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The standard partial wave (channel) representation for the Faddeev solution to the
Schrodinger equation for the ground state of 3 nucleons is written in terms of functions
which couple the interacting pair and spectator angular momenta to give S, P, and D
waves. For each such coupling there are three terms, one for each of the three cyclic per-
mutations of the nucleon coordinates. A series of spherical harmonic identities is

developed which allows writing the Faddeev solution in terms of a basis set of 5 bipolar
harmonics: 1 for S waves; 1 for P waves; and 3 for D waves. The choice of a D-wave
basis is largely arbitrary, and specific choices correspond to the decomposition schemes of
Derrick and Blatt, Sachs, Gibson and Schiff, and Bolsterli and Jezak. The bipolar harmon-
ic form greatly simplifies applications which utilize the wave function, and we specifically
discuss the isoscalar charge (or mass) density and the 'He Coulomb energy.

NUCLEAR STRUCTURE Three-body problem, classification of
states.

I. INTRODUCTION

Before the widespread use of Faddeev' and varia-
tional techniques for solving the Schrodinger equa-
tion numerically, the phenomenological approach
was used. This technique utilizes symmetry princi-
ples, including permutation symmetry, to write the
most general form for the trinucleon ground state
wave function in terms of (irreducible) spin-isospin
wave functions (P;) with total isospin —, and total
(intrinsic) spin —, and —,. The latter functions are
coupled to 5 orbital angular momentum functions
(1 S wave, 1 P wave, and 3 D wave) to determine
the relative orientation of the intrinsic spin and orbi-

tal angular momentum of the composite system.
The combination of these isospin-spin-orbital angu-
lar momentum functions having total spin and isos-
pin —, with 16 scalar functions of the appropriate
permutation symmetry represents the most general
form for the nonrelativistic ground state wave func-
tion of He and 3H (neglecting the effects of
charge-symmetry-breaking interactions).

The phenomenological studies concentrated on
parametrizing these 16 scalar functions, which are
the 16 dependent variables in the 3-nucleon
Schrodinger equation with 3 independent variables.
These are listed at the top of Table I, with the spec-
troscopic notation (total intrinsic spin and orbital
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character) along the upper row, and permutation
symmetry type along the side: symmetric (S),
mixed (M), and antisymmetric (A). There are 3 dis-

tinct pairs of mixed symmetry B state scalar func-
tions (u3,v&). The specific decomposition is known

to be nonunique and mill be discussed in.more
detail later. The six corresponding spin-isospin
wave functions (fs) are categorized in the middle
section. There are 4 doublet (spin —,) functions

and 2 quartet (spin —,) functions.
The number of states which can be formed from

the 6 P's and 16 u's and u's is 10, according to Der-
rick and Blatt. There are 3 5 states, 3 I' states, 1

P state, and 3 D states, which are categorized at
the bottom of Table I (the D state in brackets sym-

bolizes 3 distinct components). The symmetry type
listed there refers to the overall internal-orbital char-
acter. For the I' states, the unique I'-wave orbital
function H, to be defined later, has been introduced.
This is coupled in the usual way with the intrinsic

spin to a total spin of » as are the D-state functions

U3 and Ug. From the top down, the S-wave com-
ponents of 4 are denoted by S, S', and S", which

refers to the internal (i.e., scalar) function. We cor-
respondingly denote the P states by P, P', and
P", according to their internal character; the single

P state is unique. The function H can be defined

to be antisymmetric under the interchange of any
two nucleon labels. Thus, Qp» is antlsymmctric,
while u~ is symmetric. One might expect the pro-
bability I'( P") to be small; this will be seen to be
true. In the earliest classification scheme by Sachs,
thc S and I states werc missing bccausc an- .

tisymmetric internal (scalar) components us- and
uz* were not considered. In most applications the
~P states are left out, as are the S" states, because.
these states are believed to be very small in probabil-
ity. A majority of calculations have used either 1 (S
only), 2 (S and S'), or 5 (S,S' and the 3 D states) of
the 10 components.

The Faddeev method traditionally has simplified
the complete problem of solving 16 coupled dif-
ferential equations in 3 independent variables by
decomposing the nucleon-nucleon interaction into
partial eaves. The variables which are traditionally
used are the Jacobi coordinates (x,,y, ). The lengths

x& andy~ in addition to pi ——cos8& are the three
scalar variables shown in Fig. 1. Since the three nu-

cleons form a plane, all vectors between nucleons
can bc cxpicsscd in terms of x ) and y ), which wc
will denote by x and y, henceforth. In particular,
counterclockwise rotations of the nucleon labels
produce successively (xq, y2) and (x3 y3), which can
be expressed in terms of x and y. The basic struc-
ture of the Schrodinger wave function as it is ex-

pressed in terms of the Faddeev amplitudes is illus-

trated by the following schematic example. If wc
work in I-S coupling, the orbital part of a partial
wave component of the Faddeev amplitude with the
form

(x,y) = f ' ' (X,y)[&1,(x ) X &1,(y)]l.m,

may generate the Schrodinger wave function com-

ponent given by

TABLE I. The 16 scalar trinucleon wave function components (U3 and U4 comprise 3 each) are categorized at the top,
the 6 spin-isospin wave functions in the middle, and the 10 Schrodinger wave function components (3 from the D states)
at the bottom. The column headings give the spectroscopic classification and the row labels give the permutation sym-
metry classification. For the Schrodinger wave functions the symmetry refers to' orbital-internal.

QPtI
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e = 1(
' ' (x,y)[YI,(x) X YI,(y)]L~

+ Q (xpy2)[ Y~, (x2) X Yr, (yz)]Lm

. + i/I (x 3 y 3)[Yi, (x 3) X Y/ (y 3)]L~ (2)

That is, the 3 sets of variables we discussed earlier
are inserted successively in the same function and ad-

ded together. The second and third terms will be
denoted "permuted terms. " The angular factors are
bipolar harmonics, a coupled pair of spherical har-
monics obtained by coupling together an interacting
pair angular momentum l i with spectator angular

momentum 12, to form L = 0, 1,2 (S, P, and D
waves) for the trinucleon ground state. These fac-
tors have different arguments and in general have no
obvious relationships to the 5 angular factors dis-

cussed earlier and used in Refs. 3 —6.
Since the ground state parity is positive and must

equal ( —1),I, and 12 must both be even or
l 1+l2

odd. Since the maximum intrinsic spin is —,, which

limits L to 0, 1,2, it is clear that l
&

and l2 must differ

by 0,+2. In addition, under the interchange of par-
ticle labels 2 and 3, one finds x ~ —x and y ~ y;
thus Eq. (1) becomes multiplied by ( —I) '. Thus,
the wave function components for which /] and l2
are even can contribute to components whose
overall space symmetry (internal-orbital) is sym-
metric or mixed symmetric in nature, while odd
values of l

&
and l2 can contribute to antisymmetric

or mixed symmetric space components. Thus, even

partial waves can contribute to the first two rows at
the bottom of Table I, while the odd waves contri-
bute to the bottom two rows. Since the p-f partial
waves are not utilized in "standard" Faddeev calcu-
lations (i.e., 5 channels or less), the S" and P states
are usually not encountered. However, the I'"
state, overlooked by Sachs, is encountered in 5

channel calculations. '

Our task in this paper will be to determine the re-
lationships between the angular factors in the per-
muted terms and those in the Faddeev amplitude,
Eq. (1), and the relationships between the angular
factors in the Faddeev amplitude and a set of 5
standard orbital functions. This is done in Sec. II,
and will allow us to generate the u's and U's as a
series in the t('s and their permuted terms. We thus
provide a mapping between the Faddeev and
Derrick-Blatt approaches and several examples of
this are developed in Sec. III. This decomposition
greatly simplifies the algebra involved in calculating
matrix elements, allows us to identify wave function
components which are small, greatly facilitates plot-

FIG. 1. Jacobi coordinates for the three-body
problem.

ting the various parts of the wave function, and is
the primary motivation for this work. Expressions
for magnetic moments, and charge densities, ' for
example, can be written entirely in terms of the u's

and U's and simple geometrical factors. We will il-

lustrate this in Sec. III by considering the isoscalar
charge density (mass density) and the Coulomb en-

ergy of He calculated using a partial wave project-
ed Coulomb potential. " Numerical results are also
presented. Although our technique clearly is appli-
cable to both configuration space and momentum
space' Faddeev calculations, our approach em-
phasizes the former. Previous Faddeev calcula-
tions' have utilized the Derrick-Blatt classification
scheme, but not in the manner we present next.

II. ANGULAR MOMENTUM DECOMPOSITION

In order to be specific, we must choose the 5 an-
gular factors which specify the orbital angular
momentum's orientation with respect to the intrinsic
spin. One choice corresponds to the Euler angle
treatment of Derrick and Blatt; others have fol-
lowed a different course, which we adopt.

The S waves are trivial since the angular factors
are constant in space; the orbital wave function is
denoted 6 =—1. There is a single P-wave orbital
function x p y which is unique except for an
overall multiplicative factor which can depend on x,
y, and p. We write this in the form

H = 4m[ Y~(x ) X Y&(y )]~xy,
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where all z components of tensors will be
suppressed. Our choice of the three D-state com-
ponents is

I = V'4~Yz(x ),
J = &4~Yz(y),

E = 4m[Y~(x ) X Y~(y )]z( —, )' ' .

(4b)

(4c)

Any (complete) linear combination of these would

also suffice. '

Different sets of orbital basis functions are possi-

ble, which differ only by changing the factors in

front of H through E. Our choice for H was

motivated by symmetry considerations (x X y is an-

tisymmetric, while x X y is not), while simplicity
motivated. the choice of I, J, and E. It will be seen

later that x I, y~J, and xyE are also natural choices
of these functions.

We will divide the problem into two parts: (a) re-
late the partial wave components of g illustrated in

Eq. (1) to G, H, I, J, and E; (b) relate the permuted
angular functions Gq through Eq and G3 through

E3 (i.e., written with permuted variables x z, x 3,

etc.) in terms of G through E. We will not attempt
the most general case for l

&
and lz, but rather re-

strict ourselves to (l ~,lz) = (0,0), (0,2), (2,0), (2,2),
(1,1), (1,3), (3,1), and (3,3), which subsumes all pre-
vious Faddeev calculations of 18 channels or less.
Two methods are effective. One may use the fact
that the various functions G —E are complete (but
not orthogonal) and project, or one may specialize
the coordinate system so that y lies along the z
direction and all components of x are measured
with respect to y. Only Yg o(y ) is nonvanishing in

this case.
As an example of this procedure we illustrate the

structure of the D-wave component which arises
from the fifth channel in standard S-channel calcu-

lations (l ~

——lz ——L = 2). The factor

[Yz(x ) X Yz(y )]z~ is obviously symmetric under
the interchange of x and y and can be written as
a (I + J) + bE, where a and b depend only on p.
Choosing y along the z direction, evaluating the sin-

gle term in the coupling sum which remains for
M = 0, 1, 2 successively, and comparing to I, J,
and E in the same limit produces

4~[Y2(x ) X Yz(y )]z = (, )' (I + J —3lzE/2) .

The complete decomposition is given in Tab1e II.
The structure is obvious. The Yt(x )'s are irreduci-
ble tensors composed of l x vectors. When con-
tracted with its corresponding element containing

y 's, there will in general be too many vectors left
over for the irreducible tensor which remains; these
must be contracted to form x = 1, y = 1, and
x y = p. This is easily seen in Eq. (5), where two
x 's must be contracted for the J terms, two y 's for
the I terms, and one each of x and y for the E
terms, which results in the p.

The only remaining task is to evaluate the effect
of permuting the coordinates. This is easily deter-

mined using the generalized addition theorem:

(6)

H] ——Hp ——H3,

I, = x'I/4x, +y J/xz —xyE/2xz, (Sa)

I3 x I/4x 3 + y J/x 3 + xyE/2x 3, (Sb)

J, = 9x'I/16y, '+ y'J/4y, '+ 3xyE/8y, ',
(8c)

J3 ——9x I/16y 3 +y J/4y 3
—3xyE /8y 3

(Sd)

TABLE II. Decomposition of [Fg (x) X F~ (y)]r. , denoted (l~, lz), in terms of G, H, I, J, E, and )M = x y.
1 2

Faddeev channel L =0 L=1 L=2

(0,0)
(0,2)
(2,0)
(2,2)

(1,1)

(1,3)
(3,1)

(3,3)

G(=1)

~53pz —I )/2
—~p

—~7(5p —3p)/2

—~pH/xy
H/xy

—v'T4(1 —5p~)H /4xy

J
I

(—)' (I+J —3pI( /2)

—~SpZ+ E/~5
—~SKI + K/~5

—v'35/3 (I + J —(25'~ —1)g/20)
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E2 ———xyE/2x2y2 —y J/x2y2

+ 3x I/4x2y2,

E3 ——xyE/2x3y3 + y J/x3y3

—3»iI/4»qyq .

(ge)

(8f)

$3( 1 )I + 1(4( 1 )J + 1(s( 1 )E, (12a)

gi ——x I[7it,(2)/4+ 97i4(2)/16 —9x2 y,gs(2)/8]

+y'J [p,(2) + 1(4(2)/4+ 3», y27is(2)/2]

+xyE [—1(&(2)/2 + 31(4(2)/8

These results can be combined to form all the wave

function components that arise for l],l2 ( 3.

III. RESULTS AND DISCUSSION

u (x,y,p) = P(1) + P(2) + P(3),
up (x,y,p) = 1(/(1) + p(2)+ p(3),

where

(9b)

P(x,y,p) = [gi(1) —$2(1) —Ps(1)P2(Fc)],1

(10a)

(10b)

The additional numerical factors arise from I-S to

j-j recoupling, and from rearranging the Faddeev
channel spin-isospin functions in terms of those list-

ed in Table I.
Using the classifications in Table I, the 5-channel

D-state components can be written in the form
'11D = U4 X f3 —vq X p4, where

2
(4 —02» (1 la)

As an illustration of the preceding analysis we

give three examples from a 5-channel Faddeev cal-
culation (in j-j coupling): the functions u, ui, and

(U 3 U 4). The first and second Faddeev channels (am-

plitudes) are s wave, spin singlet and triplet, respec-

tively. Channels 3 and 4 are spin triplet, and cou-

ple a d wave in the interacting pair with an s wave

spectator and vice versa, respectively. The fifth

channel couples a d-wave interacting pair with a D-
wave spectator to generate S-, P-, and D-state func-

tions. Thus channels 1, 2, and 5 contribute to the

dominant S state u; channels 3, 4, and 5 to the d-

state functions u3 and u4, only channel 5 contributes
to ui -. Denoting by g„(i) the Faddeev amplitude of
channel n as a function of variables (x;,y;) we find

+ 3»2 y27's(2)/41 (12b)

(3 —x I[gs(3 )/4 + 97it4(3 )/16 + 9x s y sos( 3 )/8]

+y'J [03(3)+ e4(3)/4 —»3 y"30s(3)/2]

+xyE [g&(3)/2 —31(tq(3)/8

+ 3»s y"sos(3)/41 . (12c)

In the preceding expression any factors of I, J, and
E must be coupled to Pq or P4 in the usual manner

[e.g., (I X pq) i~2]. In addition we have defined

((3(i) = [1(s(~') + 1t's(i)/&&]/»

$4(i) = [$4(i) + Ps(i)/~2]/y;

7is(i) = Ps(i)/V'2x;y; .

(13a)

(13b)

(13c)

Thus u3 and u4 can each be represented by the form

v =Iu +Jv +Ev (14)

in terms of 3 scalar functions: u, u, and v, each
different for u3 and u4.

A further example of the utility of this procedure
is given by standard configuration space Faddeev
calculations which include the Coulomb interac-
tion" in the 'So partial wave only. This partial
wave potential for nucleons 2 and 3 has the
schematic form

V, (x) = (4vr) V, (x)e2eq f fdQ„dQ&

when acting on the total (Schrodinger) wave func-
tion +, where e is the proton projection operator
and V, (x) = a/x. (A similar angular projection
acts to the left also. ) Clearly the total P and D--
wave components H, I, J, and E vanish when in-

tegrated over the angles of x and y, and only S
waves contribute. Furthermore, the antisymmetry
of u z when the coordinates 2 and 3 are interchanged
or p~ —p causes that contrIbution to vanish, since

(air) f fdO„dQ» = —,
' f dp. Ignoring isospin

—, pieces generated by e2e & acting on the P's we find
1

V, (x)% = V, f d p(u —U i)(Pp + $2)/6

s ———,(g2 + gs —2/i), (1 lb) :V (u —Ui)(pp + p2)/3 . (15)

and In perturbation theory, therefore, the energy shift is
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f f V, (u —u &), where the integrals are over the

trinucleon coordinates x and y. This simple result
demonstrates why the eigenvalue difference in s-
wave projected Coulomb Faddeev calculations con-
taining D states is- = 10% smaller than what one
obtains using the complete (all partial waves)

Coulomb potential: the 8 —10%%uo D-wave contribu-

tion is missing.
As a further illustration we calculate the mass or

isoscalar charge density p, using the wave function
we have broken into components. The various
L = 0, 1,2 partial waves do not interfere. We fmd,
as before,

(16a)

where

= (u + u& + u2 ) + —,(1 —p, )x y [u~ + (u~ ) + (u2) + (u3) + (U4) ]+ (v3) + (U4) + (v3)

+(U4) + (3+ p, )[(u3 ) + (U4 ) ]+ (3p —1)(U3v3 + U4U4) + 4p[U3 (U3 + U3) + uf (U4 + U4)] .

(16b)

(17a)

Only the D-wave components lack a convenient
sum of squares form, and this prohibits us from
writing probabilities for these components in the
usual way. As we stressed earlier, a wide variety of
forms are possible, by taking linear combinations of
the I, J, and E bipolar harmonics to generate new
ones. An alternate set with more attractive sym-
metry properties is K, L, and M, where

& = 4'( —, )'~'[Y~(x) X Y~(y)]2,
where

+ (U3 )'+ (u, )', (18a)

I

the vectors x and y in Eq. (17) by vectors R
~ and

R 2 such at R ~ R 2 —= 0. This was the procedure of
Ref. 4, although the choice of R ~ and R 2 is arbi-

trary, in general. For any such choice, the D-state
contribution to p, is generated by setting p = x y
to zero in Eq. (16b) and is given by

3[(U3 )'+ (U3 )'+ (U4 )'+ (ug )']

M = [Y2(x ) —Yz(y )]V&= I —J . (17c)

L = [Y2(x ) + Y2(y )]v'4n = I +J, (17b)
v +v

2
(18b)

With this set, symmetry alone (x ~y) dictates that
M is orthogonal to E and L upon integration,

whereas the overlap of the K and L components is
4x .y. Thus, in order to generate a completely
orthogonal set of basis functions we must replace

and

U —U
I J

U
2

(18c)

are obtained by writing Eq. (14) in terms of E, L,

TABLE III. Ground state properties of He and 'H are listed at the top: binding energy,
rms charge radii, and percentage of various wave function components. The P-state percen-
tages are broken down further in the middle. The bottom rows list overlaps of the various D-
state components, according to two different schemes.

E~ (MeV) (r )H, (fm) (r )H' (fm) Pq (%) Ps' ( P (%) Pg) {%%uo)

7.023 1.895 1.698 88.91 1.67 0.083 9.34

p('p") (%) P('P') (%) P('P) (%) PI (%)

0.0083 0.0373 0.0373 0.0828

p(K ) (%) P(L ) (%) P(M ) (%) P(2KL) (%) PD (%)

(K,L,M)
(K',L ',M')

138.20
4.89

126.82
0.21

4.89
4.24

—260.57
0

9.34
9.34
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and M.
As an illustration we resort to expediency and

choose E, I, and M as defined with the vectors x
and y in Eq. (17), and replace these vectors by
x ~ R& ——x +y and y ~R2 ——x —y to generate
E', L', and M'. The resulting wave function pro-
babilities P and grourid state properties for the Reid
Soft Core 5-channel potential model are shown in

Table III from our recent large basis calculation.
Symmetry considerations are sufficient to show that

U
~

—— U2 and U3 — U4 for

both P and D waves. As remarked earlier, we ex-

pect P( P") to be small. Note that Pz ——P( D)
differs' from the results of Ref. 9, that the uncer-

tainty in E& is a few keV and a few attometers for
the radii, while the other numbers are stable to
within 1 in the last digit. Our choice of E and L,

obviously has resulted in two "vectors" almost an-

tiparallel, while E' and I.' are orthogonal, with L '

being very small. Clearly expediency is a good
guide for the choice of D-state basis functions.

Many choices are available.
In summary, we have developed spherical har-

monic identities which allow us to rewrite the usual

channel decomposition of Faddeev calculations in

terms of a Blatt-Derrick type classification scheme.
The latter scheme is nonunique, because a complete
set of bipolar harmonics for the D-state components
is nonunique. This technique was illustrated by the
S-, P-, and D-wave function rearrangement of a 5-

channel Faddeev model, and by an analysis of the

contributions to the Coulomb energy using a partial
wave ('So) projected Coulomb potential. We have

calculated D-wave component probabilities accord-
ing to two different schemes, one orthogonal and

the other partially so.
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