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Inversion procedure for a pion-nucleon T matrix
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The solution of the inverse scattering problem for a separable model of the pion-nucleon T matrix is obtained. The

model is based on the Feshbach-Villars Hamiltonian formulation of the Klein-Gordon equation, and includes the

left hand cut in the complex energy plane associated with crossing, as well as the direct and crossed nucleon poles.

Numerical results are given for the four P-wave channels.

NUCLEAR REACTIONS Pion-nucleon elastic scattering; inversion procedure
for separable T matrix; contains nucleon poles and crossing cut.

I. INTRODUCTION

Over the years, many approaches have been
developed in an attempt to determine the off-
shell pion-nucleon T matrix. The various appro-
aches have been outlined in Ref. 1 (hereafter
referred to as F), where extensive references
to the literature can be found. The proceedings'
of the latest meson-nuclear physics conference
is also useful for reviews and references on the
wN T matrix.

In F the Feshbach-Villars' formulation of the
Klein-Gordon equation was used to develop time
dependent and time independent scattering theories
for relativistic, spin-zero particles. It was shown
that the time independent theory provides a natural
framework for constructing separable potential
models for the wN interaction which lead to scat-
tering amplitudes with the analytic structure in
the complex energy plane implied by quantum
field theory, i.e., right and left hand cuts associ-
ated with unitarity and crossing, respectively,
as well as direct and crossed nucleon poles. The
potential models. constructed by other workers
(see Refs. 7-11 of F) do not include the nucleon
poles and the crossing cut.

A separable potential model of the wN, P-wave,
elastic scattering amplitude was constructed
which, with a particular choice of the form fac-
tors, reproduces the Chew-Low (CL) T matrix. ' '
A procedure for including nucleon recoil corre-
ctions was developed, which gives rise to a T
matrix whose singularity structure agrees with
a form of the Low equation obtained by Miller. '

Here we shall develop a procedure for obtaining
the form factors in the separable potential model
from the ~N phase shifts. The method extends
the well known solutions' of the inverse scattering
problem for separable interactions so as to
account for the left hand crossing cut and the nu-

cleon poles.
In Sec. II the inversion procedure is developed.

Its practicality is demonstrated in Sec. IG, where
the form factors for the four P-wave channels
are obtained. Section IV gives a brief discussion
of possible further work along the lines presented
here. Throughout we work in units such that 5
=6=1,

II. INVERSION PROCEDURE

From the results of Sec. IV of F it follows that
the mN T matrix in the c.m. frame can be written
in the form

A

pl)
TIz Iv (p pp, g) Gw (p)

R i IGG ~ (pl )t 0 d (@)

where p and p' are the c.m. momenta of the w or
N, and z is a complex energy parameter which
for physical energies is the total c.m. energy
minus the nucleon mass. The index n labels
the four P-wave channels distinguished by the
total isospin T and total angular momentum J
according to

(y =1,2, 3, 4; 2T, 2J =11,13,31,33,

and the indices 0 and 0' are + 1 for positive ener-
gies and -1 for negative energies. It is seen that
there are two form factors G"'(P): one associated
with the positive energy states, and the other with
the negative energy states. The P are the pro-
jection operators for the four channels. The
denominator function is given by

dp p'(rG' &"p

-4, +=1
-1, (y =2

2, a=4,
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Qp = Mp+P /2pn ~ where

f,(A) = e'e~'" ' sing„(g)/k, (13)

(p2+ i 2)1/2 (6)

Here f is the renormalized vN coupling constant,
p the pion mass, and m the nucleon mass.

In order to facilitate comparison with the CL
theory, we define new form factors v, (P) and

uP) according to

( 2m+&j

which when put into (3) leads to

(7)

k'v. '(k) =-lmd. (n+ z~),

k'u '(k) =-Imd„(-0 —iE),
(9)

(8)

In the CL theory"' all of the v (P) are the same
cutoff function vQ), and the u '(p) are obtained
from the nonlinear equations implied by crossing
symmetry. . A big advantage of the approach pre-
sented here is that is is not necessary to solve
such nonlinear equations.

We see from (8) that d (z) is a real, analytic
function of z with a right hand cut (RHC) beginning
at z=p, a left hand cut (LHC) beginning at z = —p,
and a simple zero at z =0. For z just above the
RHC we shall write z =0+ ie, and for z just be-
low the LHC we shall write z =-Q-i&, where,
in both cases, 0 ~ p. and & is a positive infinitesi-
mal. From (8) it follows that

and is the physical scattering amplitude. It is
interesting to note that the factor that relates the
on-shell T matrix and this amplitude agrees with
the proper relativistic phase-space factor in the
limit of nonrelativistic nucleons. '

We' assume a CL-type crossing relation~ ' to
determine the P . We have, with the help of (7),
(12), and (10),

(14)

where the &
z are given by Eg. (4.18) of F. We

see from (13) and (14) that the phases g (0) and

P (0) can be obtained from experiment.
In order to determine d (z) from these phases,

we shall write a dispersion relation involving
Ind (z). According to Eg. (4.6) of F, d (z) appro-
aches a positive constant for large (z [. This
constant can be taken to be one, since any posi-
tive, constant factor in d (z) can be absorbed
into the form factors without affecting the T ma-
trix [see Eq. (I)], so we can assume

d(z)~1, (15)

~+ &+a/2
Da, (z) =

~ jism du(z) ~ (16)

where

~ =(z —pP~',

with the understanding that this one has the dimen-
sions of p,

' [see Eqs. (4) and (8)]. Since d (0)
=0, it is not convenient to work directly with
lnd, (z); therefore we introduce a function

where k is the momentum corresponding to the
energy Q. We can write = (z p, )'~'e&&~2 0&t. &2v. (17)

d, (n+i~) = [d (n+ie)) e 'eu'"',

G~' (k) 1 m+
d (0+is) z m(o»

(12)

d (-0 —i&) = Id. (-Q —i~)
I
e "-"'.

The phases on the ohter sides of the cuts have
opposite signs, since

d, (z *)= d +(z) .
We shall show that d, (z) can be determined from
a knowledge of the phases g (0) and Q (0). Know-
ing d, (z), we can find the form factors from (9).

From (7), (9), and (10), we have

For z in the cut plane Im (cv) & 0, and so w+ ip'~'
cannot vanish; however, ~- ip' ' can, and takes
out the zero in d . From (16) and (17), we have

D.(o) =-4u/&. , (18)

D, (z) ~ 1.

In writing a dispersion relation for lnD (z), we
shall work with the branch of the logarithm which
has a cut when its argument is real and negative;
therefore, we must check to see if D (z) can take
on such values. From (4) and (18), we see that
there is a difficulty for n =4; however, we shall
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be able to circumvent it.
We can write

lnD (z) =in[(w+ip'~')z/x„r+Ing„(z),

where

g (z) =z 'x d (z).
It follows from (8) that

(20)

(21)

z Plane

Img (z) =-Im(z) — dn —,+
p' "

v '(p) u '(p)
n' ~Q IQ —zI2 (0 +st

(22)

so we see that g„(z) is real only when z is real.
Since in writing our dispersion relation we shall
use a contour that excludes the real z axis for
tz~ ~ p, , we need consider only —p&z& p, . From
(8) and (21), it follows that g (0) = 1, thus g, (z)
cannot be real and negative, otherwise g (z)
would have at least one zero on the range —p
&z & p, . This would contradict the assumption
that the only zero in d (z) is at z =0.

The only way (a+i p'~') can be real is if ~ is
on the positive, imaginary axis, which from (17)
means z is real and less than p, . Thus we see
that for X &0, &,(z) cannot be real and negative,
so for now we restrict our attention to n = 1,2, 3.

We can write

(23)

where C, is the contour shown in Fig. 1. Using
(10), (11), (16), (17), and (19), we have

lnD (z) =-— dn + +F(z), (24)
e. n) .n'

m Q —z 0+z

FIG. 2. The contour C2 used in evaluating the integral
Eq. (2S).

(26)

From (16), (17), (25), and (26), it follows that

z —p, n „0-z 0+z

a =1,2, 3. (27)

For a =4, we consider d4(-z). The function
d,(-z) behaves just like d (z) for n =1,2, 3, but
with the roles of 8 (n) and P (n) interchanged.
From this it follows that

The integrand in (25) has a logarithmic cut for
0 & Q& g and a square root cut for Q & p, . By con-
sidering the appropriate contour integral along
C, in Fig. 2, we find

( )
(81+if )

z —p

where

1 " dn (n —p, )' '+ip, '~'F(z), n ln
(n pgz

z Plane

(25)
d( )= -- dn + . (28)z+I 'p m. n z'a+z

In order to proceed we must establish the be-
havior of the phases for 0-~ and for 0- p. From
(10) and (15) it follows that we can require that

8 (n) ~ 0, P (n) ~ 0 .
Q «) 0 (29)

We can learn something about the phases at 0
= p by deriving a modification of Levinson's'
theorem. It is straightforward to show that

dlnd (z) =1,1
27TZ C1

which, using (10), (ll), and (29), leads to

9.(~)+ A. (~) =~.

(30)

(31)

FIG. 1. The contour C~ for the integrals in Eqs. (23)
and (30). p, is the pion mass.

This shows that at least one of the two phases
for each channel must be different from zero at
threshold. An examination of (27) and (28) shows
that we must have
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0 (u)=v, P,(p)=0, +=1, 2, 3,

8,(u)=o, 4,(&)=v.

These choices eliminate the spurious pole at z
= p, in (27) and at z =- p, in (28). We shall see
shortly how to do this explicitly.

We want the amplitudes to have the correct
residues at z =0. From (8), (27), and (28), it
follows that

(32)
I60—

I20

SO
c3

40

g "dn 6 (Q) n (Q)
d~ 8 =EX~ exp

a =1,2, 3,4, (33)

where

6.(n)=e.(n)-v, ~.(n)=y. (n), a=i, 2, 3,
(34)

6,(n) =8,(n), n, (n) = y, (n) —v .

The 5 (Q) we identify with the experimental phase
shifts, since they all approach zero as 0- p. .
From (9) and (33), we obtain

k'v '(k)=QX 'exp--n "dn 6.(n } n..(n )'

x sin5 (Q), (36)

k'u '(k}= -QX, ' exp ——n "dn n..(n ) 6.(n )

x s~ (Q),

where the integrals are principal value integrals.
In order for the v (k) and the u (k) to be real
we must have [see Eg. (4)]

6 (Q)&0, & (Q))0, a=1,2, 3,

64(n)) 0, &~(n)(0 .
In (33) it appears as if d (z) diverges as (

z t

-~; however, this is illusory [see (27} and (28)].
Because 6,(n)„„=-v for a =1,2, 3 and &,(Q)„„--v,
the arguments of the exponentials develop logar-
ithmic singularities for large ~z t which cancel
the factor of s.

It is not difficult to show that (33}gives the sol-
ution of the inversion problem for the CL theory
if the phases 6 (Q) and & (Q) all become zero
at high energies as well as at the elastic thresh-
old. In the CJ theory ' the denominator function
d (z) does diverge as z for large (z). It should
be kept in mind, however, that if this inversion
procedure is used with experimental phases, an
inconsistency will develop, as the form factors
v (P) will depend on n. The CL theory has the
same form factor in all four channels.

0
I.O I.4 2.2 2.6 5.0

n/p.

FIG. 3. The phases 4g 2 3 calculated from Eqs. (13),
(14), and (34). In this and the remaining figures 0 is
the gN c.m. energy minus the nucleon mass, and p is
the pion mass.

III. SOME RESULTS

6.(n)=-v+„, o. =1,2, 3n+b. '

1680
(Q —4.10)'+ 10.5 '

(37)

-40-

-80-

Cl -I20-

I.O
I

l, 4
I

I.8
I l I I

2.6 5.0

I"IG. 4. The phase b,4 calculated from Eqs. (13), {14),
and (34). 0 and p. are as in Fig. 3.

Here we present some preliminary numerical
results to demonstrate the feasability of the in-
version procedure presented in the previous
section. We use the experimental phase shifts
of Zidell, Arndty and Roper, which are for
pion lab kinetic energies up to 350 MeV, and
are shown in Figs. 3(d) and 3(f)-3(h) of Ref. 10.
The & calculated from (13), {14), and (34) are
shown in Figs. 3 and 4. It is seen that they are
almost identical for n =1,2, 3, and, in fact, are
very similar to the P» phase shift [see Fig. 3
(h) of Ref. 10]. This is not surprising, since
the resonant g, amplitude dominates the sum
in (14).

The only phase that violates the conditions given
in (36) is the P„phase shift which changes sign
close to inelastic threshold. " In calculating the
form factors the following forms have been used
for 6, above 0 =1.6p, and for the others above
0 =3.0p, :
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FIG 5. orm. 5. F rm factors for the Pg~ channel. 0 and p
are as in Fig. 3.
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FIG. 7. orm. 7. F rm factors for the P3~ cchannel. 0 and p,

are as in Fig. 3.
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FIG.G 8 Form factors for the P channel. 0 and p,

are as in Fig. 3.
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technique. It should be possible to adapt this
approach to the author's formalism, ' since his
equations are similar in structure to those that
occur in nonrelativistic potential scattering. This
procedure can be checked by seeing if the result-
ing modification of the author's T matrix can
reproduce the CI theory with inelasticity effects
included. ~2

It will be interesting to see if including inelas-
ticity effects will give a P» phase shift that
changes sign. Ernst and Johnson" state that the
behavior of this phase shift is beyond the model
of Ref. 13. However, recent results" based on
an updated version" of the CL theory indicate
that the sign change is associated with the in-
elasticity. Since the author's model is closer
to the results of quantum field theory than the
model of Ref; 13, it is quite possible that inclu-
sion of the inelasticity will do the trick. If this
does not work it is clear that a higher rank sepa-

rable potential can be found that will produce
the sign change.

Strictly speaking, the crossing relations used
in Eq. (14) are valid only in the static limit. When
recoil is taken into account all angular momentum
states get coupled together. This should be taken
into account in determining the form factors v Q)
and u IP). This will not be difficult in the author' s
approach, since the crossing relations are used
only to determine the phases & (Q); it is not
necessary to "solve" those relations.

It should be possible to obtain the author's T
matrix as a limit of a covariant formulation.
In their work on relativistic T matrices, Celenza
et a/."have obtained T matrix equations which
bear a strong resemblance to Eq. (3.30) of F in
that they involve both positive and negative energy
meson states. At present an attempt is under
way to use their work as a basis for a covariant
generalization of the present work.

M. G. Fuda, Phys. Rev. C 21, 1480 (1980), referred to
as F.

Meson-Nuclear Physics —1979 (Houston), Proceedings
of the Second International Topical Conference on Mes-
on-Nuclear Physics, edited by E. V. Hungerford III
(AIP, New York, 1979).

H. Feshbach and F. Villars, Rev. Mod. Phys. 30, 24
(1958).

F. E. Low, Phys. Rev. 97, 1392 (1955); G. F. Chew and
F. E. Low, ibid. 101, 1570 (1956); G. C. Nick, Rev.
Mod. Phys. 27, 339 (1955).

5S. S. Schweber, An Introduction to Relativistic Quantum
Field Theory (Harper and Row, New York, 1961).

G. A. Miller, Phys. Rev. C 14, 2230 (1976).
M. Gourdin and A. Martin, Nuovo Cimento 6, 757 (1957);
8, 699 (1958); A. Martin, ibid. 7, 607 (1958); K. Cha-
dan, ibid. 10, 892 (1958); 47A, 510 (1967); M. Bol-
sterli and J. Mac Kenzie, Physics 2, 141 (1965).

M. Goldberger and K. Natson, Collision Theory (Wiley,
New York, 1964), p. 231.

N. Levinson, K. Dan. Vidensk. Selsk. Mat-Fys. Medd.
25, No. 9 (1949).

V. S. Zidell, R. A. Amdt, and L. D. Roper, Phys. Rev.
D 21, 1255 (1980).
D. H. Herndon, A. Barbaro-Galtieri, and A. H. Rosen-
feld, Lawrence Radiation Laboratory Report No.
UCRL-2003m N, 1970 (unpublished).
D. J. Ernst and M. B. Johnson, Phys. Rev. C 17, 247
(1978).
J. T. Londergan and E. J. Moniz, Phys. Lett. 45B, 195
(1973); J. T. Londergan, K. W. McVoy, and E. J. Mon-
iz, Ann. Phys. (N.Y.) 86, 147 (1974); D. J. Ernst, J. T.
Londergan, E. J. Moniz, and R. M. Thaler, Phys. Rev.
C 10, 1708 (1974).

4H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958); 19, 287
(1962).

5D. J. Ernst and M. B. Johnson, Phys. Rev. C 22, 651
(1980).

isN C. Wei and M. K. Banerjee, Phys. Rev. C 22, 2061
(1980).

~M. K. Banerjee and J. B. Cammarata, Phys. Rev. D 16,
1334 (1977); Phys. Rev. C 17, 1125 (1978).
L. S. Celenza, M. K. Liou, L. C. Liu, and C. M. Shak-
in, Phys. Rev. C 10, 435 (1974).


