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A simple model is used to reproduce modern mN phase shifts in the S, I', D, and I" waves for T g 2 GeV (except
P»). In these channels a rank one, two-channel separable potential model is used and the inverse scattering problem
is solved directly. In the P» channel the phase shifts are fit with a separable t matrix which contains a pole at the
nucleon mass and an explicit sign change in the phase shift, This model is intended for use in theories of the low and
medium energy pion-nucleus interaction where it supersedes the obsolete LT and I.MM potentials. The explicit pole
in the P» channel should facilitate the inclusion of pion annihilation into the many body problem.

NUCLEAR REACTIONS m~N 0-2 GeV phase shifts reproduced; 8, P, D, I
waves; separable potential with inverse scattering problem; nucleon pole and

sign change in P~~.

I. INTRODUCTION

Most theoretical descriptions of the pion-nucleus
interaction are based on some form of multiple
scattering theory. This theory in turn originates
from the assumption that the pion-nucleon (mN)
interaction can be desex ibed by a potential. Con-
sequently it should not be surprising that a great
deal of effort' "has been expended trying to find
potential-like models of the pion-nucleon inter-
action. In this way —3t the least —it is possible
to obtain consistency in the two- and many-body
problems and to include unitarity" into the theory.

Although these two-body, potential descriptions
are not as fundamental as field theories, they
have proved to be quite capable of repx oducing
elastic data over a wide range of energies and
are equivalent to the interaction produced by
heavy meson exchange. " While this does not
imply any particular uniqueness to the solution
found, it does increase our confidence that it is
a useful tool in generating an off-energy shell
mN t matrix with analytic behavior approximating
that of a field theory —except possibly in the P
wave. To construct a P wave interaction con-
sistent with field theory and the many body pro-
blem including pion annihilation, it is necessary
to have a t matrix which includes a subthreshold
pole at the nucleon mass. ""*"Yet the existence
of this pole permits the repeated emission and
annihilation of a pion, which in turn produces a
strongly energy-dependent t matrix, which in turn
is not similar to that produced by a sepax able
potential model.

In practice, when these separable gN potential
models are used in an optical potential to generate
elastic scattering from many nucleon systems
(the LPT potential" ) there is a comfortingly low
sensitivity to the details of the two-body poten-
tial." In part, this insensitivity of pion-nucleus

studies to the gN potentials arises from the
relatively long ranges of these potentials (R = 0.7
fm) producing rapid cutoffs in momentum space.
In contrast, the popular r-space pion-nucleus
potentials (Kisslinger, local Laplacian) are
derived from zero-range hypotheses for the pN
interaction and do produce results significantly
different from each other and fx om the I PT po-
tential.

As important as the range of the gN potential
may be in determining the properties of the
lowest order pion-nucleus interaction, it now

appears to be crucial in determining the im-
portance of highex order processes. For ex-
ample, the effectiveness of correlations within
the nucleus in reducing multiple scattering ($)—
and thus the importance of the Ericson-Ericson
Lorentz-Lorenz effect —is greatly reduced
($= 0.2) by a finite range mN force (A= 0.6 fm)."

The question of the range of the gN interaction,
and the related analytic structure of t'~, has been
a difficult one to answer with confidence since
field theory and potential theory appear to give
quite different results (even the different field
theoretic models appear to disagree with each
other at times). Specifically, the field theoretic
fits to the gN interaction have found"'"'"'" that
the elementary vertex (cutoff) function or "form
factor" v(P) corresponds to a much shorter range„
R —0.2 fm, than found for the separable potential
(R —0.7 fm). Ernst and Johnson" and Miller"
explain this difference by noting that the fieM
theory amplitudes contain the combination v(p)'/
~,(P)'. The &u, (P)'(=m, '+p') thus acts as an
extra cutoff and permits the vertex function v(p)
to have a longer tail in p space (shorter range in
r space) than the potential function. A related
explanation for the different sizes of the potential
theory and field theory form factors is given by
Myhrer and Thomas. " They argue that the Po-
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tential function itself should only be associated
with the left hand (crossing) cut of a Chew-Low
type t matrix, and that the Fredholm determinant
calculated from the potential should be associated
with the right hand (elastic) cut. The appropriate
Parts of the t matrices produced by both descrip-
tions will then be consistent with each other.

Since there exists the above connection between
separable potential models and field theory, an
examination of recent developments in the latter
may be illuminating for the former. In particular,
the original Chew-Low model field theory gen-
erated the gN P33 resonance only for a static
nucleon and then, by using an arbitrary cutoff
function. Johnson and Ernst et al. ,"'"'"in an
extensive number of calculations, have indicated
the extensions needed to permit this model to
reproduce actual scattering data. In particular,
it has been possible to apply the inverse problem
with inelastic channel coupling to determine the
cutoff function. "

In the most recent work of Ernst and John-
son,"a nonstatic model is used which (in all
channels except P wave) is equivalent to a se-
parable potential model including coupling to the
inelastic channels. The amplitudes in the P wave
channels are similar to those of Chew-Low theory
(they all have a nucleon pole term) with a special,
rank two N/D model used for the P» channel.
Very good fits to data are obtained. The P wave
part of that model is very similar to the work of
Liu and Shakin' who also include a clever (but
rather complicated) separation of background
and pole terms. Although none of these models
attempt to account for the crossing cut explicitly,
they —as do the potential models —implicitly
approximate the left hand structure by fitting the
theory to data.

Although most investigators have considered
the Chew-Low picture as the microscopic essence
of the P wave interaction, some very recent work
by Wei and Banerjee, " calls into question the
validity of the simple picture of the interaction as
being generated by the iterated annihilation and
emmission of pions. In particular, the inclusion
of nucleon recoil terms caused sufficient re-
duction of rescattering to remove the P» re-
sonance. Only after including higher order
gra, phs —of the types used by Cammarata and
Banerjee" for their theory of the S wave —is the
P33 resonance restored. Although not directly
applicable to the potential-based models, these
results may permit an improved and possibly
more correct fit to the P waves within a field
theory model, or possibly a different pheno-
menological fit.

In our paper, a simple separable potential

model of the nN interaction is presented. It is
an extension of the work done earlier by Landau
and Tabakin (LT) (Ref. 2) and Londergan, McVoy,
and Moniz (LMM) (Ref. 3) on the inverse scat-
tering problem. " In particular, we use the LMM
rank one, two channel, separable potential model
for all 8, P, D, and I" channels except the P».
In the P» channel we explicitly include the sub-
threshold nucleon pole and a low energy sign
change in the phase shift. In contradistinction
to the LT and LMM potentials which are not valid
at lower energies (they used the same obsolete
low energy phases), the present potentials use
modern fits to the low energy'4 and medium
energy" phases. Since it has been shown a num-
ber of times that low energy pion-nucleus scat-
tering is very sensitive to the input zN phases, "'"
this is a substantial and needed update. As indi-
cated in Sec. IV, we are able to fit the data over
a relatively large range of energies (0 ~ 7, & 2

GeV).
Other similar works on the gN interaction have

been published since the introduction of the LT
and LMM potentials. In particular, Schwarz,
Zingl, and Mathelitsch' have fit the S and P waves
up to 250 MeV with completely analytic para-
metrizations within the framework of the
Blankenbecler -Sugar formalism. We differ by
our direct "inversion" of the phase shifts by
fitting the data up to - 2 GeV and by using a
Lippmann-Sehwinger equation with relativistic
kinematics.

The basic physical similarity of all these models
is their separability and finite range for the zN
interactions; their difference is in the degree
of analytieity, the degree of off-shell unitarity,
and the assumed dynamics for the P waves. In
all cases it is beneficial to have several models
(all of which fit vN data) available when per-
forming a pion-nucleus calculation. For example,
we are comparing several of them in our present
calculation of pion-nucleus scattering lengths. "
Unfortunately, the quark bag models —while very
encouraging" —are not yet at the stage where
they can produce the long range zN intera. ction or
be incorporated into a many body theory. We
hope enough progress will occur in that area to
make the present works obsolete in the near
future.

II. THE INVERSE SCATTERING PROBLEM

For completeness and clarity, in this section
we outline the solution of the inverse scattering
problem for the single channel and multichannel
models. Details of the solution and original re-
ferences can be found in Refs. 30, 2, and 3, with
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T(k', k;E') = V(k', I ) +
d'p V(k', p)T(p, k; E)

E -E(p) +is

where

E(P) =E,(P) E.(P)
—(m 2+p2)1 2+(m 2+p2)1 2 (2)

is the two-body energy in the mN center of mass.
If T and V are decomposed into spin and isospin
states labeled a, Eq. (1) reduces to the one di-
mensional equation

T (k', k;E) =V (k', k)

2 "dp p'V ( k', p)T, (p, k; E)
E -E(p)+i~

(8)

If the potential V (k', k) is separable,

V (k', k) =g g (k')g (k) (4)

(o =+1 for repulsion/attraction), the off-energy-
shell t matrix can be determined algebraically,

extensive discussion of the applicability and ex-
istence of solutions given in Refs. 11 and 23.

A. Single channel model

We wish to solve the Lippmann-Schwinger equa-
tion with relativistic kinematics,

any inelastic thresholds, the strong energy de-
pendence in the complex phase shift y (&), which
occurs when a new channel opens, gets inverted
into a rapid momentum dependence of the po-
tential via Eq. (7). Yet since these new channels
contribute to unitarity, their effect should appear
in the energy variable of the I; matrix and not the
momentum variable. Physically, the rapid mo-
mentum dependence (peaks and valleys) so in-
troduced may transform into an unphysically long-
ranged pN potential in coordinate space.

B. Two channel model

If a formal second channel is introduced into
the scattering problem, LMM (Ref. 3) showed
that the strong energy dependence of the phase
shift arising from the opening of new channels
can be described by a strong energy dependence
of the potential strength, e, -o $ (E) This.
procedure should leave the potential in the elastic
channel quite smooth (and therefore of shorter
range in r space). However, since these elastic
potentials are now pure real, it is not possible to
describe the imaginary part of the phase shifts
with this one function. The energy dependent
coupling constant $, (E) must be simultaneously
given.

The effective, energy-dependent one channel
potential is thus

T (k', k;E')

g g (k )g (k) 1 "- "PP g- (P)
!!I !I I E+ E(p)

(5)

Given the on-shell t matrix expressed in terms
of the comP/ex phase shift y (k),

V (k', k;E)=o $ (E)v (k')v (k),
which yields the algebraic solution

T, (k', k;E) =v (k)v (k')/D (E),

(8)

(Sa)

(Sb)

T,[k, k, E( k) ] = —exp[iy ( k)] siny ( k)/2p ( k)k,

(6a)

~(k) =E,(k)E,(k)/[E, (k) + E„(k)], (6b)

and the phase shifts for all energies, it is pos-
sible to exactly invert Eqs. (5) and (6) and solve
for the "potential" or form factor, ""

g '(k) = —p exp[-b, (k)]siny (k)/2p(k)k, (7a)

(k)
1 p d&y [k(&)] (7b)

(g -E(k)
The theoretical difficulty with this procedure,

which led LMM to generalize it, is that because
y (k) is complex for energies above pion pro-
duction threshold, & in Eq. (7b) is always com-
plex, and hence so is g (P). Inaddition to this
small —yet still unphysical —imaginary part below'

One now defines a new "elastic" or pseudophase
6.(p) by

f (p) =[rl (p)e"'~'~' —1]/2ip = (e"5~'~' —1)$.(p)

f(p)lh. (p) =n(-p) f (p), - (10)

or more explicitly,

1-g
tah6 = tan5 1 +

2'/~sin 5~

2[1 —q (E) cos26 (E)]
I+@ ' —27' cos26

(12)

Note that below the first inelastic threshold,
q =1, 6 =6, ( (E) =1, and f =f . By writing
a dispersion relation for I/$ (E), LMM show
that it is possible to apply the inverse scattering
procedure, Eq. (7), to the pseudoscattering am-
plitude f and obtain the pseudopotential g (P) and
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(14)

the "'actual" potential e (P):

g '(k) =-o exp[-Z„(k)] sin6 (k)/2p (k)k, (18)

.(k) =Z.(k)/[~. (k)]"',
where the pure real, "pseudo" phase shifts 5 are

rh Q

now used to calculate pure real & (k) and conse-
quently pure real g (k).

The on-shell t matrix is now related to the
pseudophases 5 by the usual relation

g, '(k)
T(kkE)=

2 d ()f" pps' p
E' E(p)

exp[i5 (k)] sin) (k) . (15)2k' k

The full off-shell t matrix then requires a tabu-
lation of both of these g (k)'s, Eq. (13), [or e (k)]
and the g (E), Eq. (12),

T (k', k;E) =v (k')e (k)/D (E),

D (E) 1/
2 "&Pp'g. '(p)

Ix o v ~ E(p)

It is important to observe in Eqs. (16) that the
"actual" potential v (k) appears in the numerator,
but the pseudopotential g (k) appears in the de-
nominator. [Yhe two are simply related by Eq.
(14).] Note that ahorse the elastic threshoM, Eqs.
(16) relate the off-to-on shell to matrices by

T (k', k;E) =T [ko, k„E(ko)]v (k')v (k)/v '(ko)

k'( k
T,[k„k,;E(k,)]g, (k') g, (k)/g '(k,),

whereas below threshold the Fredholm deter-
minant D (E), Eq. (16b), must be explicitly cal-
culated.

As indicated in Sec. I, a simple potential model
is no longer useful for the P» channel since we
want to have an explicit pole in t'" at the nucleon
mass to account for mN annihilation and emission,
and to incorporate m annihilation into a many body
theory. We do this by assuming Eq. (16a) is still
valid, but that the Fredholm determinant 8 has
a zero at E =m„.' This is then equivalent to the
use of an energy-dependent coupling constant
g -g (E)o . In addition, we explicitly account
for the sign change (zero) in the P» phase shift
at Eo =1210.V MeV by requiring 8 to have a pole
at E,. If these two requirements

D(m„) =0, D(E,) =~, (18)

are then placed on the Fredholm determinant

D (E) 1 2 "dpp'S '(p)
o.h. (E) v . E'-E(p) '

A,

we can solve for g„(E) and rewrite D (E),

"
( )

1 E-~z Eo-~~ 2 dpp'g '(p)
o Eo —E E, -E v 0 E(p)-m„

"
dp p'g. '(p)

E(p)

To remain consistent with the work of the pre-
vious sections, we then fit the on-shell pseudo
t matrix,

T.[p,p; E(p)] = Z.'(p)/D. [E(p)]

e"~'~'sin6, (p), (21)
2p kk

to the pseudophase shifts 6 (P) for the P» channel.
Although it is possible to express the t matrix as
an inverse problem, we reduced the complications
by assuming an analytic form for the pseudo-
potential,

Qgp Q2p
(P'+fi ')' (P'+P ')' '

and then adjusting the four parameters, n„n»
P„and P, to obtain a best fit to the phase shifts.

IV. CALCULATIONAL DETAILS

The phase shifts used in the preceding cal-
culations were from three different sources. At
low energies (P ~ 250 MeV/c) the phases were
from the Salomon analytic fit"; at intermediate
energies (250 MeV/c&pg1000 MeV/c) the
Almehed-Lovelace tabulation2' was used; above
1000 MeV/c the phase shifts were determined

by partial-wave analyzing a Regge-pole fit to
very high energy gN scattering. ' The Regge
phases [qs(p), 6"(p)] for the S„,P», and P»
channels mere then slightly adjusted to fit
smoothly onto the tabulated phase shifts at p =1
GeV/c.

Since a potential model is only consistent mith

phase shifts which vanish at infinite energy, the
very highest (P&%=2 GeV/c) Regge phases were
damped according to the prescription
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FIG. 2. The same as Fig. 1, except for the P3& chan-
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FIG. 1. Upper graph: The nN absorption parameter
n and the pseudoseattering phase shift 8, Eq. (11}, in the
83~ channel versus pion center-of-mass momentum.
The dote are the input values used to calculate the sep-
arable potentials v (p); the crosses are the prediction of
the model. For 0 &p, &250 MeV/c the Salomon phases
(Ref. 24) are used; for 250&p, ,m & 1000 MeV/c the Alm-
hed-Lovelace phases (Ref. 25) are used; and for p,
& 1000 NeV/c phase derived from Hegge amplitudes are
used (see Sec. V). Lower graph: The actual separable
potential y (p) calculated from the above phase shifts by
first solving for g(p) via direct inversion, Eqs. (13) and
P), and then determining v (p) by divi. ding out the ener-
gy-dependent coupling constant Eq. (14).
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where A =1 GeV/c (except for P», where 0.5
GeV/c was used). The above cutoff, and even
the use of Regge phases, may appear somewhat
arbitrary. It is important to remember, how-
ever, that the main effect on the off-shell t ma-
trix will be for T, = 2 GeV. Since we are in-
terested in applying this model at much, much
lower energies (T, ~ 300 MeV), there is little
practical significance to these cutoffs. Although
the assumptions made for the high energy phase
shifts will affect the magnitude of the low mo-
mentum potentials, '" this is essentially just an
additive change in the value of 4 (k) in Eg. (17),
and therefore only renormalizes the magnitude
of all the gQk)'s. ' Since the off-shell behavior
involves just ratios, Eq. (17), the renormaliza-
tion simply cancels.

V. RESULTS

The actual potentials v (P) calculated by Egs.
(13) and (14) are displayed in the lower part of
Figs. 1-7. The upper parts of these figures dis-
play the input pseudophase shifts 5 (P) and ab-
sorption parameters q (P), along with the output
phases obtained by reinversion (see Sec. V for
more details about the phase shifts used).

Although in general, the potentials calculated
with the multichannel method used here are

') 15

10

o

l

1500
I l I I

500 1000
p (Mev/c)

C.%.

FIG. 5. The same as Fig. 1, except for the P&3 chan-
nel. Some of the statistical noise in the potential func-
tion has been reduced to show more clearly the structure
of the potential function.

0'

smoother than those obtained with the single chan-
nel model of LT,' they are not as smooth as the
potentials displayed by LMM. ' In many cases a
fine structure is introduced into the v(p)'s when
the smooth g(P)'s obtained by inversion are con-
verted to v(p) [Eq. (14)] since $, (P) contains the
rapid variation associated with the opening of new
channels. We cannot explain why these structures
were not obtained previously. Specifically, we
have traced the structures in the P», P33 Spy,
and E» channels as being related to those in

&.(u).
Since the inversion procedure produces po-

tentials directly from phase shifts, we have
checked the potentials by "reinverting" them to
calculate the phase shifts via Eq. (15). The re-
sults of this reinversion are displayed in the
upper parts of Figs. 1-7. It can be seen that the
data points calculated in this way (the crosses)
correspond rather closely to the input phase
shifts, especially at the lower energies. This is
rather remarkable considering the noise present
in the input.

A potential v(p) and the pseudopotential g(P) for
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the P» channel are shown in Fig. 8. As occurred
for the inversion problem, the structures inv(p)
at p = 250 and 800 MeV/c are not present in g(p),
but rather are introduced by $ (P) via Eq. (l4).

The quality of the fit to the pseudophase 5 (p)
in this P» channel is shown in Fig. 9. The fit
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FIG. 9. The pseudophase shifts in the P&& channel and
the predictions of the model. The different parameters
for the three fits are given in Table I.
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TABLE I. Parameters of the P&& potential.

Fit e~ (x106 MeV2) P& {MeV) G., (MeV') p2 (MeV)

A

C

7.01
7.01
7.01

875.8
947.0
821.1

-3.341 x 10
-3.341 x 10
-1.370

1240
1240
782.2

is excellent for 0&P & 250 MeV including both the
sign change and the subthreshold nucleon pole.
However, our simple form for the t matrix, and
in particular for its denominator, Eqs. (20)-(22),
is not capable of producing a good fit at both
lower and higher energies. In particular, our
searching has found a number of equally "good
fits, " with the ones which fit well at low (high)
energy not fitting well at high (low) energy. The
fits A, B, and C in Table I and Fig. 8 are ex-
amples. Although the parameters in fits A. and 8
are very similar, B is better at low energy; in
contrast, the parameters of fits B and C appear
quite different, yet produce very similar fits.

VI. CONCLUSIONS

We have presented a separable potential model
which reproduces the most up-to-date gN phase
shifts in all the S, P, D, and I' waves for T, ~2
GeV (-0.2 GeV for P»). Its main application will
be in low and medium energy studies of the pion-
nucleus problem within a multiple scattering
formalism. In this way the two- and many-body

problem can be treated with the same dynamical
equation. The pure real potentials account for the
coupling to inelastic channels by use of an energy-
dependent coupling constant. In the P» channel,
the f matrix explicitly contains the nucleon pole,
arising from p annihilation and creation, and a
low energy sign change. This facilitates the in-
clusion of pion annihilation into the many body
problem.

Since we directly invert the experimental phase
shifts, at very high momentum our potentials
contain a fine structure which is related to the
opening of inelastic channels. This is true even
within the multichannel formulation. At low and
medium energies the potentials are smooth and

we are currently using them and other models
in a study of pion-nucleus scattering lengths. "
The change in pion-nucleus scattering due to the
very different off-shell behavior of the mN P»
amplitude is an open and interesting question.
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