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Classical limit of the interacting boson Hamiltonian

P. Van Isacker*

Physics Department, Kale University, 6'em Haven, Connecticut 06511

Jin-Quan Chen
Physics Department, Kale University, 1Veu Haven, Connecticut 06511

and Department of Physics and Atmospheric Science, Drexel University,

Philadelphia, Pennsylvania 19104

(Received S January 1981)

%e present a simple method for the derivation of the classical limit of the most general

interacting boson model Hamiltonian as well as the Hamiltonians in the three limits of the

interacting boson model. Also the problem of higher order terms is considered.

NUCLEAR STRUCTURE Classical limit of the interacting boson

model.

In recent years, one has seen the confrontation of
two different approaches to describe nuclear collec-
tive excitations: on the one hand the geometrical

approach, essentially based on the quadrupole de-

grees of freedom (for instance, Refs. 1 —3) which
are extensions of the Bohr-Mottelson vibrational

Hamiltonian, and on the other hand the algebraic
approach (for instance, Refs. 4—8), which exploits
symmetry by using group theoretical methods. In
this paper, we will discuss the relation between the
interacting boson model (IBM) of Arima and Iachel-
lo and the geometrical models.

To start with, we want to point out a conceptual
difference between the IBM and the geometrical
models, which is important for the subsequent dis-

cussion. The problem of nuclear collective motion
is formulated by Bohr and Mottelson ab initio in

terms of shape variables (for instance, in the case of
quadrupole variables, the three Euler angles 9;, and
the intrinsic deformation parameters P and y). On
the other hand, in the IBM one immediately starts

from a Hamiltonian which is written in second
quantized form in terms of s and d operators.

Although one might doubt the eligibility of using

shape variables in quantum problems with a relative

small number of particles, the concept of shape has

been extremely fruitful in obtaining at the same time
an intuitive and quantitative understanding of nu-

clear collective motion. For this reason, it is impor-
tant to bridge the gap between the IBM and other
nuclear collective models, which are formulated in

terms of shape variables. This has been done in a
number of recent papers.

Based on the coherent state formalism and mak-

ing use of results and an algorithm developed by
Gilmore and Feng, ' ' a technique for going from
an IBM Hamiltonian to a potential energy surface
in the variables P and y, has been outlined in Ref.
9. Within this coherent state formalism, one can
obtain for a system with a finite number of particles
A' an upper bound E+ and a lower bound E for
the expectation value of the Hamiltonian (in general,

any operator belonging to a compact Lie algebra).
Furthermore, one can show that, in the limit
E~ co (classical limit), the upper and lower
bounds will coincide, both giving the exact result.

Applying this method to the IBM, one can derive
for each SU(6) Hamiltonian a potential energy sur-

face E(P,y), by calculating the upper bound of the
ground-state expectation value of this Hamiltonian.
In this paper, we calculate the upper bound which
is simply given by the expectation value of the
Hamiltonian in the coherent state. The lower
bound has a more complicated structure.

In this way, Dieperink et al. showed that each
of the three limiting cases of the IBM corresponds
to a certain shape phase and they also studied the
nature of the shape phase transition in the region
between the three limits. However, in constructing
the classical limit they used simplified versions of
the three limiting Hamiltonians originally employed
by Arima and Iachello. " In a recent paper of
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[b;,f(b)] = (la)

Ginocchio and Kirson, ' the problem of finding the
classical limit of the most general IBM Hamiltonian
was solved. In this paper we present an alternative
simple method for calculating the expectation value
of the IBM Hamiltonian in the coherent state.
With this method we are able to reproduce the
results of Ref. 16, but due to its simplicity, we can
also consider the classical limit of cubic terms in the
IBM Hamiltonian and its relation to triaxiality.

First we will give some general results which can
be derived easily. It is well known that, b; (b;) be-

ing boson creation (annihilation) operators and f(b)
being a polynomial of b&,bz, . . . and b&,b2, . . ., the
boson commutators can be evaluated by means of
differentiation, i.e.,

(i)N„=—(8"~1~8™)= 8" ' ga; t 8"a

Bb;

= na N„ i
——nfl"2 t 2'

where we used the abbreviation a = g,.a;;

(ii) (8"
~

A ) ~

8"")= n X„)(8
~

A )
~

8")

(4a)

or

(iii)(8" ~A2~8 ") =
2

n(n —1)
pt —2

(A, ) —= X„-'(8"~A, ~8'") =,ga, a,g;, ;a
jf

(4b)

[f(b),b; ] = (1b)
or

&& (82 ~A 2 ~

Bt2)

Suppose the operator B is a linear combination of
various kinds of bosons

8 =pa;b; (2)

(A, ) = X„-'(8"
~

A,
~

8'")
n(n —1)

4 ex) cxjcxkcxl nIJkl
ij kl

(4c)

A )
——gg;~b; bj. (3a)

and let 1 be the identity operator, 3
&

a general one-

body operator

These results can be extended easily to a general m-

body operator.

Applyin~ this to the IBM, where we use as boson
operators s,d 2, . . . , d2, we definet

and 3 2 a general two-body operator

(3b)A2 = gn;~~b; bj bkbI
ij kl

With the help of Eqs. (1), the matrix elements of the

operators 1, 3 &, and 32 between the n-boson states

~

8 ") = (8 )"
~

0) can be written down directly:

8 =s+QP d

In the intrinsic frame we have

1po= pcosr, p 2 p2 p jsmp+1v2

(6)

For the most general IBM Hamiltonian

8 = e,n + e~n~+ g —cI(2l + 1)' [(d d ) '(d d)' ']' '+ t72[(d"d )' (ds)' '+ (s d ) '(dd)' ']' '

+ —,uo[(d d")' '(ss)' '+ (s s )' '(dd) ']' '+ u2[(d s )' '(ds)' ']' '+ —,uo[(s s )(ss)]' '

we obtain the following classical limit

n 2 n(n —1)
1+ p2 & ~ (1+p2)2(e, + eq ) +

X (ap'+ a2p cos3y+ a3p + —,uo),

with

(8a)

1 1 9

1/2
1~2=

35

1
(Uo+ u2)

(8b)
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The classical limit of the IBM Hamiltonian in the
three diAerent limits can be found by inserting the

appropriate values for the constants in Eq. (8). The
Hamllton1ans and their correspond1ng classical limit
are given by

(I) SU(6) D SU(5) D O(5) D O(3)

a")= e,n, + g —,
'
(2t + 1)'"

)( c [(ytd t)(i)(dd )(l)](0)

E(l)(p) —(~(I))

= eq + a)n(n —1)
np' p'

1+P' (1+P')'

tential energy surface in each of the three limits.
For the limiting case (I) the equilibrium shape of the
nucleus is always spherical (p = 0). For the limit-

ing cases (II) and (III), there are two competing fac-
tors: one favors spherical form and the other favors
deformation. %e will give an illustration of this

phenomenon in both the limiting cases (II) and (III).
In looking for the equilibrium shape in the O(6)

limit we have to minimize E""'(p) of Eq. (1 lb) with

respect to p. Analysis shows that a minimum oc-
curs at p = 0 when «3 & 4(n —1)«q and at

p = I [4«4(n —1) —a3]/ [4«q(n —1) + «3] I

w11e11 /c3 ( 4( n —1 )«4. For instance, for the nu-

cleus Pt))s t"e empirical parameters are Ref'

with a) given by Eq. (8b).

(11)SU(6) ~ SU(3) ~ O(3)

8'"'= —«, g g —«,1. I . (10a)

( ) n 11, n(n —1)

1 P' 4 (1+P')'

6np
1+P' (10b)

with

(III) SU(6) D O(6) D O(5) D O(3)

a""'=~s,s +ac, +cL I. , (1 la)

[(d t d )(3)(d td )(3)](0)
3

[(dtd )(1)(dtd )(1)](0)
3

(1 lb)

pg
A2 2

E""'(p) = «3 + «qn(n —1)
21+P' 1+P'

2
with K3 =

3 8 + 6c and Kg = A/4.
From Eqs. (9b), (10b), and (1 lb) we know that

there are two independent parameters for each limit-

ing case and also that E"' and E""are y indepen-
dent. In Fig. 1 we give a typical example of the po-

0.5

FIG. 1. (a). Energy versus deformation plot in the
SU(5) and 0(6) limit for the nuclei ' Ru» and "Ptl}8,
respectively, according to Eqs. (9b) and (11b). The
parameters are taken from Refs. 6 and 8. (b) Potential
energy surface for the SU(3) nucleus '

Gd92, according
to Eq. (10b). The contour lines are marked in keV. The
parameters are taken from Ref. 7.
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P' —D„P' —3P —D„— = 0, (12)

with

(6az/a, —3n + 3/4)

(n —l}V2

Again we illustrate this in the case of the nucleus

Gd92 where ~~ ——7.6 keV and ~2 ———7.7 keV.
With these values, we obtain from Eq. (12) three
minima for p, two of which are negative and must
be discarded. The third ininimum at p = 1.2426
[see Fig. 1(b)] is only slightly difFerent from the
value p = 1/2; quoted in Ref. 9.

Since the classical limit of the most general IBM
Hamiltonian depends only on y via a term in cos3y,
it is clear that, even for this general potential energy
surface, a minimum with respect to y can only oc-

A = 171 keV, B = 300 keV, and C = 10 keV.
Thus, a3 ——260 keV and x4 43 keV, which shows
that the equilibrium shape of ' Pt is slightly de-
formed, p = 0.7319, instead of p = 1 quoted in Ref.
9, where the first term in Eq. (11b) is ignored. The
deformation parameter piaM, which we obtain here,
is connected with the deformation parameter of
Bohr and Mottelson AM by the approximate rela-
tion, derived in Ref. 16, paM —1.18 (2E/A)piaM,
where A is the number of nucleons and E the
number of valence bosons.

In the SU(3} limit, the equilibrum shape can be
found by minimizing E'"'(p,y) of Eq. (10b) with
respect to p and y. We remark that E'"'(p,y) is in-
variant under the substitutions (p,y) ~ (p, —y) ~
(p,y+ 120'}, and (p,y) ~ ( —p,y+ 60') (as should
be) and consequently, we may restrict ourselves to
the region p & 0 and 0' & y & 60'. From Eq. (10b)
it can be seen that for realistic (positive) values of Iri,
E'"'(P,y) reaches a minimum for y = O'. Further-
more, it can be shown that the extremum values of
E'"' (p,y = 0') with respect to p, are given by p = 0
and the roots of the equation

0.5

FIG. 2. Potential energy surface of the cubic term
[[d d ]'"d ]' ' [[dd]"'d]' ' according to Eq. (15). The
energy units are arbitrary.

cur for y = 0' or y = 60'. In other words, the
equilibrium shape of the classical limit of a general
IBM Hamiltonian can never be triaxial. Only the
inclusion of higher order terms in the IBM Hamil-
tonian, can lead to triaxial equilibrium shapes. %e
will illustrate this by considering cubic terms with
three creation and three annihilation operators of d
bosons. Such cubic terms can be written in general

as

d (I,k,r) =—[[d d t]' 'd ]'"' [[dd ]' 'd ]'"' . (13)

There are five linear independent combinations of
type (13), which are determined uniquely by the
value of r( = 0,2,3,4,6). In particular, one can al-

ways choose l = k. Other cubic terms, which differ
from (13) by the order of the operators dt and d,
can be put into relation with the d (l,k,r) and/or
lower order terms. Using the differentiation
method, it is easy to show that

TABLE I. The coefficients A and B of Eq. (15) in the expression of the classical limit of
the cubic term [[d d ]'"d ]'"' [[dd]'"'d]'"'.

A

B 2

35

1

5

1

7
1

7

3

49
3

35

14

55
S

385
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&d(I,k,r)& = [n {n —1)(n —2)]'~„pr„-i

X &2}Mi2iu2IIi i+V2&&II i+ p2&p3{rpi+I, + p3&&2v, 2v, ~kv, ~ v, &

+ 2
I + + &( —I )"p„,p„p„p„,p,p„,5 'yp, ,y,. '

For l = k, the expression between the curly brack-
ets can be written in a simpler form as

n k kI l Qni sing'cosnt (1 + p2)m
{16)

X X' &2~i2~2ll~i + ~2&
Ig

&& &I@i + 92283 I rIJ i23&pp, pp, pp,

where the prime in the summation symbol indicates
that the sum over p&, p2, and p3 is carried out
under fixed p, 23. Using Eq. (6), we obtain the final
result

&d(l,k,r) &
= n(n —1)(n —2)

(1+P')'

X (3 + 8 cos 3y)

with the coeNcients 3 and 8 listed in Table I. In
Fig. 2 we illustrate this with a diagram of the poten-
tial energy surface in a particular case of Eq. (15).

The extreme simplicity of the method outlined

here, can perhaps be best illustrated by exploring
the relation between higher order terms and triaxial-

ity in its full generality. Let us consider a general
m-tic term (i.e., a term with m creation and m an-

nihilation operators) with k((2m) creation or an-

nihilation d operators. The classical limit of such a
term can immediately be written in the following
form

where the coefficients a; depend on the coupling se-

quence used for the d and d operators. Symmetry
arguments require that this potential energy surface
only depends on cos3y = cos y —3 cosy sin y, and
this severely restricts the occurrence of triaxial mini-

ma. For instance, for k & 5 no term in cos 3y can
be formed from (16). Thus, the only cubic terms
(ln = 3) which can give rise to triaxiality, must have

k = 6, precisely the d(l, k,r) of Eq. (13).
In conclusion, we have given a clear and simple

prescription for calculating the classical limit in the
IBM. %e have derived the classical limit of the
most general IBM Hamiltonian as well as the classi-
cal limit of the Hamiltonian in the SU(5), SU(3),
and O(6) limit, respectively. Also, the problem of
the inclusion of higher order terms and its influence
on the nuclear shape, has been considered. The fact
that the low-energy spectrum can be fairly well ac-
counted for by the interacting boson Hamiltonian
(without higher order terms), implies that the triaxi-

ality of nuclei in the ground state, if there is any, is
rather small.
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