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Coulomb wave expansion in electron scattering
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Coulomb waves are the solutions of the Dirac equation with a point-charge potential and are known analytic

functions (Whittaker Functions), A number of matrix elements involving two Coulomb waves can be evaluated

analytically, making the Coulomb waves basis an attractive alternative to the distorted wave basis. The difference

between the point-charge potential and the distributed charge potential is treated as a perturbation. Phase shifts are

calculated analytically for a distribution of the form P(x)exp( —ax), where P(x) is a polynomial. Also calculated are

radial integrals for electric monopole and quadrupole excitations in the same approximation. Scattering cross

sections are compared with the conventional distorted wave calculations. The approximation works best for large

angular momentum partial waves or low momentum transfer. It could not, in general, replace distorted wave

calculations for the lowest partial waves but it could serve to restrict numerical calculations to this range, or it could

be used for total cross sections and calculations of radiative corrections.

NUCLEAR REACTIONS (e, e), (e, e') EO, E2 cross sections calculated. Matrix
elements involving Coulomb waves evaluated analytically.

INTRODUCTION

The conventional method of performing phase-
shift analysis of elastic scattering from a finite
size nucleus is based on a numerical integration
of the Dirac equation, "All matrix elements for
higher multipole moments and inelastic processes
are likewise the result of numerical integration"
and such procedures can get lengthy, to the point
of being prohibitive, in calculations de'manding

a large number of partial waves. In particular,
in calculations of radiative corrections (brems-
strahlung) and total cross sections (virtual pho-
ton spectrum), the full distorted wave calculation
has never been used. Instead calculations use the
plane wave Born approximation, "Sommerfeld
Maue wave function, ' or an approximation using
the electron wave functions for the Coulomb field
of a point charge. " Such wave functions lead to
analytic, although not always simple, amplitudes.
In this work the problem of including finite nuclear
size effects is tackled by expanding the electron
wave function in terms of point charge solutions,
which we call Coulomb waves, instead of using
the actual distorted wave basis. This can be ac-
complished systematically by adopting the Dirac
Hamiltonian with the point charge potential Vc
as the unperturbed Hamiltonian and treating the
difference between this and the potential for the
actual distributed charge as a perturbation. The
entire procedure is of particuIar value if the
radial integrations, which normally are done nu-
merically, can be carried out analytically.

'The Coulomb waves are known analytic functions
and we need to know integrals involving a pair

of these functions for a number of different poten-
tials or kernels. We have chosen one of these,
the product of an exponential function and a poly-
nomial, for this investigation and have indicated
how results might be extended to more general
shapes. We use the notation

U(r)= V,„, (r )+ V(r) .

'Thus the Dirac-C oulomb Hamiltonian

is identified as the unperturbed Hamiltonian and
the actual equation we wish to solve is

[H„+V (r)]y(F) = O.

In the following section we will discuss both the
formal solution

('= („,—JG(r, F')) (r')t)(r')d'r' (3)

[where (()„,(r) is the incoming wave function, being
an appropriate eigenfunction of Hnc, and G(r, r')
is the Green's function for the same operator],
and the first Born approximation obtained by sub-
stituting t/r„, (r) for P(r) in the integral on the
right-hand side (rhs) of (3).

To assess the accuracy of this wave function we
compare the scattered part of the approximate
wave function with the full distorted wave treat-
ment, which can be accomplished either by looking
at the elastic scattering cross section or at the
phase shifts.

Now in principle V(v) contains all parts of the
electromagnetic interaction not explicitly included
in Vc,~; that is, aside from the finite size correc-
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tion, it contains the contribution of higher multi-
pole moments (for a deformed nucleus) and all
inelastic interactions. It is therefore of interest
to see how well these terms are represented by
the approximation. We have looked at some exam-
ples of monopole excitation and quadrupole exci-
tation.

COULOMB WAVE EXPANSION

With the Dirac Coulomb Hamiltonian in the com-
mon form [Eq. (1)), a separation of the solutions
is not possible; to achieve this we first write the
matrices n and P as direct products

Q = o~ 8 o, P = ~oS I .

Then we carry out a unitary transformation with
the matrix

S = ,' [IS (I+ io—„)+o,S (I —io„)],

which, when applied to the Hamiltonian H~c, gives
us

-(E+ m, )

-e'Z y + (E -m, ) 0

This form is referred to as the solution in the
standard representation.

The part of the Green's function of Eq. (3), which
we need is that for r& r', and is (see Appendix A)

G(r, r')=- g u'"'(x)M"' (~ )SQ"(f)P" (r'), (7)
i'

K, P

where u'„"'(r) is the outgoing wave solution of Eq.
(6), and the superscript T stands for transpose
of the matrix.

DERIVATION OF THE PHASE SHIFTS

The wave function p(r) can also be expanded
in terms of the Pauli spinors in a manner analo-
gous to the Coulomb wave function g„,(r):

P(r)= gi'(2t+ 1) I (t0z~m~ jm)
(4~)"'

pr

1
H = -i —+—o SI ——o S (o ~ L+ 1)

dy y 2 y
xel (6g+5 )~ (~)S ytll(p) (8)

(4)+ m g3I+ Vc ~,
where 0„=o .r. This Hamiltonian has eigenfunc-
tions which are direct products of a two-compo-
nent radial function and a two component spin-
angle function (angular momentum eigenvector)
written x 'u„(r)S P„(r), where x is the Dirac angu-
lar momentum quantum number, an eigenvalue of the
operator -(o ~ L+ 1).

The incoming wave function of Eq. (3), when

expanded in terms of the product functions uK
'

Sg„(r), is given by

where N„(r) is the solution to the radial equation
containing the entire potential U(r) The pha. se
shift in this expression differs from that of Eq.
(5) (the Coulomb phase shift) by the additional
5„' which arises from the finite size of the nucleus.
Substituting P„,(r), G(r, r'), and P(r) from Eqs.
(5), (7), and (8) in Eq. (3), we have

g(r) = (4v)' ' g i'( nfl)'~'(l0 m (Im)

u„"'(r) i2E „,pro"'(y ),
K

" +-. p pp

P„.(r) = — g i'(2l+1)'"(fo.'-minim)
(4p)1 /2

K
where

S4'. (&),

x e' "u„'"(r)Sp„"(r),

where 5„ is the Coulomb phase shift, j is the total
angular momentum, and l is the orbital angular
momentum corresponding to the Kth partial wave.
In terms of K

K&0K

K&0.

d—u (r)= —A-& u (r)dr " r K (6)

where

The radial function u„"'(r) is the regular part of
the Coulomb wave function and satisfies the matrix
equation'"" derived from expression (4),

u„"' x~ y r' „y~ dy~ .
0

(10)

On substituting the asymptotic forms of u'„"(z)
and u'„"'(r) (see Appendix A) in Eq. (9) and then
equating the coefficients of the outgoing wave on
either side, we are led to an expression for the
shape induced phase shift

2E
5 =arcsin —M

pp E

This result is the same as that obtained by El-
ton." The shape induced phase shift 5„' cannot
be determined unless we know the radial solution
u„(r). Evaluation of u„(r) and therefore of the ma-
trix element M~ can be done only by numerical
integration. In the Coulomb wave approximation
(CWA), we substitute the point Coulomb solution
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g„,(r) instead of g(r) in the integral of the rhs
of Eq. (3). This substitution enables us to evaluate
the integral analytically and gives us a relation
correct to first order in 5„' which, on comparing
amplitudes of both sides, gives the relation

1 4E
5, =—Brendan Efz)—,

where M~ is the modification of the matrix ele-
ment M~ in the Coulomb wave approximation.
Hereafter, we shall use the symbol ™to distinguish
the phase shifts and radial integrals calculated
in CWA. Expressions (12) and (ll) are the same
to first order in 5„; hence for small M~ we can
use either. Occasionally, for small values of
g, we find moderately large values of Ms (for
which the approximation is marginal); we then find
that expression (12) gives better results when
compared with conventional phase shift calcula-
tions. We have used expression (12}for calcula-
ting the CWA phase shifts.

It is convenient at this point to use a represen-
tation in which A' is diagonal

A = diag(s~, Q2, Qs, C~),

for then we can write a solution to Eq. (15) in the
form"

m„(x}= (I+ V,r+ V,r'+ ~ ")r" .
In this representation

r" = diag(r'&, r'2, r's, x'4)

(17)

(18)

(20)

is arranged so that the first column of sq, is the
product u„' u„"'. Expressions for the elements
of the matrices V„are given by the recurrence
relation~~

(V„}„=(a'V„,},/(a, -n —a, )

with V,=I. Substituting Eq. (17) in Eq. (14) (drop
the prime on A),

In the Coulomb wave approximation, we are
faced with the task of evaluating

We have chosen a charge distribution for sim-
plicity in calculation rather than for realistic
portrayal of a particular nucleus. It has the form

M@ = u„x' ~ .u r' V x' dy' .

For the purpose of manipulation, it is found
convenient to substitute a direct product for the
matrix inner product u„.m„ in Eq.(13); these are
related by introducing the row matrix [1 0 0 1)

u„"'(~)r M„'~(~)=[1 0 0 1]~ [u„'(r)su„"'(r)].
Thus we are led to consider the 4 component col-
umn matrix

9R~ = u„"g t' (Su~~ x tt' r dh . (14)

d—sv„(~) =
~

—A' B'
~
so„(r), -

dh " (r )
(15)

where A', B' are related to the matrices of Eq.
(8) by

A.
' =ASI+ISA,

B' =BeI+IeB,

In this form, it is possible to use solutions of the
matrix first order differential equation for the
product u~~u„"~, as discussed in Refs. 11 and
13. The function

av„(x)=u„'(r)8u„"'(r)

satisfies an equation of type (6}except that the
matrices A and B (here called A and 8') are of
order 4

which gives rise to the potential

where the perturbation V(r) is given by

Thus in order to find the matrix OR+ we need to
evaluate integrals of the form

~ y e-br&(we+)d+
n (21)

which leads to a matrix series, which we write as

(22)

M =V r(A+n+P+1)a &~~'» (23)

In Eq. (23), A is a diagonal matrix and b "has
the meaning given in (18): 1"(A) and V, are also
matrices, of course.

We need to consider only the first column of the
matrices M„and for these we can establish the re-
currence relation

(24)

V(~)=Ze'~e-'" —+( -e)+ {-,
' -~)s~+-,' —-1~a'~' .

8&
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The matrices we are dealing with at this point
are of order 4 and are complex. Transforming
back to the standard representation, we rendex
A. , 8, and M„all, real (see Appendix B). In this
representation A and B have two identical rows
and columns; thus the order of the matrices under
consideration ean be reduced to 3. The final ex-
pression for the column M„ is given by (see Appen-
dix B)

(2y+ n+ P) '

b, (2y+ n) „2yn —2y(4y+ n)—

«-«)
F(2y+ P+ 1)

0 g2yeg+1

I„.)
[~2 (en@ )R]1/2

[ I'( y+i1))['(2p)'"
4E (E~-my)[l (2y+ 1)]' '

The 3x 3 matricesX, 7, and Z, also functions
of E, m„g, Z, etc. , are given explicitly in Ap-
pendix B.

To sum the matrix series of Eq. (22), we apply
a technique to speed up convex'gence siIQilax' to
the one discussed by Shanks'~ adapted here for
matrix series. Ef we denote the sum of n terms
by S„,

the addition of small but arbitrary quantities to
break the singularity does not change the limit
of S„as n-~. %'e have been unable to match
the computer's success with analytical arguments.

Using Eq. (21) for the integral I~, the expression
fox the radial integral M~ is given by

«««

M, =e'Z[l 0 1] I, +(.'-- «)M, +(-.' -«)LPI,

In fact, we can express Mz in terms of the I,
alone, since the Iz are found to be related by the
recurrence relation

IN, 1= (B+ 4) '(A+P+ 1)Iq . (2V)

Substituting the value of Ma in Eq. (12) we get the
shape-induced phase shifts.

In the form given above the series S„does not
converge for E~ 6/2. Therefore, for higher
energies, it will be necessary to do analytic con-
tinuation of the integrand of I~. To simplify cal-
culations we have neglected the mass of the elec-
tron compared with its kinetic energy. We then
have to calculate phase shifts for positive g values
only, since 6„=6 „. 'The differential cross sec-
tion for the elastic case is calculated from"

do'
» 8—=

~
P„,

~

' 1+ tan'

then a faster converging sequence 8„, with the
same limit as S„for n-~, is given by

S„=S„,+ (I-R„)~M„.

From the expression for M„ it can be seen that
convergence is slower the larger the values of
a, and P. Typically we find that the use of 8„
reduces by 20-25/0 the number of terms required
to achieve a given precision.

Convergence should in general be further en-
hanced by appl. ying the technique for a second
time. Denoting this new suQl by S„we find fox'

the same cases that S„convex'ges to the same
accuracy with a further 2(P/g reduction in the num-
bex' of terms. On close inspection this second
application of the convergence technique, in our
ease, is technically invalid as it involves the
inversion of a, singular matrix which was achieved
only through a fortuitous sequence of events in
the computer. We have observed, however, that

) ~~ e""."«'[P„(cose)+P„,(cosa)] (29)
IC 0

and P„(cos8) is the Legendre function correspond-
ing to the qth partial wave. To check oux results
we have obtained the expression for the radial
integral Ma of Eq. (10) by numerica, l integration
111 'tile distorted-wave B01'1l approximation (DWBA)
and from there calculated the shape induced phase
shifts 5„and the cross section do/dQ.

We have also performed calculations of the in-
elastic scattering cross section for the ease of
electric monopole and quadrupole excitations,
evaluating both the phase shifts and the radial
integx'als in the Coulomb wave approximation.
We have considered transition charge distributions
in each ease derived from the ground state charge
distribution pa(r)

P1/(7 ) = —monoPole,
dp (~)

Po(1 )= ~ -quadruPole.

To simplify numerical procedures we have neglec-
ted the energy loss (d." This enables us to evatu-
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TABLE I. Comparison of shape induced phase shifts in CW and DW approximations for
electron energy E = 70 MeV; precision is one part in 10'.

CWA
Z =20

DWBA CWA
Z =82

DWBA

1

2
3
4
5

6
7
8
9
10

-6.065 73
-8.075 33
-1.11404
-1.499 61
-1.96072
-2.497 77
-3.112 11
-3.805 32
-4.578 85
-5.43440

X 1o-'
X 10-'
X 10-'
X 10-4

X 10-'
X 10-'
X 10-'
X10 s

X 10-'
X 10—10

-5.720 55
-7.94007
-1,10909
-1.497 89
-1.960 18
-2.497 65
-3.112 15
-3.805 41
-4.579 10
-5.434 85

x 10-'
X 10-'
X 10-'
X 10-4

x 10-'
x 10-'
X 10-'
X 10-'
X 10-'
X 10-"

-4.992 16
-8.055 85
-1.078 59
-1.435 87
-1.87057
-2.38084
-2.967 15
-3.63061
-4.372 67
-5.194 57

X 10-'
X 10-'
X 10-'
X 10-'
X 10-'
X 10-'
X 10-'
X 10-'
X 10
X 10-'

-4.975 35
-7.223 32
-1.045 35
-1.42423
-1.86664
-2.379 56
-2.966 76
-3.630 57
-4.372 76
-5.19490

X 10-'
X 10-'
X 10-'
X 10-'
X 10-'
X 10-'
X 10-'
X 10-'
X 30

X 10-'

ate the cross section for monopole scattering by
an expression which is analogous to Eq. (28), but
now the scattering amplitude P;„, becomes

1
i
q(I37„„e"""'~[P„(costi)+P„,(cosa)],

fc 0

where M~„ is the radial integral for the qth partial
wave. fhe radial integrals are determined from
expression (13) for Me but using the monopole
potential V„ instead of V (r) To obta.in radial
integrals for the quadrupole scattering, the quad-
rupole potential Vo is used instead of V(r) The.
quadrupole cross section is calculated using stan-
dard techniques and the sum given by Griffy et
Ql .

As stated earlier, we do not get convergence
for E& 4/2. Since we are concerned to see what

happens at higher energies, we have used numeri-
cal methods rather than analytic continuation to

evaluate radial integrals at 200 MeV. For this
and for the comparable DWBA calculations, we
have used the technique of Hunge Kutta Gill for
numer ical integration. "

RESULTS AND DISCUSSIONS

We have done a number of calculations for the
values of the size parameter ~= 200 MeV and a
= 0.1. 'fables I and II compare the shape-induced
phase shifts obtained in the CWA for two values of
atomic number to those obtained by DW calcula-
tions. Figure 1 shows the elastic cross section
(divided by the Mott cross section) obtained using
these phase shifts. The effect of CWA is to de-
crease the form factor at backward angles which
can be traced to the first two phase shifts; by
replacing these with the corresponding DW phase
shifts, we can get the two curves to agree. This
is consistent with the observations of Elton" and

TABLE II. Comparison of shape induced phase shifts in CW and DW approximations for
electron energy E = 200 MeV; precision is one part in 10'.

CWA
Z =20

DWBA CWA
Z =82

DWBA

1

2
3
4
5

6
7
8
9
10

—176579 X 10
—7.43936 X 10-'
—3.373 70 X 10-'
-1.54944 X 10-'
—7.09737 X 10-'
—3.22685 X 10
—1.45422 X 10
—6.49576 X 10
—2.87718 X 10
—1.26447 X 10-4

—1.72496 X 10
—7.23648 X 10
—3.31220 X 10 ~

—1.53276 X 10
—7.05486 X 10-'
—3.21649 X 10
—1.45179 X 10
—6.49020 X 10
—2.87594 X 10
—1.26420 X 10

—6.23875 X 10
—3.84314 X 10-'
—1.97209 X 10
—9.28440 X 10
—4.263 14 X 10
—1.93715 X 10
—8.72845 X 10—'
—3.90053 X 10-'
—1.72911 X 10
—7.60700 X 10-4

—1.025 52
—4.06592 X 10
—1 88348 X 10
—8.86864 X 10
—4.13874 X 10
—190481 X 10
—8.65001 X 10
—3.88230 X 10
—1.72500X i0 '
—7.59798 X 10
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DWBA DWBA
--- CWA

10

O

C3
Ld
V)
V)
V)
C)

C3

UJ

+10
cK
I-

UJ
0 ELASTl C

Z = 20

E=70 MeV

10'-

O

~ IO
7

M
C)
K

LL1

&10-

4J

IO
10 40 80 120

MOMENTUM TRANSFER (MeV)
FIG. 1. Elastic electron scattering calculated using

Coulomb wave (C%) and distorted wave (D%) approxima-
tions. Target is a fictitious nucleus with Z =20 having
charge distribution pz in text. Incident energy is 70
MeV.

Acheson" for lower energy electrons that the first
one or two phase shifts must be evaluated exactly.
However, for processes in which low momentum
transfer is dominant, such as total cross section,
the approximation should be adequate.

'This approximation does not ajways give as
good results for the elastic cross section at higher
energies. The particular charge distribution that
we are using has the unusual property of producing
a smoothly decreasing cross section as a function
of angle, and the CWA is unable to maintain this
and tends to a diffraction pattern, which is a more
common behavior.

Figures 2 and 3 display the behavior of the mono-
pole cross section for different values of energy.
In both cases, the CNA cross section gives fairly
good agreement with the DWBA cross section.
At lower energies, for Z =20 it is observed that
if we replace the CNA phase shifts by the 0%'
phase shifts the cross section does not change
significantly. This implies that the difference
between the two curves is due to the difference
between the radial, integrals M„and M„, calcula-
ted in the C%'A and DWBA, respectively.

Also shown is a curve for quadrupole scattering
of 70 MeV electrons (Fig. 4). There seems to be
rather good agreement between the two curves
for any Z. Again, the difference we observe is

MeV

10
0 40 80 120

MOMENTUM TRANSFER {MeV)

FIG. 2. Monopole inelastic electron cross section cal-
culated in C% and DW approximations. Target as de-
scribed in Fig. 1 having transition charge density p~ in

text. Incident energy is 70 MeV, excitation energy is
neglec'ted

a consequence of using the approximate radial.
integrals A7z and is relatively insensitive to the
phase shifts.

CONCLUSIONS

A general observation is that the first few phase
shifts and radial integrals do not agree well with
the corresponding DWBA quantities and we mould
have to make special provisions for these in cal-
culating angular distributions. However, we are
not advocating these approximate wave functions
for this purpose for which many better calculations
already exist.

Our approximation provides a method of evalua-
ting the phase shifts and the radial integrals,
particularly for large partial waves, where DWBA
calculations sometimes run into problems with
convergence and matching of wave functions with
asymptotic wave functions, etc. It also leads to
good results for forward scattering and could con-
ceivably be used for determining the total. cross
sections.

An advantage of having analytic expressions for
phase shifts and matrix elements is the possibility
of exploiting expressions for their dependence



lO

DWBA

O
I-
C3
~~)6-
fJ)
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to IO

IO
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FIG. 3. Monopole scattering as in Fig, 2, but at higher
energy.

on physical parameters, particularly the energy
and the size parameter 4. In the limit m, -0,
the matrix' satisfies a first order differential
equation"

A.
T = — B(B+b) '(-A+P+ 1)

FIG. 4. Quadrupole inelastic scattering calculated in

CW and DW approximations. For incident energy E =70
MGV and any Z ~ agleelnent is as good ol better or bet-
ter than shown here for Z =40. Transition charge is p
in text.

We are grateful to Dr, L. E. Wright for assis-
tance, particularly with the phase shift analysis pro-
gram. Calculations descl lbed hei eln wel e ca1 ried
out on the Ohio University IBM 370/158 computer.
This work was supported by the U.S. Department
of Energy and by the Ohio University Research
Committee.

Elton" has made use of expressions for the energy
derivative of the shape induced phase shifts [df„/
dE) in his notation] to derive the phase shift at
one energy from that at another. The present
treatment extends this possibility to matrix ele-
ments of any multipole order.

We do not consider that the ability to obtain
an analytic expression is necessarily restricted
to charge distribution used here, although the
form e~ "P{r), where P is any polynomial, is a
good candidate for model independent analysis.
It is unlikely that for any distribution a single
expression can be written to cover all ranges of
energy. 'The series we have use, for example,
do not converge for E ~ 4/2 and a high energy
expansion would obviously be desirable.

APPENDIX A: MATRIX GREEN'S FUNCTION

The radial equation resulting from applying the
transformed Hamiltonian H of Eq. (4) to the sepa-
rated solution u„(r)S Q„(r) is

d
fo, +-o, -+ma—,+V{r) u„(r)=Eu„{r). (A1

I

Inserting the Coulomb potential for V(r), we can
rewrite the operator more compactly in terms of
the matrices A and B of Eq. (5), and the equation
for its Green's function G{r,r') is

(A2)

'The Green's function with the boundary conditions
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we require must have the form

G(r, r') =a„[u„"'(r)u'„"'r{r')'tt(r' —r)

is all that is required)

+u'„"'(r)u„"' (r')e(r -r')j,

where u(r' r) -is the Heaviside step function

'u(r' -r) ~1 for r'&r
~0 for x'&x,

(A3)
where

y —[~2 (e2g )2]1/2

and u„"' and u'„"' are solutions of Eq. (la) with the

asymptotic forms
This can be written in the form of an ordinary
matrix product

1 (E+ m)'/'cos(pr+ 6)
(2E)1/2 -(E -m)'/'sin(pr+ 4)

(E + m )1 / 2e i i2r+6 )
~OQt (g ) )

(2E )1/ 2
2 (E m)1/ e2i ( r+2lk )

~= q ln2pr+ V„--,'(1+ 1)v,

2i= e'ZziP .

(A4) (V„j,, = [A - (n -a,)ij-'(HV„,)„
which can then be subjected to a similarity trans-
formation in the standard way. Using the trans-
formation matrix

with

(&i~ -my)(ii -y)'" p(2)+ 2y)(ii+ y)"'

(Eg my)(ii+-y)' ' p(2)+2y)(ii -y)' '
inserting Eq. (3a) into Eq. (2a) and integrating with

respect to ~, we get

ia a„[2u-„'"(r)u„'"'r(r) -u„'(r)u„"'r (r)j = Z. (A6)

Substituting Eqs. (4a) and (5a) in Eq. (6a), we get

2iE
g

p

APPENMX 8: SOME DETAILS OF MATRIX
MANIPULATIONS

Expression (19) is only valid in a representation
with matrix A diagonal (17). To transform it we

must restrict ourselves to the first column (which

we get in the new representation

V„=Q„V„1,

where Q„has the explicit ri dependence

j.
Q„=(2 )

-2 D +2 (4 )D, -D, . (82)

In our case, the expressions for D„etc., show
that each of these matrices has its second columns
identical with the third column and the second
rows identical with the third rom; consequently,
each can be reduced to a 3x 3 form, for example,

0 1 0

0 1 0
-2c d -age+ cd& 2g e 0 1 1 0

) etc. )

-2cM -c 8+ 6 d 2c&e 0 0 0
0 0

j- l 1
V = —— X+ --K-Z V'„q „2y+ ri 2yn — 2y(4y+ n)—

The entire Eq. {2b) can then be reduced to the
3x 3 form

V2 = (Eii -my) 2e2Z



X= 2c ~(-2cd bd-ce 2ce),
'0 -e 0

r=l 2c ~(-2cd u-&8 2ce) This if the form used in Eq. (25)

~D. R. Yennie, R. N. %ilson, and D. G. Ravenhall, Phys.
Rev. 92, 1325 (1953).

2D. R. Yennie, D. G. Bavenhall, and R. N. %ilson, Phys.
Rev. 95, 500 (1954).

3T. A. Griffy, D. S. Onley, J. T. Reynolds, and L. C.
Biedenharn, Phys. Bev. 128, 833 (1962).

48, T. Tuan, L, E. %right, and D. 8. Onley, Nucl. In-
strum. Methods 60, 70 (1968).

5H. A. Bethe and %. Heitler, Proc. B.Sci. (London)
A146, 83 (1934}.

6J. A. Thie, C. J. MuQin, and E. Guth, Phys. Rev. 87,
962 (1952).

~H. Davies, H. Bethe, and L. Manimon, Phys. Rev. 93,
788 (1954).

8W. Vf. Gargaro and D. S. Onley, Phys. Rev. C 4, 1032
(1971).

SC. %. Soto Vargas, D. S. Onley, and L. E. %right,
Nucl, Phys. A288, 45 (1977).

~0M. E. Rose, Relativistic E/ectron Theory (Riley, New

York, 1961), p. 159.

D. S. Onley, Nuc/ear Structure Studies using E/ectrol
Scattering and I'hotoproduetioN, edited by K. Shoda and
H, Vi (Sendai: Tohaku University 1972)~

~2L. B.B.Elton, Proc. Phys. Soc. (London) Sect, A66,
806 (1953).

~~L. E. alright, D. S. Onley, and C. %. Soto Vargas, J.
Phys. 10, 153 (1977).

~4D. Shanks, J, Math. Phys. 39, 1 (1955).
~SH. Uberall, E/ectron Scatty'i' from ComPlex Nuclei,

Part A (Academic, New York and London, 1971), p. 71.
~6If energy loss were included the long-ranged part of

the potential (now retarded) would 'be precisely the
same as that for the point case (Ref. 8) and hence we
already know its analytic form; the remainder of the
matrix element is then of the form given here and can
be evaluated by the methods presented Iexcept that we
would have 4x4 matrices rather than 3x3 matrices in
Eq. (25)].

"F.Zdelman, IBM Tech. Newsletter 13, 52 (1957).
~BL. K. Acheson, Phys, Rev. 82, 488 (1951).


