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The charge densities of 'H and 'He are computed for several potential models. These

densities are further broken down into isospin components and into components from the

S, S', and D states. Wave functions for these states are plotted in order to illustrate the

structure seen in the densities. Inclusion of nucleon finite size eliminates the fine structure

seen in the point nucleon cases. Form factors corresponding to those densities are also cal-

culated. The inclusion of a Coulomb interaction between the two protons in 'He is seen to

produce a small but nonnegligible change in the density. The theoretical 'He densities for

the Reid soft core model are compared to the "experimental" one obtained by fitting the

experimental form factor data after having approximately removed the effect of nucleon

finite size. The central depression seen in the experimental density is not present in the

theoretical ones, and we speculate on this and other discrepancies.

NUCLEAR STRUCTURE Trinucleon system, charge density, wave

function components, Coulomb interaction.

I. INTRODUCTION

Approximately 15 years ago, the first experi-
ments' were performed to measure the form factors
of the ground states of the trinucleon system, He
and H. These electron scattering measurements
were limited to a modest range of momentum
transfer. Subsequent measurements of the He
form factor were extended to very high momentum
transfer, so that a reasonably plausible inversion
of the Fourier transform could be made in order to
obtain p(r), the He charge density. This density
contains a substantial central depression, and pro-
vides a serious challenge to theorists, since no con-
sensus exists concerning its origin. Insufficient data
exist for the inversion to be performed for H.

The lack of H data has focused theoretical atten-
tion on He, particularly on the charge form factor,
to the near exclusion of H. The presence of a cen-
tral depression in the density is concomitant with

the existence of a very strong secondary maximum
in the form factor, which has proven difficult to
reproduce. The sum rule which follows from the
Fourier transform inversion theorem '

p(0) = I F(q )q dq

clearly relates the high-q part of the form factor I'
to p(0), and the existence of a strong negative secon-

dary maximum after the first diffraction minimum

depresses p(0). Although many have calculated the
form factors' ' of He and H, few have calculat-
ed the He density ' and fewer still that of the
triton is —20 To the best of our knowledge, no one
has calculated separate isospin components.

It is our belief that the densities are easier to in-

terpret intuitively and physically. In addition, previ-
ous calculations of the He density were not always
consistent even for the same potential model. ' For
these reasons we present in this paper our results for
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both of the trinucleon charge densities calculated
from wave functions obtained by solving the nonre-
lativistic Faddeev-Noyes equations' in configuration
space for the Reid soft core (RSC) model in the 5-
channel ('So, Sl —Dl) approximation. We have

fully described our techniques elsewhere ' and
will not do so here. The structure of the charge
densities will be compared and contrasted and later
analyzed in terms of wave function components.
In addition, these densities will be separated into
isospin components and analyzed. The efFect of in-

cluding the Coulomb interaction between protons in
He is shown to be small, as intuition suggests, but

not negligible. Form factors are also calculated,
and the effect of folding the point trinucleon densi-
ties with the individual nucleon densities is sho~n to
eliminate the fine structure seen in the former when
a tensor force is included in the nucleon-nucleon
potential. Finally, we argue for comparable 'H ex-
periments, in order to help unravel the mysteries of
the trinucleon structure, and speculate on the possi-
ble origins of various discrepancies,

II. CHARGE DENSITIES

vious relationships

p(r) = fd r'gE(
/
r —r '

f
}p(r')

f—dr'r'[h(r + r') —h()r —r'()y(» )

(3a)

where

h (z) = 4'f dy ygE(y) . (3c)

Since the trinucleon system has Z protons and N
neutrons we have the obvious constraints

(4)

Because it is convenient to compare densities which
are normalized to 1 (or 0 in some cases) we define
our form factors by

2FH, ——Gg {2E,+ E„)+ Gs (Fg —F„)
= E,(2Gg + GE ) + E,(Gg —Gs )

= 2[AGE + (F„GE —F,GE)l2]

There are a variety of ways to decompose the
trinucleon form factors, Our choice uses an obvi-
ous, but unconventional notation. The point nu-

cleon density matrix elements have the form

1 + rl(i)(r)= e g — 5'(r —x) 0
2

Pg

l

where x; is the coordinate of nucleon i relative to
the nuclear center of mass. The form factors
corresponding to p& and p„are denoted E& and F„.
Introduction of nucleon finite size (i.e., charge distri-
butions) is accomplished by replacing the 5 func-
tion by gE(

~

r —x;
~

), the Fourier transform of the
experimentally observed nucleon form factor,
GE(q ):

—:2(E, + E„/2),

FH ——Gg (E, —E„)+ GF(2E, + F„)
= E,(Gg + 2G,")—F„(Gg —G,")

= F,GE —(F„GE —E,GE)

where Gg(0) = 1, GE(0) = 0, GE ——Gg + GE,
GE —=Gg —GE,

Fp ———2F, + E„',

The corresponding densities are given by

pH. = p. + p.~2

(5a}

(5b)

(5d)

GE(q2) = fd r e' q 'gE(r) {2a) and

(6b)

gE(r) = fdlq e'q'GE(q ) .
(2lr)s

Since we use the convention G@(0) = 1 for the pro-
ton, this translates into fd r g@(r) = 1. Denoting
folded densities by an overscore, we deduce the ob-

The introduction of finite size is done in the obvious
way by foldlllg gE with p (yleidlng p ), alld tile
difference of folding gE with p„and folding p, with

gE, yielding p„. Thus p, is the isoscalar density,
while p, is not the true isovector density, but rather
the difference density. The distinction is necessary
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2pH, +P
3

(7a)

2(pH, —pH}

3
(7b)

We have chosen to use the nucleon form factor
fits (8.2) of Hohler et al. because of their atten-
tion to detail in handling the experimental errors
and because they include both proton and neutron
data. In addition, because they fit the form factors
using a sum of poles and dipoles, the nucleon
charge densities gE(r), are written as a sum of Yu-
kawa functions and exponentials; in such cases the
integral (3c}can be performed analytically, which

greatly facilitates computation.

III. RESULTS AND CALCULATIONS

Figure I depicts the various point densities (no
nucleon finite size) for the Malfliet-Tjon (MT)

only because of the factor of 2 in Eqs. (5a) and (Sc),
and because the actual isovector density contains a
component proportional to p, . Clearly, we also
have

I—III potential, a purely S-wave force with short-

range repulsion which geperates a binding energy
and radius close to the experimental values. The
densities are a smooth function of the radius vari-

able r. The form of the vector density is dictated by

three considerations: the fact that f d r p„(r)—:0;
the relative weakness of the force between two pro-
tons compared to the neutron-proton force; and the
signs in Eq. (6). In 'He the protons feel a weaker
force than does the neutron, and this causes the pro-
tons to lie further from the nuclear center of mass
(on the average) than does the neutron, which gen-

erates a preferred isosceles configuration rather than

simply an equilateral one. The opposite is true in

H, with the proton lying closer. Therefore, the

charge radius of He must be greater than H and

p„has a positive mean-square radius. Consequently,

p„must be positive at large r and it must be nega-

tive at small distances in order to conserve charge.

The effect of adding a tensor force is illustrated in

Figs. 2 and 3, which were calculated using the Reid
soft core model in the 3-channel and 5-channel ap-
proximations, the former being an incomplete treat-
ment of the tensor force in the 'So S~ —D

&
partial

waves. The primary difference is a depressed scalar

2.0 I I
f I I I I I I I v

p('He)
3--------- p( H)

ps

py

1,0

0.5

0.0

—0.5 I I I I I I I I I I I I I I I I I I
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r(f m)
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FIG 1. Various point nucleon charge density components of the trinucleon system calculated using the Malfliet-Tjon I—
III (MT I —III) S-wave potential model.
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FIG.2. Various point nucleon charge density components of the trinucleon system calculated using the 3-channel app-

roximation and the Reid soft core potential model.

density p, and an enhanced value of p„at the origin
for the latter case, which depresses pH, shghtly and

pH significantly compared to the former case. The
reason for the fine structure in p„, pH„and pH at
small values of r will be discussed shortly.

The effect of folding in the nucleon charge densi-
ties is illustrated in Fig. 4. All of the fine structure
visible in Fig. 3 has been ironed out. With the ex-
ception of a scale change, all of the folded densities
that we have calculated look alike. The reason is
obvious: nucleons have a size of nearly 1 fm, and
folding smears out the nuclear densities over this

range, leaving a smooth result. The corresponding
charge form factors are shown in Figs. 5 and 6.
The vector component is never negligible, but is
most important at large q, "pushing out" H corn-
pared to He. The heights and positions of the
secondary maxima for He and H are given by

He: F = —1.68)&10, at q ~ = 18.7fm

(8a)

H: I' = —1.93X10, atq~, „=20.5fm
(8b)

Figure 7 shows the effect of including the
Coulomb interaction between the two protons in the
'So partial wave. The effect is small but not entire-
ly negligible and appears to be largely a scale
change, pushing charge from the interior to the exte-
rior region in a smooth way. The "hole" in He is
illustrated by the experimental points with error
bars, which were generated by fitting the world
data' for He form factors using a Fourier-Bessel
expansion in the manner of Ref. 29. This expansion
used 12 Fourier-Bessel coe%cients and a cutoff ra-
dius of 4 fm, and eliminated the effect of nucleon
finite size by the only mechanism possible in the ab-
sence of H data: by writing

I'H, = (+, + +,/2)(Gg + GE/2) —, +.GE (9)—
and ignoring the small F„GE term. Thus
EH,/(Gg + GE/2) was fit and no other corrections
uvre made. The He point charge radius obtained
in this way is 1.68 fm. Although the hole is graphi-
cally obvious and looks like a major feature of the
density, it is not. Approximately —, of one percent
of the total charge would completely Ql in the
depression. The factor of r in the volume element
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FIG. 3. Various point nucleon charge density components of the trinucleon system calculated using the 5-channel app-
roximation and the Reid soft core potential model.
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FIG.4. Various charge density components folded with the nucleon finite size. The model is the same as in Fig. 3.
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FIG. 5. Various form factors vs momentum transfer q, including the effect of nucleon finite size, for the same model as

Fig. 3.

d r is responsible for this fact, and for the substan-
tially larger error bars in the interior density than in
the surface.

A total of 10 wave function components involv-

ing 16 scalar functions is possible in the most gen-

eral case for the trinucleon ground state. The three
2P states, the solitary P state, and the totally space
antisymmetric S" state are tiny and will be ignored.
Only the S, S', and three D wave components are
important. In the density itself only certain com-
binations of these components occur:

p, =u +(v& +u2 }+(v3 +u4) (loa)

p„ = 2uu~ + {u3 —v4 ),2 2 (lob)

where u is the S-state space component, (v ~,u2) are
the $'-state space components, and (v3,u4} are the
D-state space components, each of which involves

three scalar functions. The mixed symmetry func-

tions (v~,u2) and (v3,u4) satisfy fv I f u2 and-—
f v 3 —f vg in addition to J uu ~

——0, so that p„
is normalized to zero. The various components of

the theoretical density that lead to the total are illus-

trated in Fig. 8. The solid line depicts the S and S'
components of p„although the S' contribution is
invisible on this scale. The dashed line is the contri-
bution of the SS' overlap in p„, while the contribu-
tions of u3 and U4 in p, are separately displayed.
It is the structure of v4 which leads to the ripple in

p„and to the relatively flat interior density of p„
the decrease in p($) is compensated by the increase
from p{u4). The hole in H near the origin is entire-

ly due to p(u4), since u3 does not contribute to the
H density. The RSC3 density differs from that of

RSC5 (cf. Figs. 2 and 3) in that p„has a less pro-
nounced kink near the origin, the lack of a hole in

H, and pronounced slopes of the densities p, and

pH, near the origin. These are entirely due to the
fact that the S-state contribution for RSC3 has a
steep downward slope near the origin, and to the
slight upward slope of p(SS') near the origin.

The lack of a depression in theoretical trinucleon
densities is found surprising to many, in view of the
strong short-range repulsion in the two-nucleon
force which drills deep holes in the wave function.
Figure 9 illustrates the Jacobian coordinates conven-
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FIG. 6. The same as Fig. 5, but with an expanded range of q, the momentum transfer.

Nevertheless the y = 0 intercept is large, peaking
near x = 2.0 fm, which is why p, has no central
depression for the RSC model. In a more general

configuration the existence of strong repulsion
makes the wave function small only near x = 0.
The two D-state combinations v3 and v 4 are
shown in Figs. 11 and 12. The function v3 has a
large y = 0 intercept, while v4 is identically zero
there, which follows from the definition of the latter
function in terms of permutation symmetry

[u4 —PD~x3, y2) —PD(x3, y3) x3 —x2 and

y3
———y2 when y = 0; therefore v4 vanishes since

l(D is invariant under x~ —x or y~ —y for our
model problem]. For y Q 0, this condition no
longer holds. Asy increases from zero, p(U4) in-

creases, accounting for the structure seen in Fig. 8,
and ultimately for the hole in H seen in Fig. 3.

(1 la)

consequently

p(0) = 8+ —, ) f dxx u (x,Q,O) . (11b)

We have used the fact that when y or r is zero, all
three nucleons are in a line and there is no angular
dependence (i.e., on p).

The wave function u for the RSC5 potential
model is depicted in Fig. 10 for 0 = O'. In this con-
figuration the nucleons overlap when y = x/2, and
the strong short range repulsion in the potential is
the reason for the deep valley. The wave function is
essentially zero when x is small for the same reason.

IV. DISCUSSION AND CONCLUSIONS

Although the hole in He has generated consider-
able theoretical interest because calculations do not
reproduce it, it is the least important of the various
discrepancies between theory and experiment. The
RSC model (without the Coulomb force) generates

tionally used to label wave functions. Because of
the Pauli principle, we can replace the sum over. nu-

cleons in Eq. (1) by three times the result for nu-

cleon 1. The (l function then becomes 5 (r ——, y ).
In order to illustrate how the density is calculated
we consider only the principal S-state component
u (x,y,p)P„where p = cos8, and $, is the totally
antisymmetric spin-isospin wave function. The den-

sity of states is d x d y and we find

ao 1

p(r) = 4rr( ', ) f dx—x f dpu (x, ', r,N);—
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FIG. 7. Point nucleon He theoretical charge densities with (po) and without (pc) the inclusion of the Coulomb interac-

tion, and the corresponding experimental density indicated as data points with error bars.

a total binding energy of approximately 7.3 MeV
when the effect of the higher partial waves is in-

cluded, '3 compared to the experimental value of
8.54 MeV for tritium. In addition, the calculated
(point nucleon) rms charge radius is too large+
1.70 and 1.93 fm for 3H and He (with Coulomb},
respectively, compared to 1.56 and 1.68 fm, experi-
mentally. Both deficiencies are consistent and im-

portant. More binding presumably will produce a
smaller radius.

Several mechanisms have been proposed to deal
with these problems.

(1) The current nucleon-nucleon forces are suAi-

ciently inaccurate that better forces will cure most
of the problems.

(2) Relativistic effects have not been incorporated
in most calculations and these may produce more
binding.

(3) Three-body forces cannot be deduced from
two-body data and may produce the necessary bind-

ing.
(4) In the case of the trinucleon charge form fac-

tors, there are meson exchange contributions to the

charge operator which are not included in the im-

pulse approximation, and these can produce changes
in the charge density without altering the wave func-
tions.

Although we know of no nucleon-nucleon force
models which both fit existing two-body data and
do not underbind, it is not possible to rule out
possibility (1}. Current models which are labeled
"realistic" can 'generate binding energies which differ

by several tenths of an MeV. The appellation realis-
tic means modern and phenomenologically ade-
quate, and in no respect signifies a fundamental

understanding of strong interaction dynamics. In
view of our ignorance it is hard to assess what phy-
sics is missing. The higher partial waves which are
lacking in our own and other calculations appear to
be relatively unimportant for binding, radius, or
central density. ' It is tempting to rule out this pos-
sibility on the basis of a lack of success to date.
However, it appears increasingly likely that there is
some element of the tensor force that we currently
do not understand. The Mainz experiment on
photodisintegration of the deuteron with a forward-
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FIG. 8. Contributions to the trinucleon charge densities from the S, S, and D states. The various entries are
described in the text.

going proton is difHcult to understand theoretically,
and this is extremely sensitive to the tensor force.
Theoretical predictions for nuclear matter do not
currently agree with "experimental" expectations,
and the tensor force plays a very important role
there. Note also that the difFerences between the 3-

FIG. 9. The Jacobian coordinates x, y, and L9 for the
trinucleon system.

and 5-channel Faddeev calculations involve a trun-
cation of the tensor force only, and this produces
rather large effects in the density, The resolution
for these diverse problems may have nothing to do
with our problem, but it is impossible to rule out
some correlation.

To the best of our knowledge no relativistic calcu-
lations have been performed which are co)+piete and
unambiguous. Most calculations are incomplete,
lacking a comprehensive treatment of the physics.
Others have adopted formalisms which may incor-
porate relativity correctly, but use unrealistic force
models, or compare the final results to unrealistic
two-body models. Those calculations which have
been performed and which are not totally unrealistic
largely appear to find a (too) small residual attrac-
tion although a small repulsion is nest ruled out,

The third possibility appears to us (and others)
the most likely to resolve the difHculties we have en-
countered. Crude estimates of the efFect of
three-body forces have been performed in the past
and much better ones are now being made; addi-
tional attraction is expected and may account for
most of the —1 MeV discrepancy. This mechan-
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FIG. 10. The principal symmetric S-state function u for the collinear (0 = 0') configuration plotted as a function of x
and y.

+O

FIG. 11. The D-state component v 3 for the collinear configuration (8 = 0') vs x and y.
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OO

FIG. 12. The D-state component v4 for the collinear configuration (9 = 0') vs x and y.

ism has the added feature that if the three-body
force is repulsive when the nucleons are in a linear

configuration (i.e., r = 0), the central density will be
depleted; it can also be attractive in other angular
configurations in order to provide the additional

binding. Hopefully, the next two years will do
much to clear up the situation with respect to
three-body forces. Unfortunately, most of these

forces will rely on purely theoretical input, with few

(or no) experimental tests of the assumptions used in

constructing them.
The meson exchange current problem has been

extensively discussed over the past six years. To
date no internally consistent calculation exists for
the three-nucleon system. For the pion exchange
currents this would require a proper and consistent
treatment of relativistic corrections to the two-and
three-body potentials. Thus all four of the diverse

possibilities listed earlier are, in fact, linked together.
Other mechanisms, such as the (prr) ) or (colory) ex-
change currents, are not directly linked with the nu-

clear force, and the same statement applies to cer-
tain of the isobar processes. These latter two-body
currents have diverse isospin structures, either
r(i) rj(), [r(i) X r(j)]3, or r3(i) for nucleonsi and

j, and thus will affect p, and p, very differently. In
fact, only the r(i) r(j) tenn contributes to p„. it is

1

suppressed in p, by a factor of ——,. The other
terms contribute only to p„.

If mesonic corrections to p are important it is ab-
solutely essential to have adequate H charge form
factor data. Although the existence of this data
would not by itself resolve all problems, it would
greatly facilitate resolution because of the isospin
unfolding it would allow. From the low-q data,
rms radii can be calculated and one finds
(r ), 'r = 1.65 and (r )„'~ = 0.53 fm compared
to 1.86 and 0.75 fm for the RSC5 model. Clearly
in this case both scalar and vector components are
deficient, being too large by approximately 0.2 fm.

In conclusion, we have investigated the trinucleon
ground state charge densities for several potential
models and have attempted to correlate the fine
structure in these densities with wave function (and
isospin) components. The effect of the Coulomb in-
teraction in He was shown to be small but nonne-
gligible. The RSC model predicts a hole in H, un-
like He, and this was the result of the D-state com-
ponents of the wave function. The effect of folding
the nucleon charge densities with the point charge
densities was to eliminate all visible fine structure in

p. Finally, we speculated on possible reasons why
the experimental and theoretical densities do not
agree.
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