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The structure of the o~ strength function is studied with a zero range interaction. The

systematics of the giant Gamow-Teller state requires an interaction strength for V of
about 200—240 MeV fm . While most of the strength goes to a state at high excitation, we

find that -20—30% of the strength remains at low excitation energy. The L = 1 states

show considerable J splitting, with a major peak at =20 MeV excitation. This peak con-

tains components of J = 0, 1, and 2. Comparison with the experimental L = 1 energy

shows that the momentum dependence of the ov interaction is small.

NUCLEAR STRUCTURE. Gamow-Teller states and L = 1 states in

adjacent odd-odd mass nuclei of double closed shells. TDA and RPA
calculation with zero range interaction.

INTRODUCTION

The (p,n) reaction studies at intermediate energies
have brought a tremendous advance in our empiri-
cal knowledge of the distribution of spin excitation
strength in nuclei. ' Qualitatively, the strength
function has a peak in a state located at or above
the position of the analog state. This, state, the giant
Gamow-Teller resonance, had been anticipated by
theory for many years. In this article we wish to
correlate the new data with a simple theoretical
model. Our purpose is to extract from the data the
properties of the residual interaction, rather than

simply compare data with a particular interaction
model, as has been done in other calculations of the
Gamow-Teller strength. Our model is the Tamm-
Dancoff approximation (TDA) based on the shell

model wave functions from either a Woods-Saxon
potential or a Skyrme Hartree-Fock calculation.
We shall use a simple 5-function interaction and ad-

just the interaction strength so as to reproduce the
main peak of the or strength function. The model
then gives predictions for the distribution of strength

among 1p-1h configurations. As will be seen,
roughly 20%%uo of the strength appears in a state at
much lower energy than the giant Gamow-Teller
peak.

The same phenomenological interaction may also
be applied to higher multipoles, for example, excita-
tions induced by operators of the form
[YL(0)tJ]~r . In principle, these higher multipoles
will be sensitive to parts of the interaction that are

omitted in the 6-function treatment of the 1+ excita-
tions. Specifically, the momentum dependence of
the interaction might affect the energies of the state
with L & 0. However, we expect these effects to be
small, and much can be learned with the momen-
tum independent interaction. We shall discuss the
effect of the momentum dependent interaction (finite
range force) at the end. In examining the L = 1

strength function, we find a substantial splitting
between different J states.

CALCULATIONAL DETAILS

Our model Hamiltonian consists of the single-
particle Hamiltonian and the residual interaction.
The single-particle Hamiltonian is spin dependent
and possibly momentum dependent. As a model,
we use a Woods-Saxon potential of standard param-
eters: Vp ——50 MeV, I'p = 1.27 fm, 3 = 0.67 fm.
We shall also calculate the single-particle Hamil-
tonian within the Hartree-Fock theory with the
Skyrme III interaction for comparison purposes.
This model has an effective mass m*/m = 0.76,
close to what is expected from more fundamental
Brueckner-Hartree-Fock theory. Besides the effec-
tive mass, another important question is the magni-
tude of the spin-orbit potential, since much of the
excitation energy of the Gamow-Teller state arises
from the spin-orbit splitting. The spin-orbit splitting
of particles traveling at the Fermi momentum is
about 6 MeV, but the direct observation of the split-
ting is difficult. The most direct evidence on the
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strength of the spin-orbit interaction is probably ob-

tained from elastic scattering. %e therefore used a
spin-orb1t llltcl'Rct1011 fl'oII1 R glol1al fit to low-energy

elastic proton scattering data in the single-particle
Hamiltonian based on the %'oods-Saxon potential.
The Skyrme III Hamiltonian includes a spin-orbit

interaction which we used to make the spin-orbit

potential in this case.
As for the residual interaction, wc take the spirit

of the Landau-Mlgdal thcoiy; i.c., thc interaction
matrix is the direct term of a 5-function interaction:

U,„=V ~1 o,r, r25(rI —r, )

The particle-hole matrix element is written as

V 3

Je&OO 'd X&Ju
4m

I))

J+1/2 —j&( —) '(j1—,j2 ——,
(
JO)

( —) '(j1—,j2 ——,
j JO)

1/2
(j1+ —,)(j2 + —, )

4Ir(2J + l)

(j1+ —,)(j2+ —, )

4Ir(2J + 1)

( —)
' " (j1+ —, ) + (j2+ —, )

X
[J(J + l) J'~

( )
1 2

'1/2
(j1+ —,)(j2+ —, )

4Ir(2J + 1)

( —)
' ' (j1+ —, ) + (j2+ —, )

X
[J(J + l)]I" , h= —1

%ith the above Hamiltonian we calculate the
response to a ere field, using a Green's function
technique in coordinate space developed by Bertsch
and Tsai. %'e consider some nuclei with partially
filled shells. These are treated in exactly the same
way as closed shell nuclei, with fractional occupa-
tion numbers. Thus in' Sn in our models, the neu-
tron Fermi level is in the h

~ I&~ shell, and this is
given an occupancy factor of —, to make to total
neutron number N = 74. It would be preferable to
treat such nuclei in pairing theory, but we ignore
such efFects in this work.

The energy of excitation in the (p,n) reaction
may be expressed in several ways: with respect to
the ground state of the target nucleus, the ground
state of the residual nucleus, or the analog state in
the residual nucleus. From an experimental point of
view the choice is strictly a matter of convenience,
but the theory will involve different calculations in
each case. The TDA theory requires as a starting
point the single-particle energies in the residual nu-
cleus. Given these energies, the interaction can then

I
be related quite directly to the excitation energy in
the residual nucleus. %C shall perform the calcula-
tion in this way. However, the single-particle ener-
gies are not really well known for heavy nuclei be-
cause there is an uncertainty in the momentum
dependence of thc slllglc-paftlclc HRIlllltolllRll. SOIIlc
of this ambiguity is removed if the energy of the
spin excitations are compared to analog state ener-
gies. The analog state is made of (jzj„')conf1-
gurations, so the single-particle energies from these
configurations just cancel out. The price one pays
for using the analog state as an energy base is that
the interaction energy of the analog state must then
be computed. In attempting to do this, we were
quite surprised to find substantial shell fluctuations
in the analog energy in heavy nuclei that are prob-
ably not present in the data. %C shall therefore cal-
culate the excitation energy of the spin states with
respect to the ground state of the residual nucleus.

The most important single-particle energies for
the various nuclei we consider are shown in Table I.
The second column gives the highest j occupied
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TABLE I. Gamow-Teller energies: The energy of the main peak of the Gamow-Teller strength function is calculated

in two models based on Woods-Saxon single particle energies and on Skyrme III single-particle energies, The residual in-

teraction strength is V = 220 MeVfm3 for the Woods-Saxon model and 200 MeVfm for the SkyrIne model.

Nucleus
Highest j

neutron orbit
Woods-Saxon Skyrrne III

—E'J( J)
Experimental

E

"Ca
902

94Zr

96Zr
112S

124Sn

TIYl

ospb

fbi
g 9/2

g 9/2

g 9/2

h 11/2

h»/2
i 13/2

—0.2
—0.1

5.1

0.6
2.9
6.2
3.6

6.0
6.2

6.1

5.9
6.6
6.2
6.6

10.3
9.7

15.1
9.7

14.1

16.5
14.7

—0.2
—0.1

5.6
0.6
4.3
6.4
5.0

5.9
5.8

5.5
5.6
6.6
5.8
5.4

10.3
9.4

15.3
8.9

13.7
14.6
13.3

10.4 {Ref. 3)
8.2 (Ref. 1)

13.0 (Refs. 14,16)
13.7 (Refs. 14,16)
9.5 (Refs. 14,16)

13.9 (Refs. 14,16)
15.5 (Refs. 14,16)
15.5 (Refs. 14,16)

neutron orbit. The excitation energy of this confi-

guration, (jzj„},is shown in the column labeled

e(jj '). For Ca and Zr this is the ground-state

configuration, so the excitation energy is zero for the

single-particle Hamiltonian. This has been correct-
ed for the empirical interaction energy of the proton
and neutron hole in the ground state. For the other
nuclei, the e(jj ') energy is just the difference in

single-particle energies of the jj configuration and

the ground-state configuration.

RESULTS

Experimentally, the main peak of the Gamow-
Teller strength lies at an excitation energy of 9—15

MeV, and the available data can be reproduced to
within about one MeV using the Woods-Saxon
single-particle model and a residual interaction

strength of

V = 220 MeVfm

The comparison of theory and experiment is shown

in Table I. The experimental energy is a mean en-

ergy including the T& strength, where it is known.
Note that for the lighter nuclei, most of the excita-
tion can be ascribed to the single-particle excitation

energy of the (j&j& '} configuration. As
(N —Z)/A increases, the residual interaction energy
increases, and with the nucleus Pb the interaction

energy raises the state —5 MeV higher than the

(j &j&
') configuration. Clearly, the value we

deduce for the residual interaction strength will

depend on the assumed strength of the spin-orbit

splitting. It is encouraging therefore that the

Skyrme III Hamiltonian has nearly identical spin-

orbit splittings for the lighter nuclei. In Pb, the

Skyrme III spin-orbit splitting is about 1 MeV less

than the Becchetti-Greenlees, probably because the

latter potential has too small a radius for heavy nu-

clei.
Examining Table I in more detail, it may be seen

that the predicted energies for Zr, ' Sn, and

Tm are too high, and the remaining ones are low.
No significance should be attached to the ' Trn

result because deformation effects are not included
in the model. The " Pb is nearly 1 MeV too low,
and we shall see a possible reason for this when we

discuss effects of the range of the residual interac-
tion.

Although most of the strength is in the state at

high excitation, there remains =20% of the total

strength at low excitation, which is also in a single

state in the lighter nuclei. This double peak struc-
ture can be traced to the unperturbed configuration

(j&j& ') and (j&j& '), which received roughly

equal strength before the interaction is turned on.
A simple estimate of the strength left in the lower
state can be made by perturbation theory, starting
from L —S coupling rather than j —j coupling. In
the limit of strong residual interaction, the upper
state has primarily L = 0 character with roughly
equal amplitudes of j & and j&. The one-body
spin-orbit field could then be considered by pertur-
bation theory mixing upper and lower states with a

1

matrix element of the order of V = , (E& —e& )—
= 3 MeV. In this sense the splitting of the L —S

coupling state due to the residual interaction is =6
MeV in the lighter nuclei. So the probability of the
L = 0 strength in the lower state would be estimat-

ed to be

vP = —( —) =-
6 4
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Low strength

Nucleus Character Theory Experiment

48Ca

"Zr
'Zr
112Sn

"4Sn
169T

208pb

single state
single state

several states
several states
several states
several states
several states

0.20
0.20
0.28
0.28
0.20
0.27
0.28

0.17 (Ref. 3)
0.25 (Ref. 1)

TABLE II. Gamow-Teller strength at low excitation.
The fraction of the total strength below the major peak is

shown.

prominent at 200 MeV bombarding energy, where

5 = 0 transfer is considerably suppressed in the

(p,n) reaction. Coupling S = 1 to L = 1, the indi-

vidual states will have total angular momentum 0,
1, and 2. The relative strength of the different J
components is proportional to (2J + 1) in the sim-

ple models, and detailed calculations will give

results close to this limit.
The theoretical L = 1 strength function has a

substantial splitting among different J values, with

J = 0 highest in energy. This can be ascribed main-

ly to the one-body spin-orbit potential. Much of the

J = 0 strength arises from states of the type

This probability is important for inferring the in-

teraction. As we saw before, the calculation of the
total excitation energy leaves some doubt as to the
relative importance of the spin-orbit interaction and
the residual interaction. These energies come in P
in opposite ways however, and so, in principle, al-

low both to be determined. Our detailed calculation
of P is shown in Table II compared with experi-
ment. For the two cases that have been measured,
there is good agreement between theory and experi-
ment,

The excitation energies of the lower states may

also be compared with experiment for the cases of
Ca and Zr. These are shown in Table III. We

see that these energies are too low. This is due to
the inadequacy of the zero-range interaction for

describing states which have substantial components

of unnatural L, as will be seen later.

THE L = 1 STATES

1 I= l(I + 1 —, 4+1/2(lg )I+1/2 )J=O

which has a large repulsive spin-orbit interaction.
The J = 2 states, on the other hand, have quite a
small expectation of the spin-orbit field. For the
J = 1 and J = 0 states, a single eigenstate has near-

ly all of the strength. For the J = 2, however, the
strength is spread over several states. These qualita-
tive features were found in a calculation of Pb by
Krmpotic et al. '

Our calculation of the (rYicr)J strength in Zr,
shown in Fig. 1, also illustrates these points. The
single-particle excitation energy in Zr is about 9
MeV, except for spin-orbit splitting. The residual
interaction shifts the strength upward by 5 —10
MeV. In L = 1, there is significant strength for the

~+ operator, and the resulting random-phase ap-
proximation (RPA) correlations lower the energy by
about 1 MeV. We therefore use the RPA theory
for calculations in this section. To facilitate com-

Experimentally, an L = 1 peak is found in the

(p,n) reaction at an excitation energy of = 20 MeV.
The available experimental data is collected in Table
IV. It is reasonable to suppose that the strength is

associated with spin flip, because the peak remains

TABLE IV. L = I strength. The strength for the
(rY1cr)J operator is summed with a (2J + 1) weighting.
The position of the maximum of the theoretical strength
is compared with the experimental L = 1 peak position.
Energies are excitation in the residual nucleus.

Nucleus Theory

E(1+)
Experiment

48Ca

~Zr
1.8
1.6

2.5 (Ref. 3)
2.1 (Ref. 1)

TABLE III. Excitation energy of low-lying 1+ state.

Theory is with V = 220 MeVfm, corrected for the em-

pirical interaction energy of the ground state configura-

tion.

Nucleus

48C

90zr

"Zr
112sn

"4Sn

Tm
208pb

22.0
20.0
23.4
19.1
23.1

23.5
21.3

Eexp

17.3

16.5
19.4
21.8
21.9
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FIG. 1. The L = 1 strength in Zr as a function of
excitation energy. Numbers beside solid bars denote the

J values.
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parison with experiment, we have summed the

strength functions for the different J's in Fig. 2, and

smoothed the sum with a Lorentzian function. The
structure from the individual states disappears with

a 4 MeV full width at half maximum (FWHM),
which is what we used in Fig. 2. The different J
states combine to give a broad peak at 20 MeV.
There is a wide shoulder on the low energy side,

composed primarily of J = 2. The median energy
is about 18 MeV. If the smoothing function were

made broader, so that the strength appeared as a
single peak, the width would be = 15 MeV.

Quite similar results are obtained with the
Woods-Saxon and the Skyrme Hamiltonians. It
might be expected that the strength would be higher

in the Skyrme theory because of the larger single
particle energy gaps. There is an effect of this sort,
but it is small because the dominant orbits are in the
surface, and is negated by a weaker spin-orbit field.

The experimentally observed L = 1 peak can be
identified with the upper component of the theoreti-
cal strength of Fig. 2. The question then arises as to
why the lower component has not been noticed in

the experimental data. Perhaps its proximity to the
Gamow-Teller peak has prevented an identification.
In Table IV we quote the energy of the upper
L = 1 peak for the diA'erent nuclei. The theoretical

energy is determined graphically from the summed
strength function, using the same smoothing as for
"Zr.

We see that the excitation energy is nearly in-

dependent of 3, unlike the Gamow-Teller energy.
Heavier nuclei, with the larger mass asymmetry,
have more interaction energy, but the single-particle
excitation across major shells is less. These two ten-

dencies cancel in the global trends.
Compared to experiment, the L = 1 energies are

somewhat high. One possible reason is that the
theoretical energy includes all isospins. This should

agree with the experimental energy if the experimen-
tal fit included both the T& and T & strengths.
Otherwise, if only T& strength is in the fit peak, the
experimental number should be raised by about an
MeV before comparing with theory. Another possi-
ble reason for the disagreement is the presence of
L = I strength below the identified peak. If the

spreading of the strength were greater, the theoreti-
cal peak would move to lower energy.

In view of these uncertainties, we can only draw
tentative conclusions about the aspects of the residu-
al interaction specifically tested by the L = 1 states.
It appears that the predicted energy is too high, in

which case an attractive momentum dependence is
required in the o~ interaction. From the qualitative
formula of Ando, " a shift of 2 MeV at 18 MeV re-

quires that the Landau parameter G ~' be of the or-
der

IO 20
EXCITATION (MeV)

30

FIG. 2. The L = 1 strength in Zr after smoothing
out each state in Fig. 1 with a Lorentzian function of a 4
MeV FWHM width. The results with the Woods-Saxon
and the Hartree-Fock wave functions are denoted by
solid and dotted lines respectively.

Gi' = 3[(—„) —I] = —0.6

By contrast, the value deduced from the Reid po-
tential is close to zero. '-'

It would be interesting to observe the predicted J
splitting of the states. In principle, this could be
done by observing the spin parameters of the reac-
tion. To see how this works, we use a coordinate
system with the z axis along the direction of
momentum transfer. Then the orbital excitation has

MI ——0 in this coordinate system. If the spin
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transfer is produced only by the operator O.„as
would be the case for the non-spin-flip reaction
shown in Fig. 3(a), the spin transfer is M, = 0 and

this reaction could only excite J = 0 and 2 states
since the transferred angular momentum and the
spin are L = 1 (ML ——0) and S = 1 (M, = 0) in

this case, the total spin J is constructed by the
Clebsch-Gordan coefficient (1010~JO), which is finite

for J = 0 and 2 but zero for J = 1. If, on the oth-
er hand, the reaction is induced by the o+ spin
operator, as the spin-flip process shown in Fig. 3(b),
the spin transfer is M, = 1 and the reaction would

only excite J = 1 and 2 states. Thus the position of
J = 0 could be distinguished from J = 1 by com-

paring these two spin experiments, While the mea-
surement is probably hard for the (p,n) reactions, it
is certainly feasible for inelastic proton scattering.
The or, strength function, which is tested by the

(p,p ') reaction, should behave similarly to the or
strength function.

Finally, it is of interest to ask what relative excita-
tion of the S = 0, L = 1 state is compared to the

S = 1 states. A (p, n) experiment by Sterrenburg
et al. ,

' on Zr at relatively low energy found the
L = 1 peak significantly higher than in Table III.
A possible explanation is that the lower energy ex-

periment excited S = 0 strength, located at higher

energy. The theoretical energy of the state can be
estimated from our knowledge of the giant dipole
state. In Zr, the giant dipole energy of 16.8 MeV
consists of about 10 MeV of single-particle energy
and 7 MeV of interaction energy. There are more
configurations contributing to the charge exchange
dipole.

The interaction energy is roughly proportional to
the strength of the (rF,r) operator. The strength of
this operator is larger in the charge exchange mode
because there is less Pauli blocking. Quantitatively,

(rYir )9o = 1.45(.1.,),.' =

The interaction energy is then 7 & 1.45 = 10

(b)

FIG. 3. Spin parameters of the I. = 1 excitation. The
thin line denotes the incoming and outgoing nucleon,
with the thick arrows representing their spin directions.

MeV, and the excitation energy should be near 20
MeV. This accords with the findings of Ref. 14.

SIGNIFICANCE of V,

The true interaction is quite complex, with the

noncentral components and important finite range
effects. The question arises as to how to make con-
tact between the model discussed here and more ela-

borate descriptions of the interaction. Confining our
attention to local interactions, some insight may be

gained by examining the direct and exchange matrix

elements spearately.
The direct term in the residual interaction is sim-

ply a double convolution of the transition density

with the interactions. The spatial variation of the

transition density should be small on the scale of the

interaction range for the 5 interaction to accurately

represent a finite range force of the same volume in-

tegral. The Gamow-Teller transition density has no

spatial variation in tangential directions. However,

the radial variation is significant when only a single

l orbit is involved in the transition, as happens in

the lighter nuclei considered. We shall estimate the

effect of the finite range force on the volume in-

tegral by assuming that the radial dependence of the

transition density is represented by a Gaussian,

—a(r —r )~

5p(r) —e ', a —0.7 fm (2)

' 1/2
7TP

20!

' 1/2
2

erf
2Q

(3)

In the last step the integral was evaluated replacing
the spherical geometry by an infinite plane
geometry. For the one-pion exchange potential,

p = 0.7 fm ', the reduction factor is 0.6. We have

verified this reduction factor with more accurate cal-
culations.

'

The exchange term is normally evaluated in a
zero-range approximation. Namely, assume that the
structure of the transition amplitude has equal con-
tributions from all particle orbits on the Fermi sur-
face. Then the transition density matrix may be ap-
proximated by the local Fermi gas approximation,

The finite range integral of a Yukawa function is

then reduced by a factor
I

f d3y d3r'5p(r)5p(r')[p e "'" " '/4'(r —r'}]

f d3r d3r'5p(r)5p(r')5 (r —r')
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r+r' dk ikrk(r —r )
5pr, r' =5p e" . (4)

2 4m

2

V(r) = o" o 7.r, (g' ——, )5'(r —r')
p

The exchange matrix element of a Yukawa interac-
tion of unit strength is then evaluated as

1 p e+—
34~ r

1

2 —p(r —r )

J [5p( r,r')]'~, d'r d'r'
4m(r —r ').

2
=fd3R [5p(R )]J 4m' 4m P~+ ~krk —kEk'

~

+ tensor

Forgetting the tensor part, we obtain

2

V = (g' ——, + —,R) = (g' —0.12)

4k'= f d'R[5p(R)]' " » 1+
F

2f, q oq o'
(6)

where f Ip = 390 MeV fm . In coordinate space
this becomes

Substituting the pionic p and kz ——1.35 fm ', the
factor in brackets is —,'. This may be compared with
a more careful evaluation of the exchange matrix
element for the Gamow-Teller state in Ca, which

1

yields a reduction of 4.
The approximation (4), upon which this argument

is based, fails when the excitation is dominated by a
single Slater determinant. Then the integrand in the
exchange integral is non-negative, and the long-

range components of the interaction are not
suppressed. This happens in the 0 states of light
nuclei, ', which are nearly pure configurations.
Also, very high spin states, such as (j»&zit3/p ),
have this character. It is then necessary to treat the
finite range of the force explicitly to describe all the
properties of the states. ' The finite range enters cru-
cially in another situation, when the state is predom-
inantly unnatural multipolarity, ( —) +II. Then a
zero-range interaction vanishes identically, but not
the exchange of a finite range interaction. This is
the situation with the lower 1+ state. It is predom-
inantly L = 2, S = 0, and the exchange interaction
in this channel makes up the discrepancy in energy
noted in Table III.

We are now in a position to relate U to the con-
ventional model of the interaction with explicit one-

pion exchange,

and we deduce
g' = (p~/f~) V, + 0.12 = 0.56 + 0.12 = 0.68.

If the model includes the exchange of the one-
pion exchange potential (OPEP) explicitly, then the
interaction in the 0.~ channel is

(g
' ——, )5D'(r —r ')

p2 —pp'

+ „5,'(r ——«') + —,
4m- r

p e
"4m r

V = [g' ——,(1 —RD)

(9)

+ —„(1—RE)] =g' 0.07 .

Thus the volume integral we, deduce of 220 MeV
fm is consistent with a g' of the order of 0.6.

Concerning the tensor force, the contribution is

expected to be small as compared to the central
piece due to the fact that the main components of
the particle-hole states with high j are L = 0.
Furthermore, the actual calculation of the matrix
elements in Ca shows a large cancellation between
the direct and exchange terms of the tensor force.

CONCLUSION

Stimulated by the recent experimental develop-
ments on the (p,n) reaction at intermediate energies
on various nuclei, we have performed a systematic
study of the giant Gamow-Teller states and the
L = 1 states (most probably S = 1) in the whole
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range of medium and heavy nuclei (3 ) 48). A
simple theoretical model with a zero range interac-
tion is used, which gives rise to a fairly nice descrip-
tion of these states. We found that the giant
Gamow-Teller states are reproduced to within about
1 MeV using a constant spin-isospin strength;
V = 220 MeVfm . This value corresponds to the
Landau parameter of g' = 0.56 when the OPEP is
neglected. If the OPEP is considered, the estimated
g' is of the order of 0.6, which is consistent with the
general belief for this parameter. ' ' The resulting
M strength is concentrated to the giant Gamow-
Teller state, but about 20 —30% of the strength is
left at low excitation energy. This result agrees with
the existing experimental results for Ca and Zr.

The I. = 1 strength also has been considered
within this simple model. The I. = 1 strength (with
S = 1) turns out to have a substantial splitting
among different J values. Among the possible
spins, J = 0, 1, or 2, the J = 0 state stays at the

highest excitation due to the spin-orbit splitting. An
experimental method to disentangle the J values is
proposed. The theoretical strength is compared
with the experimentally observed L = 1 peak.
While the tendency that the L = 1 state remains at
a constant value, about 20 MeV, with the mass
number is reproduced, the excitation energy is cal-
culated to be too high if one takes V = 220 MeV,
deduced from the M1 state. This must be related to
the use of the zero-range interaction and it is in-

teresting to study the finite range effect for these fin-

ite L states.
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