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The fully quantum-mechanical statistical multistep direct emission theory of Feshbach, Kerman, and Koonin is
used to analyze the differential cross sections of (p,n) reactions on **Ca, **Zr, '°Sn, and 2**Pb from 25 to 45 MeV.
The interacting particles are described by distorted waves and the interactions inside the nucleus are described by a
single-particle model. The absolute magnitudes, as well as the angular variations of the continuum spectra, are well
reproduced and the relative contributions of single and multistep processes are evaluated.

NUCLEAR REACTIONS %ca, ¥zr, 120sn, 298pp (p,n). Calculated cross
sections and angular distributions. Deduced two-body interaction strength.

I. INTRODUCTION

In recent years there have been many attempts
to understand the continuum spectra of the en-
ergetic particles that are emitted predominantly
in the forward direction from many reactions at
intermediate energies. This work uses the con-
cepts of precompound emission and attributes
these particles to processes occurring after the
initial interaction but before the attainment of
statistical equilibrium. The earlier theories used
classical and semiclassical concepts and were
all able with some adjustment of parameters to
fit the energy variation of the angle-integrated
cross section.! Subsequently, some calculations
have been made of the angular distributions of the
particles emitted in these reactions. Mantzouranis
et al.,? using a quantum-statistical master equa-
tion approach, were able to calculate the angular
distribution for a number of reactions but still
using the concepts of the exciton model with
phenomenologically adjusted parameters. Tamura
et al.® extended into the continuum the multistep
direct theory originally used to describe tran-
sitions to individual final states. In this work
they retain an essentially microscopic description
of the transition matrix elements, being able to
calculate the first and second step cross section
of a number of reactions.

A complete quantum-mechanical theory has
recently been formulated by Feshbach, Kerman,
and Koonin.* This theory distinguishes two types
of precompound processes, one that involves
bound excited states of the intermediate nucleus,
called statistical multistep compound emission
(SMCE), and another that involves unbound excited
states of the intermediate nucleus, called sta-
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tistical multistep direct emission (SMDE). These
two mechanisms are characterized by the angular
distribution of the emitted particles; the former
(SMCE) giving angular distributions symmetric
about 90° and the latter (SMDE) giving angular
distributions peaked in the forward direction.
Many measurements have been made of reactions
showing the general characteristics of SMDE, in
particular (p,n), (p,p’), and (p, @) at energies
above 30 MeV over the whole range of nuclei.
A particular useful set for detailed analysis with
the SMDE theory is the (p,n) data at 45 MeV ob-
tained by Galonsky ef al.® They measured the en-
ergy spectrum and the angular distributions of
the emitted neutrons for many nuclei from calcium
to lead. The results of a preliminary analysis
of '2°Sn(p,n) at 45 MeV have already been pub-
lished.® In this paper we extend the analysis to
other target nuclei and examine in detail the
optimum choice of parameters.

II. THEORETICAL FORMULATION

The quantum mechanical theory of the statistical
multistep direct process retains many of the con-
cepts already used in the semiclassical theories
of pre-equilibrium emission. The incident kinetic
energy is spread through the target nucleus by the
two-body residual interaction, and the excited
nuclear states are characterized by their number
of “excitons,” or particle-hole excitations. The
class of states labeled P, contains 2n +1 excitons,
one of which is in the continuum. The first hy-
pothesis in this theory is the chaining hypothesis,
which restricts interactions to classes of states
with » differing by unity. The second assumption
is that the only matrix elements that interfere
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constructively after averaging are those with the
same change of momentum as the particle in the
continuum. This assumption is a particular for-
mulation of the random phase hypothesis, which

is usually made in the statistical theory of nuclear
reactions.

Another fundamental concept in the theory is the
“exit mode.” Since this is a theory of the con-
tinuum part of the spectrum, we are concerned
only with energy averages over the residual
nuclear states, not with the states individually.

In the theory the final wave function is decompo-
sed into configurations belonging to the various
components P, of the partitioned P space (this
being the space of “open” states, i.e., those with
at least one particle in the continuum). These
configurations are referred to as exit modes.
Each nuclear state belonging to the chain of sta-
tes formed by the residual two-body interaction
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where m labels the exit mode and n the stage.

In the region of continuum states the Fermi Golden
Rule for the transition probability from the

(n-1) th to the nth stage, when the particle
changes its momentum from En_l to E,,, is given

by

aw, (k%)

T, =2 P E)(O)

<oy, n(Kp K [, (223)
where p(k,)=mk/(27)°%" is the density of states
of the particle in the continuum, p;(U) is the level
density of the residual nucleus at excitation en-
ergy U, and v, ,_,(k,,%,_,) is the matrix element
describing the transition from a state n—1 to a
state n when the particle in the continuum changes
its momentum from k,_, to K,. This matrix ele-
ment may be evaluated using the distorted-wave
Born approximation (DWBA) expression

va,b(Eu.Rf): fXr(z_)*<¢f|V(7)IZ/)i>X1(;”d;, (24)

where V(#) is the effective interaction for the
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can make transition to an exit mode m through
the same two-body interaction, where m can be
n+1 according to the chaining hypothesis.

The double differential cross section for a
reaction from a state having a partlcle of mo-
mentum k to one of momentum kf is the sum of
the smgle step and multistep processes
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With the assumptions already mentioned, the
multistep process has the cross section
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transition, x{” and x{*’ are the incoming and out-
going distorted waves, and ¥; and ), are the initial
and final nuclear states. To ensure that all the
transition strength is included, we take the spec-
troscopic factors to be unity throughout. Since

we need the matrix element describing the average
transition probability to many final states in the
energy interval dU, an appropriate averaging
procedure has to be given. Since the interference
terms are expected on the average to cancel, we
assume that the orbital angular momenta L con-
tribute incoherently, so that the average value

of the squared matrix element can be written

(Jo(k, K |2y = 22 @L+1)(|o(R, K, [P RAL),
L
(2.5)

where R,(L) is the spin distribution function of the
residual nucleus levels, acting as a weighting
factor. It must be pointed out that 25, R(L)(2L
+1)=1. In the same way, the averaged single-
step cross section, which acts as the source term
in the expression (2.2) for the multistep cross
section, is given by
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TABLE 1.
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Optical model parameters used in the DWBA calculations.
ness and radius parameters in fm. The potential form factors are the same as in Becchetti-Greenlees (Ref. 7).
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The potential depths are in MeV, the diffuse-

The

depths of the real Woods-Saxon potential used for the bound-state calculations are adjusted to the nucleon binding
energy + the excitation energy of the levels being considered.

Bound States

Target v, ag Yor w, a; 704 Wge Voo g ¥so a, Vor
60.2— 0.32E 0.22E—2.7 0.626 1.32 13.8—0.25E

8Ca } 0.75 1.17 6.2 0.75 1.01 0.5 1.1
n  52.3-0.32E 0.22E-1.56 0.58 1.26 - 0.25E
p 60.2-0.32E 0.22E—-2.7 0.587 1.32 13.1-0.25E

Nz } 0.75 1.17 6.2 075 1.01 0.5 1.1
n 53.6—0.32E 0.22E-1.56 0.58 1.26 11.6—0.25E
—0.32E 0.22E—2.7 0.626 1.32 13.8—0.25E

1205 0.75 1.17 6.2 075 1.01 0.6 1.2
52.3—0.32E 0.22E-1.56 0.58 1.26 —0.25E
64.6 — 0.32E 0.22E—-2.7 0.658 1.32 14.3—0.25E

208 pyy 0.75 1.17 6.2 0.75 1.01 0.6 1.2
n 51.2-0.32E 0.22E-1,56 0.58 1.26 10.4—0.25E
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where the suffix of p2(U) corresponds to the num-
ber of the excitons in the residual nucleus after
the first interaction.

III. APPLICATION TO (p,r) REACTIONS

To apply the formalism described in Sec. II for
calculating the cross section of (p,n) reactions
on several nuclei we neglect the intrinsic spin
of the incident and final particles, so that since
all the targets are even-even, the only contribution
to the spins of the final states comes from the
transferred angular momentum. For each transfer-
red L value it is possible to calculate micro-
scopically the inelastic cross section as a function
of angle, and for given values of the incoming
and outgoing energies, for all possible pairs of
initial and final bound states compatible with en-
ergy conservation. A single-particle shell model
is used to describe the states. The average of
all these cross sections gives as a result (do/
dw); for each L value, jndependent of the details
of nuclear structure.

In the present calculations we use a Yukawa
potential of range 1.0 fm for V(r) and calculate
the incident and outgoing distorted waves using
the potentials of Becchetti and Greenlees.” The
energy dependence of these potentials was found
consistent with the potentials tabulated by Perey
and Perey,® at least in the energy range of the
present calculations.

The bound state wave functions were generated

in a real Woods-Saxon potential whose surface
diffuseness and radius parameters are shown in
Table I. Table I also shows the optical model pa-
rameters which have been used. The strength of
the Yukawa potential is the only free parameter.
The results of a typical set of calculations for
a particular L value are shown in Fig. 1. These

do_
d
b
(=] \ “ca (p,m
'L \;}‘ Ep= 45 MeV
\}.\ U = 10MeV
\
\\'\ Lig=1
\
1023
109
10 | 1 !
[ 50 100 150 g
c.m.
FIG. 1. Calculated differential cross sections for

some typical transitions in 4Ca at 45 MeV between
shell-model states corresponding to AL =1, showing
their overall similarity.
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cross sections are then averaged to obtain {(do/
dw),.

To calculate the single-step contribution (2.6)
we use for the z-exciton state level density the
Ericson expression’®

pr(U)=glgU)" Y pl k1 (7 =1)! (m=p+h) (3.1)

and for the spin distribution function?-°

1)2
2L+l exv[— iLT‘”;)—] (3.2)
Vi n®/%® no
where o is the spin cutoff parameter, as usually
defined.’ These expressions are also used for
the calculation of the transition probabilities (2.3)
and hence of the multistep contribution (2.2).
These calculations may be extended directly to
calculate the cross section of the multistep pro-
cess because the differential transition prob-
abilities (2.3) do not depend on the stage of the
chain. In this calculation, the level density p,(U)
describes the final states of the interaction when
a particle in the continuum with momentum &, _,
collides with a bound nucleon, changing its mo-
mentum to En and creating a particle-hole pair.
The final state density is therefore that of a par-
ticle-hole pair, that is, p,(U) for all stages of
the chain.

In the multistep calculation the averaged expres-
sion (2.5) is inserted in (2.3) and then integrated
over all intermediate energies and angles. The
calculation of subsequent steps is straightforward
since the source term of each step comes from
the calculation of the previous steps.

Despite this, the calculation is time consuming
because it requires V,, at each value of the in-
coming and outgoing energies compatible with
energy conservation and for each angle and trans-
ferred L value. To limit the number of calcula-
tions we have varied the energy in steps of 4 or
6 MeV, and the angle in steps of 10°. In prin-
ciple, the calculation should be made considering
both protons and neutrons at intermediate stages
but in practice, due to the similarity of their
optical potentials, it was found that there is no
appreciable difference in the angular distributions
if this distinction is ignored, retaining the correct
wave functions only for the initial and final par-
ticles. To obtain the absolute magnitudes, we have
used the result of Austin' that the interaction is
about four times as strong between unlike par-
ticles as between like particles. Thus in the
multistep calculation we have used an appro-
priately averaged value of the interaction strength.

In this way we have calculated the continuum
spectra and related angular distributions of the
(p,n) reactions on **Ca, °°Zr, and 2°*®*Pb at 45
MeV. In the case of '*°Sn, calculations at 456 MeV

R(L)=

have been previously reported®; they have been
extended here for incident energies of 25 and 35
MeV.

IV. DISCUSSION OF RESULTS AND CONCLUSIONS

The results of these calculations are compared
with the experimental data in Figs. 2-6. Table
II shows the relevant quantities which have been
used, together with some of the results obtained.

It must be emphasized that in all these cal-
culations there is only one adjustable parameter,
the strength V, of the Yukawa potential, which
represents the residual interaction developing
the Feshbach chain. Even in this case, as will
be discussed below, the value chosen is not only
consistent with other work, but is largely deter-
mined by the requirement of simultaneous fit to
the absolute magnitudes and to the angular dis-
tributions.

The other quantities are either calculated a
priori, such as the spin cutoff parameter o, or
taken from the literature, such as the single par-
ticle level density parameters a, used in the cal-
culation of g =6a/m%. The former was calculated
using the prescriptions of Feshbach ef al.,* at an
average value of the excitation energy U= 16 MeV.
The latter were taken from the slow-neutron reso-
nances analysis of Facchini et al.,'" with the
exception of the one for the double-magic nucleus
28ph, For this nucleus indeed, the value mea-
sured at ~8 MeV excitation energy is ~9 MeV™?,
much smaller than the one we have used. It is
well known, however, that the shell effect causing
the decrease in the effective level density pa-
rameter is washed out at increasing excitation
energy. Williams et al.'? have found that at ~40
MeV excitation energy the a value for 2*®Pb reaches
~25 MeV™, a value that is typical for this mass
region.

The V, values obtained from the best fit are
remarkably constant over the large mass range
under consideration (Table II). They are perfectly
compatible with the value of the central part of
the effective interaction V,=27.9+ 3.5 which was
determined by Austin'® from a wide analysis of
inelastic scattering reactions leading to discrete
levels of the final nucleus.

It should be pointed out that since V, operates
at each step, the final m-step cross section is
proportional to V2™, The value of V, thus strongly
determines the relative importance of the con-
tributions from the different steps, as well as
the absolute value of the cross section. It is thus
not just a normalization coefficient, because it
also strongly affects the spectral shapes and
angular distributions. The overall agreement
with the experimental data shown in Figs. 2—-6
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FIG. 2. Comparison between calculated and experi-
mental differential cross sections for the %Ca(p,n)
reaction at several excitation energies of the residual
nucleus. At the highest excitation energy (u=28 MeV),
the experimental cross section exceeds the calculated
value due to the presence of multiple particle emission.
--- single-step contribution; total.

with an essentially constant value of V, thus con-
firms the overall validity of the theory.

These calculations show the importance of the
multistep processes in the Feshbach chain. More
precisely, Table II shows that at 45 MeV incident

energy about one half of the integrated cross
section, for all nuclei under consideration, is
due to multistep processes. This quantity de-
creases, as expected, with decreasing incident
energy. Figure 3 also shows that this multistep
contribution depends strongly on the emission
angle; as this angle and the residual excitation
energy increases, so does the contribution of
multistep processes.

The results also show that rather few steps
contribute to the reactions—it was never necessary
to include more than six. Calculations with as
many steps as required can be performed without
difficulty, so the analysis is easy to extend to
higher incident energies.

Despite the general success, some disagree-
ments do exist. There is often some strength
missing at high excitation energy, as shown by
Figs. 2—6. This may be due to some contributions
from multiple emission, which is included in the
measurements but not calculated here. At low
incident energy, as shown by Fig. 6 for '*°Sn at
25 MeV, the spectrum is not well fitted by the
SMDE calculation, probably because SMCE, which
is likely to be present at this incident energy, was
not included in our calculations. This interpre-
tation receives support from the general isotropy
of the angular distribution of the difference o,
—0,a1c» aS shown in Fig. 7.

It is interesting at this time to compare this
calculation with other theories concerned with
the extension of the direct effect calculations to
the continuum part of the spectrum. A quite
successful one seems to be that of Tamura et
al.® They calculate the average cross section by
summing up the DWBA cross sections obtained
for all possible particle-hole configurations at
a given excitation in the frame of the single par-
ticle shell model.

In this way, they obtain the continuum energy
spectra and angular distributions of the particles
emitted by one- and two-step processes in a num-
ber of reactions. In particular, they are able to
reproduce the (p,p’) scattering at 62 MeV with
only two steps, and practically all the cross sec-
tion at U=10-20 MeV with the single step con-
tribution. These results are not consistent with
the results of the SMDE theory, which have been
discussed above. On the other hand, Tsai and
Bertsch'® calculate the same (p, p’) reactions as
Tamura et al. in the frame of the random-phase
approximation (RPA) theory of the target exci-
tation and using a sum rule to test the values of
the multipole transition strengths they obtain
from the DWBA calculations. In this way they
find that only about 25% of the experimental strength
can be accounted for by one-step contributions.
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FIG. 3. Comparison between calculated and experimental energy spectra for 48Ca( p,n) at several energies showing
the contributions of various steps. The short fall at the higher excitation energies is attributed to multiparticle emis-
sion. It is notable that in the backward direction the two-step and even the three-step cross section is sometimes
greater than the one step cross section.

4u(Mev)
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mental differential cross sections for the ¥Zr(p,n)
reaction. --- single-step contribution; total.
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FIG. 5. Comparison between calculated and experi-
mental differential cross sections for the 2®Pb(p,n)
reaction. --- single-step contribution; total.
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FIG. 6. Comparison between calculated and experimental differential cross sections for the 120gn (p,n) reaction at 35

and 25 MeV incident proton energy. --- single-step contribution;

attributed to the omission in the calculation of the statistical multistep compound process.

TABLE II. The columns show in order: the spin cutoff parameter; the single-particle
level density parameter; the strength of the 1-fm—range Yukawa potential describing the
interaction between unlike nucleons, used for the single-step calculations; the same, but
averaged over all possible nucleon-nucleon interactions used for the multistep calculations;
and the ratio of the single step cross section with the total cross section.

total. The short fall at the lower energy is

Target c a (MeV™ V, (MeV) V, (MeV) 01/ 0ot
8Bca 1.4 7.4 27.5 15.5 0.55
E,=45 MeV
Nzp 1.9 10 27.5 17 0.55
E,=45 MeV
120gp 2.5 16 27.5 16 0.82
E,=25 MeV
1205 2.5 16 27.5 16 0.72
E,=35 MeV
208pp, 3.4 13 27 15 0.47

E,=45 MeV
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FIG. 7. Difference between the experimental and theo-
retical cross section for the 120Sn(p,n) reaction at 25
MeV. The isotropic behavior of this difference supports
its interpretation as due to the statistical multistep
compound process.

This result is consistent with our calculations
which have been done at lower incident energy.

In conclusion, we believe we have shown the
validity of the SMDE theory. Its applicability to
calculate particular reactions depends, of course,
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on how easy and reliable the corresponding DWBA
calculations are. We believe that this theory can
be used as a sensitive tool for studying the two-
body residual interaction between nucleons, due to
the critical way it determines the cross section

of reactions to the continuum at intermediate en-
ergies.
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