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Using a very simple type of wave packet, which is obtained by letting unitary displacement operators having as
A

generators canonical operators g and P in the many-body Hilbert space act on a reference state, we investigate the
relationship between the semiclassical and the generator coordinate methods. The semiclassical method is based on
the tine-dependent variational principle, whereas in the generator coordinate method the wave packets are taken as
generator states. To establish the equivalence of the two methods, we examine in detail, using tools developed in

previous works, the concept of redundancy of the wave packet and the importance of the zero-point energy effects.
%'e make a numerical application to the case of the Goldhaber-Teller mode in 'He.

NUCLEAR STRUCTURE Relationship between the semiclassical. and. the gener-
ator coordinate methods. Redundancy and zero-point energy effects. Numeri-

cal application to the Goldhaber-Teller mode in 4He.

I. INTRODUCTION

The objective of a microscopic theory of collec-
tive motion is to reduce the many body problem
to a description in terms of only a small number
of degrees of freedom. In the idealized case one

supposes that there exists an invariant subspace of
the many body Hilbert space, the collective sub-
space, in which the collective and intrinsic de-
grees of freedom are decoupled. The base states
in this subspace are product type wave functions
where the intrinsic degrees of freedom are con-
strained to be always in one intrinsic state only.
The dynamics in the collective subspace i.s deter-
mined by the collective Hamiltonian, which is
equal to the expectation value of the many body
Hamiltonian in this intrinsic state. One way to
perform the exylieit separation of the collective
degrees of freedom 18, 1n the cR86 of R cRnonicRl
collective degree of freedom, by the introduction
of a canonical transformation in the many body
Hilbert space from the microscopic degrees of
freedom to collective and intrinsic ones. This can-
onical transformation allows us to write the many
body Hamiltonian as a sum of a collective Hamil-
tonian Hc (which depends on the collective degree
of freedom only), an intrinsic Hamiltonian, and a
coupling term between the intrinsic and collective
degrees of freedom. In the idealized case, this
last term does not couple the collective to the non-
collective states. However, in practice the dif-
ficulties associated with the explicit use of the
eanonieal transformation lead many authors to
present theories which try to find H~ in an indirect
way by means of a collective path. ' The collective
path is a set of Slater determinants labeled by two

parameters 1pq) in the case of a dynamical col-
lective path, and by one parameter

I q&, I q) =
I p

=O, q) in the case of a static collective path. The
dependence on p and q of the wave packet is con-
structed so as to reflect the distortion of the
system during the collective motion and they are,
in general, equal to the expectation value on the
wave packet lpq) of dynamical variables defined
in the many-body Hilbert space,

~ = &e I e lan&,

&=&vol&le&

and these dynamical variables satisfy the weakly
canonical commutation relation

It is important to point out that the dependence
of lpq) on p describes the velocity dependence of
the wRve packet Rnd thRt lt 18 not introduced 1n the
sense of describing an additional degree of free-
dom. ' Thus, the parameter p is thought to be as-
sociated with a degree of freedom canonically con-
jugate to the one associated with the parameter q.
One uses dif'ferent prescriptions to determine the
coQective path which range from self-consi. stent
methods' ' to educated guesses based on phenom-
enological considerations. " The differences be-
tween the theories considered in this paper stem
from the way that they use the collective path.

In the generator coordinate method (GCM), ' as
used in practice, we select a subspace of the
many-body Hilbert space which is spanned by the
states which are constructed as a linear super-
position of the states along the static collective
pat 1~)
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If& = J &ef(~) ls) . (1.3)

resulting in the Griffin-Hill-Wheeler (GHW} in-
tegral equation for f(q)

q H q' —E q q' q' dq'=0. (1.4)

There are many ways to transform the GHW equa-
tion, Eq. (1.4), into a, Schrodinger type equation
in a "collective" coordinate. (However, ingeneral,
this Schrodinger type equation has a "velocity" de-
pendent potential and a "mass parameter" which
depends on the coordinate. ) This Schrodinger
type equation defines the collective Hamiltonian
H~™of the generator coordinate method.

On the other hand, the semiclassical method'
uses the dynamical collective path lpq&. One finds
the time evolution of the wave packets through the
use of the quantum variational principle

m= 5 J" {z&pql a, lpq& —&pqla(pq&)dt=0 (1.5)
ty

with fixed end point variations. As long as the
wave packets fulfill the relation

f&pql s~e; a-, e-,
I pq& =1,

the variational principle (1~ 5} leads to the classi-
cal Hamilton equations

where the classical Hamiltonian K (p, q) is equal to

In the semiclassical method we are not inter-
ested in the time evoluti6n of the wave packets.
Indeed in this method one uses the wave packets
lpq) as probes to extra, ct the classica, l limit of
the quantum collective Hamiltonian. Thus in the
semiclassical method we identify the classical
Hamiltonian H"(p, q} with the classical limit of the
quantum collective Hamiltonian Hc'. The quantum
collective Hamiltonian is reconstructed by a re-
quantization procedure.

These two methods are conceptually and prac-
tically different and when advantages and disad-
vantages are discussed in the literature, the point
of view usually adopted is that, with respect to
the dynamics, the semiclassical method is super-
ior since it uses a dynamical path as opposed to
the GCM which, in general, uses a static collec-

The only unknown in Eq. (1.3) is the weight func-
tion f(q), which is determined by the variational
principle

5&f IHI f)

tive path. ' An example which is always presented
in support of this point of view is the case of the
translation of the nucleus as a whole, where the
mass parameter calculated according to the semi-
classical method has the correct value, whereas
the value given by the GCM is, in general, in-
correct. The disadvantage of the semiclassical
method is that, since one always reaches a "clas-
sical" stage, it incorporates in a wrong way the
effects associated with the zero-point motion of
the wave packet lpq). However, these effects
are handled in a correct way in a purely quantum
method such as the generator coordinate meth-
od."""Therefore a generalization of the GCM
which incorporates the advantages of both methods,
as used in practice, is to use as generator states
the states along the collective path lpq). In the
literature the GCM which uses dynamical wave
packets as generator states is called the dynam-
ical GCM (DGCM), as opposed to the ones which
use static wave packets, which are called static
GCM (SGCM). '

In general the DGCM is an improvement both
with respect to the SGCM and to the semiclassical
method. However, in Ref. 1 it is investigated
under what conditions the description of the dyn-
amics according to these three methods agree.
In this work we have two basic requirements in
order to make the three methods equivalent:

(a} The dynamical wave packets
l pq& should be

redundant, i.e., the collective subspace associated
by the GCM to the static,

l q&, and dynamical,
lpq), wave packets are identical.

(b) The dynamical effects of the zero-point ener-
gy are negligible.

The idea behind requirement (a) is the observa-
tion that the parameter p is introduced to describe
a dynamical variable canonically conjugate to the
one associated with the parameter q. Therefore
both wave packets are thought to describe the
distortion of the system along one canonical degree
of freedom. This implies that the subspaces as-
sociated with the DGCM and SGCM should be a
Hilbert space spanned by this degree of freedom,
and thus identical. Once this requirement is sat-
isfied condition (b) is nothing more than the re-
quirement that the dynamical wave packet be able
to extract the classical limit of the quantum col-
lective Hamiltonian of the GCM. As opposed to
what was done in Ref. 1, the aim of our paper is
to investigate these questions using a very simple
type of dynamical wave packet, which is obtained
by letting unitary displacement operators having
as generators canonical operators in the many-
body Hilbert space, act in a reference state

(I.S}
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There are only a few exa,mples of wave packets
parametrized as in Eq. {1.8) which are useful in

the description of collective motion in nuclei. One
of the reasons is that, even when one knows,
g priori, the nature of the canonical collective de-
gree of freedom, it is not always possible to write
them explicitly in terms of the microscopic ones.
However, we think that its use will illuminate
many aspects of the relationship between the semi-
classical and the generator coordinate methods
and will shed new light on the understanding of
this relationship in the ease of more complex
types of wave packets. ' In our paper we also con-
sider a case of physical interest which can be de-
scribed by a wave packet of this type.

The semiclassical method is pxesented in Sec.
II. The generator coordinate method is presented
in Sec. III, and we show, using the techniques de-
veloped inRefs. 8-10, how we can handle the over-
completeness of the dynamical wave packets Ipq&

in DQCM. Also we show how we can define the
collective Hamiltonian and collective operators.
In this section the relationship be/ween the sub-
spaees associated with the static and dynamical
wave packets is also discussed. In See. IV we
compare the methods and we make a numerical
application to the Goldhaber-Teller mode in 4He

which ean be described by a wave packet of the
type shown in Eq. (1.8.) In Sec. P we present our
concluding remarks.

II. THE SEMICLASSICAL METHOD

As was pointed out by many authors, s'"*'~ the
evolution in time of quantum many-body systems
can be determined by a variational principle an-
alogous to the Hamilton principle of classical
mechanics.

The Lagrangian, which is a functional of
I it{t)&

and its Hermitian conjugate, is equal to

L(y, q*) =i&&(t)
I
s-,

l q(t)& —&g(t) le l q(t)&, (2.1)

and the equations of motion are found by requiring
stationarity of the action with respect to fixed end
point variatlons of

I
l/J(t)& and

I
it)(t) & *i

5f= 6 ! {i(y(t) I j(t)& —&tent)l Hl it~{t)&)dt=0,

2.2)subject to the conditions

I5&(t,)&= I5e(t.)& =o.
As an example, if we impose that

I g{t)& varies
only in the space of Slater determinants, Eil. (2.2)
leads to the time-dependent Hartree Fock (TDHF)
equations"'" which in the small amplitude approx-
imation are equal to the RPA.

%'hat is called the semiclassical method in the

literature' and in our paper amounts to consider-
ing restricted parametrizations of

I it!(t)& in terms
of (in the case of one canonical collective degree
of freedom) dynamical wave packets

I i'{p(t), q(t)} &~

The dependence of the wave packet on q(t) is sup-
posed to describe the distortion of the system dur-
ing the collective motion and the dependence on
p(t) describes the velocity dependence of the dyn-
amical wave packet These dynamical wave pack-
ets can be chosen in various ways which range
from self-consistent methods (like TDHF and
CHF) to educated guesses as to the nature of the
collective motion under consideration.

One determines the evolution in time of the par-
ameters q(t) and p(t) through the use of the vari-
ational principle (2.2) which leads to the classical
Hamiltonian equations

sH"(p, q)/sq, q = BH (p, q)/sp,

where the classical Hamiltonian is

ff"(p, q) = &pqlfflpq&,

provided one has

t&pql s,s-, —s-,s-, lpq& =1. (2.4)

In our paper we consider wave packets para-
metrized as in Eq. (1.8)

Ipq&
—~-ie ~fi QiI 0& (F 5)

A, Jh

where Q and P are canonical collective variables
in the many-body Hilbert space.

The parameters q and p in Eq. (2.5) are equal to
the expectation value of Q and P on the dynamical
wave packets Ipq&.

p = &pq I
I'I pq&

q =
& pq I 4 I pq&

where we used the property that the reference
state Io& satisfies the equations

&olqlo& = &olilo& =o.
Given the wave packet (2.5), it is easily seen that
Eq. (2.4) holds, since it becomes

&pql [t»qjlpq& =1.
The Hamilton equations can be rewritten in this

ease Rs

q(t) = (pql [-tq, ff]lpq&,

p{t)= &pq'I [- »If]l pq&.

In practical applications one is interested in
cases where the collective motion is slow. This
allows us to expand the classical Hamiltonian
H"(p, q), Eil. (2.3), in a power series in p. Owing
to the time reversal properties of Q and I' and
the reference state

I
0) in the expansion, one has
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only even powers of p and it is equal to

H"(p, q) = p„, + V"(q)+o(p').2M" ~q)

In Eq. (2.6) M"(q) and V"(p) are the classical
mass parameter and potential, respectively, and

they are equal to

v"(q) = &q lHlq&,

(2 6)

+2P2-„,-, P + V"(Q).

This ordering will be seen later on to be identical
to the one given by a proper quantization of the
motion along the collective path using GCM.

td" (q) '=sp'&pqlHlpq& I =&ql(Q IH Qlllq&.

As discussed in Ref. 2, in the semiclassical meth-
od we are not interested in the time evolution of
the parameters p(t) and q(t) ~ In this method the
wave packets

l p(t), q(t) & are used as a probe to ex-
tract the classical limit of the quantum collective
Hamiltonian Hc(P, Q}. Thus the fundamental hy-
pothesis of the semiclassical method is that the
Hamiltonian H"(p, q) is equal to the classical limit
of the quantum collective HamiltonianHc(Q, P).

The validity of this hypothesis depends strongly
on the properties of the wave packets lpq&, as
will become clear later on in this paper. Indeed,
besides other effects, the dispersion of Q and P
gives rise to an intrinsic energy, the zero-point
energy of the wave packet, which is always pres-
ent in the Hamiltonian H"(p, q). Therefore the
identification of H (p, q} with the classical limit of
Hc(P, Q) is valid only when this zero point energy
is, unless by an unimportant constant factor, neg-
ligible. Once this identification is made, to de-
rive the quantum collective Hamiltonian in the
semiclassical method, one is faced with the prob-
lem of quantizing the classical Hamiltonian
H"(p, q), which in the limit of slow motion is given
by Eq. (2.6)~ This s'tep introduces additional dif-
ficulties which stem from the dependence of the
mass parameter on the coordinate. This property
leads to the use of different orderings in the can-
onical quantization of q and p, all of them having
the same classical limit. This question 18 clearly
discussed in Ref ~3 where lt 18 pointed out that
the question of which ordering to use is intimately
connected to the zero-point energy corrections,
and so we defer a discussion of this point to Sec.
IV. Here we are going to use a prescription sug-
gested in Ref. 2 in which the quantum collective
Hamiltonian in the semiclassical method reads

A A ] A

2Q"(Q) 219"(Q)

III. THE GENERATOR COORDINATE METHOD

If& ff(o&I ~&&=~ (3.1)

The only unknown in Eq. (3.1) is the weight func-
tion f(n) which is determined by the TDVP (in the
stationary limit), resulting in the GHW integral
equation

e 8 n' —E e cy' o. ' do. '=0. (3.2)

In Refs. 8 and 9 it is shown that we can always
associate with the GHW "ansatz" equation (3.1) a
pxojeetion operator defined in the many-body Hil-
bert space. Therefore the dynamics in the GCM
scheme is equivalent to the many-body dynamics
restricted to this subspace, the GCM collective
subspace S, and we can identify the GCM collec-
tive Hamiltonian with the projection of the many-
body Hamiltonian onto S

A AA

II =SHSC

where S is the projection operator on S.
In this section, using tools developed earlier, ' '0

we are going to investigate the properties of the
GCM collective subspaee associated with the one-
parameter (static) and two-conjugate parameters
(dynamical) family of generator states lq1 and

lpq&, respectively. We are also going to show
how we can define, a posteriori, con.ective dyn-
amical variables and how we ean express the col-
lective Hamiltonian H~~cM in terms of these varia-
bles. All the details of what follows can be found
in Ref. 10.

In the previous section we presented a brief dis-
cussion of the semiclassical method based on the
time dependent variational principle (TDVP), Eq.
(2.2). As shown there, at one point in this method
one reaches a classical stage. This stems from
the nonlinear character of the variational space
of the wave packets lpq&. Indeed, if we impose
that

l g(t)& varies in a subspace of the many-body
Hilbert space, the TDVP is equivalent to quantum
mechanics restricted to this subspace. Therefore
to have a theory built upon the TDVP which sat-
isfies the linear character of quantum mechanics
(the principle of superposition), one should take
as the variational space of

l &I&(t)& a linear space.
A theory of this kind is the GCM introduced by
Griffin, Hill, and %heeler. '

In the GCM one considers a subspace of the
many-body Hilbert space spanned by the states
which can be constructed as a linear superposition
of the generator states

l
o.'&
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A. A representation in the GCM collective subspace
static and dynamical wave packets as generator

states

The static and dynamical wave packets are, re-
spectively, equal to

Iq& =e " Io&,

Ipq& = e «~e«'cI 0&

[Q, P]=1.
(3.3)

The reference state
I

0& is the vacuum of a boson
constructed in terms of the operators Q and P,

B Io&=0,

1 QB= —+iPbp (3.4)
0

b '=2&ol Q'I o&

which shows that Ipq& is a, coherent state.
Using Eqs. (3.4) we can easily show that the

wave packets satisfy the relation

jection of the reference state Io& associated with
the operator I', and the projection operator onto
S can be written as

S, = dye„k . (3.9)

pQ' p p g, a p ~V dp dv =2~~n & ~, a p~9'

and they are equal to

~ jqk

4.;~(p&q)=(2,),i, e.(p b)-

On the other hand, the overlap kernel (pq Ip'q&&

is easily seen to be equal to [using Eqs. (3.4)]

&p Ip«& ei a&- '&&&p+p 'q q ) (p p ) bp

4b, ' 4

(3.10)

The eigenfunctions and eigenvalues of this over-
lap kernel are determined by the equation

[-1s,+1b,'(13, p)]Ipq& =o,

which can be rewritten as

[(Q -q)+»'(P —p)] I pq& = o.

(3.5a)

(3.5b)

and the eigenvalues are independent of k. The
eigenfunctions &f&„(p) and the eigenvalues X„ are
eigenfunctions and eigenvalues of the Hilbert-
Schmidt kernel

To determine the natural representation in the
GCM collective subspace, consider first the static
wave pa. cket. Using Eqs. (3.4) the overlap kernel
&qIq') is easily seen to be equal to

(q I q &) e &» q') 2/4&&p2--

&(p p')=&0Ie '"5(P)e"'Io&

dq&pq Ip'o& .1

In our case (3.11) is equal to

(3.11)

The eigenfunctions and eigenvalues of the over-
lap kernel are determined by the equation

g jl, g dg =27Th. k j&, g

(5,1/2
2 2 Q

1 2

g(p ps) &

p e-p
&&

/2&&p e-p'2bp2/2

(3.12)

and they are equal to

II, (q)=~~, e'"'

~(u) = b, /~vi& e

(3.6)

which shows that it is separable and equal to the
product of two Fourier transforms of the ground
state of a harmonic oscillator. Therefore its eigen-
functions and eigenvalues are easily seen to be
equal to

y„(p) = e„" (p),

A

dq ~&~a~ ca&
2w

(3.8)

Thus, the orthonormal states Ik&, are seen to
be equal to the normalized Peierls-Yoccoz pro-

According to Ref. 10 the natural representation
in the collective subspace S, associated with the
SGCM, is given by

1 1& 1~I 0&
I &1=[„g(b)]1& Iq&&~«) q-(&ol jpvlo&)1/2

(3.7)

pwhere m,"is the Peierls- Yoccoz projection oper-
ator associated with the operator I'

fe ~e I& q =»)« e &'q&,'''",(3.13)

where the kernel R(p'q', pq) is the projection op-
erator onto the orthogonal complement of the null
space of N

where &p„"p(p) is the Fourier transform of the har-
monic oscillator wave function p"„p(~).

As is thoroughly discussed in Refs. 8 and 9, the
existence of zero eigenvalues of the overlap kernel
implies that the generator states are not linearly
independent. The linear dependence can be ex-
pressed as
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R(«'«';««) f«=««. :.(«' «')«:: (««)

=2,&P'q'IPq& (3.14)

FoQwing Ref. 10 the natural representation in
the subspace 8, associated with the DGCM is given
by

[pq&y, ,(p, q)epdq=w~ ~0&, (3.15)
1

dynamical wave packet considered in this paper is
redundant and the proof of this fact runs as fol-
lows'

As the generators states ~q& and ~pq) are the
vectors defined in the collective subspaees 8, and
8» respectively, one can find its components
along the bases tk&, and ~k&2. To do so one uses
E(ls. (3.V) and (3.15) and one finds

[p«& f =«e«"'«,"(p-«)[«&„

where m» is the so-called Peierls-Thouless dou-
ble projection operator associated with the opera-
tor P

[«& f««=[a(«)['*e '"[«&, .
(3.1V)

egg) A A

Jt g, dq gap(i() g) e '«~e-"o.
271

(3.16)

Thus the orthonormal states )0&, are seen to be
equal to the so-called Peierls- Thouless double
projection of the reference state ~0& associated
with the operator P, and the projection operator
in 8, is given by

S2= dk &22 k

8. Relationship between the subspaces

In Sec. IIIA we have shown how we can quantize
the collective motion along the static path and the
dynamical path using GCM. However, in general,
the subspaees associated with these two paths are
different. ""In other words, the two subspaces
carry different quantum degrees of freedom. How-

ever, as has been pointed out before, when one
uses the dynamical wave packet

~
pq& in the semi-

classical method one thinks of ~pq& as describing
the distortion of the system along one canonical
degree of freedom only. Therefore when com-
paring the two theories, one of the requirements
that one has to impose, as was done in Ref. 1, is
that the subspaees associated with the static and
dynamical paths should be ldentleal. The dynam-
ical wave packets which satisfy these requirements
ax'e caQed redundant.

In general it is very difficult to establish the
necessary and sufficient conditions that a dynami-
cal wave packet should satisfy in order to be re-
dundant. In the case of wave packets genexated as
in E(l. (1.8), this has been done in Ref. 10 with the
conclusion that the requirement is that the re-
duced kernel, E(l. (3.11), should have only one
eigenvector with nonzero eigenvalue. Besides, in
Ref. 1 a sufficient condition is discussed, called
local redundancy, which leads to a redundant
dynamical wave packet. In our case the require-
ment of local redundancy demands that Eci. (3.5)
holds. All this leads us to the conclusion that the

Since ~q& = ~p=0, q&, one has

[«& f««e="«&(«) [«), .

Uslllg the above e(luatlon ln Eci, (3,V) one has

(I &, = )u&„

which proves the identity of the two subspaces.
To have a better understanding of this matter,

consider a canonical transfox'mation from the
particle degrees of freedom to coQective, Q and P,
and intrinsic degrees of freedom. Together with
this transformation we introduce a product repre-
sentation of the many-body Hilbert space,

/q, g& = fq& e fg&,

where the states
~

Q& span a space of one degree
of freedom, the collective space, and

~ $&, ~ 6
=

~ $„f„,. . . , 4,&, span a space of (&-1)degrees
of freedom, the intrinsic space. The wave function
associated with the

~
Q(& representation to the base

states ~k&, and to the wave packets
~
q& and ~pq&

are, respectively,

e)AQ
(Qh (it& )(2 )g(2 xp($)

) Z/2

(()(I«& =( «- [ « "'"""«.((),
~

~

2
1 ) & ~2 e v('Q (()8 ( Q «) )2 bp X (])

(3.18)

This shows that in the collective subspace
S,(S, =S,) the collective and intrinsic degrees of
freedom are kinematically decoupled and both
wave packets axe given by the product of a wave
packet in the collective variable and a wave func-
tion which depends only on the intrinsic variables.
The difference between the wave packets is the
velocity dependence of ~pq& which is introduced
by the phase in E(l. (3.18). Thus the redunancy
is seen to be a consequence of the fact that a fami-
ly of static Gaussian wave packets form a complete
set in the collective space (that has only one de-
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C. Collective operators and collective Hamiltonians

Once one has the natural representation in S„
the collective operators can be found":

P, ~h&, =h~h&„

Q, [h&, =-ts/s, (h&, .
Since ~h&, is equal to the Peierls-Yoccoz pro-

jection of the reference state
~
0) associated with

the operator P, one has, by construction

P~h&, =h ~h&, .

(3.19)

(3.20)

Also we can easily show using Eqs. (3.5) and (3.7)
that

Q f h&, = -ts/s,
f h&, . (3.21)

Thus, the canonical collective operators in the
GCM collective subspace are equal to the projec-
tion onto this subspace of the canonical operators
in the full many-body Hilbert space

Qs, = QS, =SxQ s

Ps =PS
1

The natural representation ~h&, is the specific
representation obtained by the diagonalization of
the overlap kernel and Eqs. (3.19)-(3.21) show
that it diagonalizes the operator P. However,
once we found this "momentum" representation,
by unitary transformations in S, we can find a rep-
resentation which diagonalizes any Hermitian op-
erator defined in S,. In particular we can find a
"coordinate" representation given by the Fourier
transform of the momentum representation

gree of freedom), whereas the dynamical Gaussian
wave packet form an overcomplete set.

This overcompleteness is responsible for the
linear dependence of ~pq& [see Eq. (3.13)] which
leads to the existence of eigenvectors of the over-
lap kernel with zero eigenvalue.

1
IX& =(„)vn e '"

~h&,

v'"IO)
(Ot &PIO ' (3.22)

where m & is the Peierls-Yoccoz projection oper-
A

ator associated with the operator Q

e '"'e "~dp
27r

which diagonalizes the operator Q

Q i X&, =X I X&

P (X&, = ts/s, ~X&, .
(3.23)

As discussed before the GCM collective Ham-
iltonian is defined as the projection of the many-
body Hamiltonian onto the GCM collective sub-
space

+
GMCec = Seas (3.24)

Using the coordinate representation (3.22), the
dynamical equation in S, can be written as a wave
equation in the coordinate representation

where

h(x, x )y(x', t)dx =they(x, t)/St,

P h-'(Q):-E P( ,P. ..E ,Pl(.f())Q). . . )k

m anticommutators

h(x, x') =,(x~H)x'&,

and (t)(x, t) is the collective wave function &t (x, t)
=,(x (I()(t)&. Also we can express the GCM collec-
tive Hamiltonian in terms of the collective varia-
bles Q„, P, ,"

s,ids, =s, f—.:i.ir. (()):)s,,
m=0

where the normal order is defined as

k (s) fd(, ,=(~+(/
l

les-d(di ), s

d -- ~x+(2, Q, .. . H, ... g —(2~
m commutators.

(3.25)

We see that this ordering is identical to the one given by Eq. (2.7), if we stop at second order in an ex-
pansion in powers of P. Other useful expressions of EF™(x)are

s"'(~) fds', ".,(s+sisl((ls=sis), -

d , (ds s)(dlsl 'd()s- d)s
l/2 (3.25)
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(3.27)

)275 $2ff
H(2m)( ) ( I))n ( 0)

dy ii)x )) yo/4 g 0 dq h (q)e-io))

In general the reduced energy kernel is a function which depends slowly on the difference of the genera-
tor coordinates. Therefore we can expand the reduced energy kernel as a power series expansion on the
difference of the generator coordinates

a(q, q') =I 2
'",

( q ) (q —q')'",

where h(q, q') is symmetric in q and q due to the time-reversal properties of Q. Using this expansion in

Eq. (3.26) one has"

IV. COMPARISON BETWEEN THE SEMICLASSKAL
AND THE GENERATOR COORDINATE METHOD.

APPLICATION TO THE GOLDHABER-TELLER
MODE IN He

The classical Hamiltonian H" (p, q) is equal to
[see Eq. (2.3)J

H" (P, q) = (Pq I HI Pq) (4.1)

and since the wave packets Ipq& are states defined
in the GCM collective subspace 8» one has

H"U, q) = (Pq I si H&, I Pq&

(4.2)

Also the use of the product representation (3.1V)
shows that the GCM quantum collective Hamilto-
nian is the trace on the intrinsic variables of
HIx, &&x, I

H," =tr, HIX,&(X,I. (4.3)

Equation (4.2) shows that the "classical" Hamil-
tonian H'~(p, q) is equal to the expectation value of
the quantum collective Hamiltonian &~ "on the
wave packet

I pq&. We would like to point out that
this property is very general since it depends only
on the fact that the dynamical wave packet belongs
to the GCM collective subspace 8,. Thus we can
state that the description of the dynamics accord-
ing to the two methods is equivalent when the clas-
sical Hamiltonian H" (p, q) is the classical limit
of the GCM quantum collective Hamiltonian
Hcc"(P, Q). The difference between the classical
Hamiltonian H" (P, q) and the classical limit of the
quantum coils'ctive Hamiitonian Hc (P, Q) is the
zero-point energy of the wave packet IPq)" '"

H" (P, q) =H'. "(&P&, (i&)+E.,(P, q). (4.4)

Once one has established that the dynamical wave
packet IPq& is redundant, we can say that the two
theories are equivalent when the dynamical effects
of the zero-point energy are negligible. In what
follows we are going to analyze these effects in a
specific example, the Goldhaber- Teller mode in
4He.

A. The Goldhaber-Teller model of the giant
dipole resonance

According to the Goldhaber-Teller model of the
giant dipole resonance the dipole vibration is de-
scribed as a rigid displacement of the protons
against the neutrons. In the dynamical case we
also have a relative momentum between protons
and neutrons. This picture of the dipole vibration
can be described by the dynamical wave packet' '"

(4.5)

In Eq. (4.5) the operators Q and P are, respec-
tively, the g component of the relative coordinate
and momentum between protons and neutrons

A

Q=Rg -R@,
Pf ~ g
~+2 ~+X ~

A A A A

R~, P~, R„,P„are the g component of the center of
mass coordinate and the center of mass momentum
of the protons and the neutrons, respectively. In
the case of self-conjugate nuclei (H=Z) Q and P
are equal to

j=—g ~,(i)T,(i),

P = 2 g P, (i)T,(i),
t

where x(i) and P(i) are the coordinate and momen-
tum operators of nucleon i and T,(i) is the z com-
ponent of the isospin operator. The reference
state IO) is the ground state of the nucleus or an

appl oximatlon of it.
The operators Q and P are canonical

[j,p]=i (4.6)

and the parameters q and P are equal to the expec-
tation value of Q and P on the wave packet IPq&

vql41pq&=q, (4.~)



K. J. V. de PASSOS A WD F. F. de SOUZA CRUZ

where we assumed

&0IP I0&=&0 fq f0&.

In oux' Rpphcatlon to dipole osc1llRtlon 1n He we
approximate the reference state IO& by a Slater
determinant of harmonic oscillator wave functions.
In this case it is easily seen that

(@+i';)fo)=0, (4.8)

where» is the reduced mass, p, =(Am)/4, and ao
is the size parameter of the oscillator well, ao
= (Klmw )'~'. The discussion up to now indicates
that the dynamical wave packet I pq) satisfies all
the requirements imposed on the previous sec-
tions. Thus the last ingredient necessary to per-
form a numerical calculation is the many-body
Hamiltonian which we assume to be of the Skyrme
type L6, 16

where bo is the size parameter of the oscillator of
the relative motion of the pxotons against the neu-
trons

j. y ) y
i i, 9 t, j,k

(4.0)

where the two-body force is~6

~&y =f0(i+~of' ) 5(r(i) —r(j))+ g f, 5(r(i) —r(j))+6(r(i) —r(j))

I p(i) p(j)l 5("(.) "( )) p(i) —p(j)
h\

where P, is the spin exchange operator and ~80, is the spin orbit force.
bod f '

pa am t '
d a 15 36

V,,„=t,5 (r(i) —r(j)) 5(r(i) - r(k)).

{4.10)

(4.ii)

B. The semiclassical HamBtonian

The semiclassical Hami ltonfan Eq. (2.3) is given

by

eter Rre, respectively, equal to

l'„(q) = (q I
ff

I q&,

~., (q) =~., '(q) = &qfq, [If, q]] Iq&.
(4.i V)

pH" (p, q) = &q ~H Iq&+ Q, (-1)"

&q Ilq, lq. . .[q, JI].. .]] I q),
2n brackets

whe~e Iq) is equal to

I.&= -"'f0&

(4.12)

(4.is)

The inverse of the semiclassical mass parameter
ean be written as

( )
1+&(q)

I

where z(q) is the enhancement factor of the energy
weighted dipole sum rule

In the specific case of the Skyrme force one
has""

lq, lq, If]]=-„+-'Z

~(q) = „~-'&q fl q, (i, ql] I q&.

C. The GCM quantum collective Hamjtltonian

& (r(i) —r(j))(1-T.(i)T.(j))
(4.14)

which shows that

(q, (q, (q, ff]l]=0. (4.15)

Therefore the expansion stops at second order
and the semiclassical Hamiltonian ean be exactly
written as f (q) =if'"(q),

(4.18)

The quantum collective Hamiltonian is given by
Eq. (3.25) and as a consequence of Eq. (4. 15) it
reduces to

a,"'"= R(ff&'&(q) +!(f,(J,2& '&(q)P)R,

where the quantum collective potential and mass
parameter are equal to

ff"(P,q)= -~
(

)+1'.,(q),
ei ~

(4.15)
ff(2&

a(q) = m(q)-'=

whex'e the SemiclRss1cRl potent1Rl Rnd mass paraDl- In our example the reduced energy kernel is ex-
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actly given by"

h(q, q') =V„(q) —
Bh, ( )

q,
cl ~

where

q = (q +q')/2,

(4.l9}

tg =g -Q'

Thus V(Q) and B(Q) can be written as

V(Q)= —dZ'8' e "~' dq V (q)—:e '

8(q)=q fuse'"e'""

fails

, (q) '".8,

(4.20)

~P'=&oiP'lo& =
0

%6 can also invert these equations to express the
semiclassical potential and mass parameter as

B„(q)= B(q),

g 2+P2
V„(q) = V(q)+, B.,(q),

(4.21)

Of course, we could also derive these equations

by taking the, expectation value of II~ "on the wave

packet (pq& as shown in Eq. (4.2).
Thus the zero-point energy in our example is

given by

where B(Q}and V(Q} are the expectation values of
the quantum inverse mass parameter and potential
on the wave packet (q&

B(q)= f&(x)((x(q)~i*de,
(4.22)

v(q)= ~ v(~) /(x)q&f'd~.

D. Qualitative discussion

According to whRt has been shown so far~ the
zero-point energy corrections depend on the prop-
erties of the wave packet ~pq& and the GCM in-
vex'se mass parameter and potential.

To shed light on this point, we consider the case
where the quantum inverse mass parameter does
not depend on the coordinate,

B(~)=B,.
Therefore it follows that the semiclassical in-

verse mass parameter is also independent of the
coordinate, and so the kinetic zero-point energy
is a constant in this case.

Therefore we ean always find a wave packet so
that the dynamical effect of Zzp(q) is negligible.
Indeed we can decrease the width of the wave
packet Iq& until one has V(q) = V(q). However, the

uncertainty principle states that when b Q is
small, 4P2 becomes large and so the kinetic zero-
p't gy';bt ' 't' t t,
it does not have any effect on the dynamics. How-

ever when B(x) depends on the coordinate this is
not guaranteed a priori since, as before, we can
make the potential zex'o point energy small but the
kinetic zero-point energy, which now depends on

the coordinate, increases when we decrease the
width of the wave packet. Anothex' example which

hRS been Blvestlgated M the literRtux'6 ls the
case when it is valid to consider an expansion of
the reduced energy kernel as a power series in

g Rnd Q'o

h(q, q )-h()+-(h20q +h, oq +2h„qq )+ ~ ~ ~,

where

h..=-&0(ap')0&+z, &0[7')0&,

h„= (o
)
p'8(0&+z-, &0) I")0,

Z„(p, q) = —,[B(q) -B(q)]+ V(q) —V(q)

&P2-
+ B(q) . &4.23)

Usually the effects of the zero-point energy are
investigated in the static limit (p = 0)." Also one

separates it into two pieces, the potential zero
point 6Ilex'gy

z„,(q) = v(q) —v(q), (4.24

which depends only on the potential, and a kinetic
zero-point energy

h„=(0(f4f )0& z,(0)i'(0&.

In this case the quantum collective Hamiltonian is,
using E(ls. (3.25) and (3.26),

2

0

B =M '=(0)[Q, [H, Q]])0&,

A.„={0[[P, [a,P]] [0&,

A ~P
z«, (q) =

2
B(q),

which depends on the kinetic energy.

(4.25)
E = 0 ' +'X@20.

The semiclassical Hamiltonian in this case be-
comes
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ff (P~q)=+a+ +-, +IIq ~

0

which differs from the GCM quantum collective
Hamiltonian by the constant zero point energy
which does not have any effect on the dynamics.

E. The effect of the zero-point energy on the
Goldhaber-Teller mode in He

All the details of the calculations can be found
in Refs. 17 and 19. In the case of 4He we can find

[McVj

"cL

~ ~ ~V

50

40

20

IO

FIG. 1. Plot of the classical mass parameter {full
line) and quantum mass parameter {dotted —dashed
line) in units of the nuclear mass as a function of the
coordinate g. The size parameter of the oscillator well

ao is equal to 1.57 fm.

FIG. 3. Plot of the zero-point energy as a function
of the coordinate g.

analytic expressions for all the quantities of in-
terest, which was the procedure adopted in this
paper.

Before discussing the numerical results we
would like to make two comments:

(a) The center of mass motion is exactly fac-
torized in the wave packet ~pq) so there is no
spurious center of mass motion.

(b) The spin-orbit force does not contribute to
the inverse mass parameters and potentials since
the density of protons and neutrons on the wave
packet ~pq) is a scalar in spin space (there is no
v'ector part in the density).

In Fig. 1 we have a graph of the classical and

quantum mass parameter as a function of the co-
ordinate. This graph indicates that the mass pa-
rameters varies slowly with x and in the limit
of x going to infinity it reduces to the reduced
mass. This is an expected result since when the
neutron-proton clouds are well separated the
neutron-proton interaction vanishes and so does
the enhancement factor. In Fig. 2 we have a graph
of the classical and quantum potentials. We can
see that they differ considerably, the main effect
being that the quantum potential is softer. In Fig.
3 we plot the zero-point energy as a function of
x and we see that it depends strongly on z. Fig-
ures 4 and 5, which are plots of the kinetic zero-

EifZI

(MeV)

IO-

20-

0.5 i' l.O

/

l.5 2.0 2.5
5.0 =

4.0-
3.0-
2.0-
I.O—

FIG. 2. Plot of the classical potential {full-line) and
quantum potential {dotted-dashed line) as a function of
the coordinate x,

0.0 I I I I I I

0.5 I.O I.S 2.0 2.5 3.0 X/oo

FIG. 4. Plot of the kinetic zero point energy as a
function of the coordinate x.
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point energy and potential zero-point energy, show
that the x dependence of the zero-point energy
comes almost exclusively from the potential zero-
point energy. Indeed Fig. 4 shows that, in our
case, the kinetic zero-point energy is almost a
constant, which is a consequence of the almost
independence of the classical mass parameter on
the coordinate. On the other hand, the strong de-
pendence of the potential zero-point energy on x
is a consequence of the fact that. we are using as
a probe a very wide wave packet (b.Q'=a, '/2) com-
pared to a characteristic dimension in which the
quantum potential changes appreciably (-a,). Fig-
ure 5 also shows that the potential zero-point en-
ergy goes to zero for large x since the quantum
potential goes to a constant value and so the po-
tential zero-point energy vanishes. Therefore
for large g the only difference between the clas-
sical and quantum potential comes from the kinet-
ic zer'o-point energy.

To discuss in more detail the effect of the zero-
point energy on the dynamics one should solve
the SchrMinger equation for the semiclassical
and quantum collective Hamiltonians. However,
this, as an extension of the work to "O and "Ca
will be the subject of a separate publication.

In Ref. 1 it is proposed that the two theories
are equivalent once two requirements are satis-

IO.O

5.0

0.0
X/ao

"5.0

-IO.O—

FIG. G. Plot of the potential zero-point energy as a
function of the coordinate x.

V. CONCLUDING REMARKS

In this paper we have investigated the relation-
ship between the semiclassical and the generator
coordinate methods, using dynamical wave-packets
parametrized as

Ipq& =e-'"e"& lo&,

(5.1)

fied: (a) the wave packet Ipq) is redundant, where
redundancy means that the subspaces associated
with the GCM to the dynamical, Ipq) and static,
Iq) = Ip=O, q) wave packets, taken as generator
states, are identical; (b) the effects of the zero-
point motion of the wave packet

I pq) is negligible.
Requirement (a) is based on the observation that
the dependence of

I pq) on the parameters p and q
is thought to describe the distortion of the system
along one canonical degree of freedom. Once the
wave packet is redundant requirement (b) means
that

I pq) is able to extract the classical limit of
the GCM quantum collective Hamiltonian.

Using tools developed earlier' "we show that
the wave packet I pq) parametrized as in (5.1) is
redundant, which in our case is a consequence of
the global decoupling between the intrinsic and
collective degrees of freedom. Once the wave
packet is redundant we show that the semiclassical
Hamiltonian is equal to the expectation value of
the quantum collective Hamiltonian in the wave
packet Ipq). So, the two theories are identical
from the point of view of the dynamics if

I pq)
is able to extract the classical limit of the GCM
quantum collective Hamiltonian. This last pro-
perty depends essentially on the type of wave
packet which is used and it reduces to the analyses
of the effects of the zero-point energy of Ipq&.
This problem is investigated numerically for the
Goldhaber-Teller mode in 4He, where it is shown
that the effects of zero-point motion is apprecia-
ble. In our example this comes almost exclusively
from the potential zero-point energy and, of
course, this depends on the type of mode that is
considered. At this point we would like to remark
that the conditions under which the wave packet
Ipq) is able to extract the classical limit of the
GCM quantum collective Hamiltonian are in gen-
eral different from the conditions under which
the Ehrenfest theorem holds. This stems from
the fact Ipq) is a parametrized (constrained) wave
packet and not a time-dependent solution of the
Schrodinger equation in the GCM collective sub-
space. So, one can under certain conditions, para-
metrize Ipq) so as to be able to extract the clas-
sical limit of 0~™even though the dynamics given
by JIG " is not semiclassical.

There are many examples where the study of
the effects of the zero-point motion in micro-
scope theories of collective motion is important"
as the case of fission, especially in light nuclei.
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