total result is given by ( ), and (— —) is the result
when the potential is expanded to lowest order.

transfer. What is shown in Fig. 16 is the dif-
ference between the normalized charge form fac-
tors,

F™(g2) + F&™ (g2
ZCH\Z JTOCH AT
cn(9®) i (9°) - FE(4%).

Tvrgn (6.14)

Secondly, in evaluating the contributions of the
potential to the diagrams of Fig. 13, we used the
relastivistic expression for the OPE kernel [the
first term in Eq. (6.13)]. Expanding this kernel
consistently up to second order in k/m (the first
order is zero) and using a static approximation
to the pion propagator, we find that the total
result does not change qualitatively, as can be
seen from Fig. 16.

VII. CONCLUDING REMARKS

Starting from a one-boson-exchange model with-
in a relativistic quasipotential approach, we have
shown that in the description of the nucleon-nu-
cleon interaction effects of special relativity such
as the presence of negative-energy states can
have an important effect on the scattering observ-
ables. In general, a reasonable fit is found for the
Gross equation except for certain channels such
as 3D,, 3P,, and €,, where the phase shift de-
creases much too fast at higher energies. The
negative-energy states in the Gross approximation
cause a very large splitting between the 'S, and
35, phase shifts. As a result we have to take a
rather large value for g7 /g;. Also the strong
repulsion in the P waves can only be remedied by
a very strong cutoff, which causes the difficulties
in the other partial waves. The most important
drawback of this equation is, however, that it
leads to unphysical singularities, which are pres-
ent at all energies, if we want to take higher order
terms in the kernel into account.

Once a reasonable fit for the scattering parame-
ters is constructed the em properties of the deu-
teron are found to be very similar to those ob-
tained in a nonrelativistic calculation. We have
shown in the previous section that, although sep-
arate corrections to the nonrelativistic limit can
be considerable, the various terms tend to cancel
each other, both in the case of pseudovector and
pseudoscalar pion-nucleon coupling. The resulting
correction to the charge form factor is small.

The cancellation in a pseudoscalar theory is rather
remarkable since it does not take place for a given
order of the 7-N coupling constant. It is, however,
not surprising that higher corrections can be im-
portant since the coupling between positive- and
negative-energy states in such a theory is very
strong.

There is another aspect which we have not con-
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sidered in Sec. VI and which is much harder to
estimate. Namely, the vertex function satisfies
some relativistic equation instead of a nonrela-
tivistic Lippman-Schwinger equation. Numerical-
ly we find that the differences between a Reid wave
function and a solution to the Gross equation,
shown in Fig. 8, can be significant for larger val-
ues of the relative momentum. As a result the
em form factors at high momentum transfer may
be sensitive to the specific model chosen. The
deviations in the ®D, channel are in accord with
the lower D-state probability found for the Gross
wave functions, and is characteristic for OBE
models. However, the charge form factor calcu-
lated with the positive-energy components of the
PV Gross wave function is quite similar to the
result obtained with the Reid wave function. For
the PS wave function we find larger deviations,
but we have to keep in mind that it is not possible
in that case to find a good overall fit to the scat-
tering data. We believe that, once a good fit to
the scattering data has been found, the wave func-
tions will produce similar results for the charge
form factor.

The fact that we find, in our approach, part of
what is conventionally known as the pair excitation
current for PS coupling from the boost effects in
the arguments of the final state is in accordance
with Ref. 21. There it was shown that to lowest
order, i.e., linear in ¢., the Gross approxima-
tion to the deuteron current gives the same re-
sults as the perturbative approach. Our results
indicate that the calculation of corrections to a
nonrelativistic theory is quite delicate and that it
is important to have at least a consistent approach
to both the dynamics of the two-nucleon system and
the em properties of the deuteron.

Another observation is that, since there are
many cancellations, higher order effects may be
important so that one is led to consider correc-
tions to the Gross approximation. The results
reported here also have some bearing on the cal-
culation of the em properties of more particle sys-
tems. One possible way to proceed is along the
same lines as we have done in Sec. VI for the deu-
teron.

This work was supported in part by the Stichting
voor Fundamenteel Onderzoek der Materie.

APPENDIX

In this appendix we collect some formulas per-
taining to the nonrelativistic reduction of the deu-
teron current. We introduce spinors that are still
operators in spin space, which project on positive
and negative energy states:
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. 2E, 55 |

\Ep*' mJ
- (A1)

/ r:.-ﬁ
E,+ m\'? |E, + m
w.(p)= (—’—~) b
2E, .
L J

The usual spinors are obtained by operating with
w, on the two-component Pauli spinors. The one-
particle propagator can be written in terms of
w, as

w.B)@,p)  w.(-P)w.(-p)

3 —1= -
(Bmm i) = g vie ™ ot E,—i€

(A2)

which holds in any frame of reference. It is con-
venient to abbreviate the projection operators in
(A2) as

A, (B) = w, (D) @, (D). (A3)

In the reduction of the Gross equation we en-
counter the positive- and negative-energy projec-
tions of the vertex function

¢ () =0 D)0, > (~D)Pm. B) (A4)

defined in the c¢.m. frame.

To write the matrix elements of the deuteron
current in terms of these projections we have to
use the fact that

A_(Z)(_El).y(;z)[A(2)(2)]2A4’(2)(_E)=0’ (A5)

where & and &’ are connected by the Lorentz trans-
formation £:

k'=£(£k+%), ky=E-E,, kij=E-E, . (A6)

Equation (A5) ensures that only positive-energy
states propagate for particle two, i.e., when we
insert the unit operator for particle 2

100 = AS (R )y + AD (K (am)
in the expression for the current we can drop the
second term. Defining

T4 =00 (@K )w® (KT (@)wd (BK)w > (-K)

(A8)
and

1 S_(k)= 1 (A9)

S+(k)_ -’EE"

“2(E,-E)’

the expression for the matrix elements of J%,, Eq.
(5.2), can be written as
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(P+q,M’|J%|P, M)
= [ @2 X RIS EITL S, EI0FE). (410)

The relation between the two-particle spin states

B35 M1 = Wi (0B 02 (- D)@ XE ), X2,

(A11)

and the helicity states introduced in Ref. 1 is

pinD5 AP0 (B3 szlpzx,my

=5, & (d)p, p’-¢p)* Dl,z'_).zl/fz

o401 p'zpz A

X(¢p9 9’, _¢p) . (A12)

With this transformation matrix, and the decom-
position of the unit operator

1= l;: (—1)p1-pzlpa A 7\2P1P2>spm ®; x 7\29192[
AgPo

(A13)

the partial wave expansion of the vertex function is

found to be very similar to the nonrelativistic
case,

PHE) = L}_:, YIES @85 (), (A14)
where o

Yirs @)= ; CESI YR @xS ,®) (A15)
and

Xi'a('ﬁ)=(_1)°1"’z Z Cillz}.g/zﬁ |Bs A4 2A20102 )spin .

A
(Al6)

In the nonrelativistic limit only the positive-ener-
gy states survive and they reduce to the usual
states

lim xS ,(5)= Z ci/2i/zs x4 (a17)
or

Ay A2

For this reason, and because of the compact nota-
tion (A1), it is natural to use these states instead
of helicity states when discussing the nonrelativis-
tic limit.
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