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Neutron-induced angle-integrated fission cross sections of '"Th were measured from 1.3 to 1.8 MeV with a

nominal neutron energy resolution of 0.15 ns/m, Data were taken for the angular intervals 0' to 23.4', 0' to 33.7', 0'

to 51.7', and 0' to 90'. The structure at —1.4, —1.6, and -1.7 MeV were interpreted in terms of rotational bands

with K = 1/2, 3/2, and & 5/2. The approximate relative fission strengths for the K bands are in the proportion

1.7:2.4:1.0, 0.0:2.6:1.0, and 1.0:2.8:0.0 for the three structures, respectively.

NUCLEAR REACTIONS Th(n, f ), 1.3 MeV ~E„1.8 MeV, measured (dog /
d~)(o' —~~, E„)«»m=23. 4', 33.7', 51.7, and 90'. Determined K =2, 2, and ~2

components of the structures at -1.4, -1.6, and-1. 7 MeV.

I. INTRODUCTION

The apparent "simple" structure (hereafter re-
ferred to as structure} observed in subthreshold
neutron-induced fission of "'Pa, '"Th, and "'Th
is well established from high-resolution fission
cross-section measurements. ' The lowest en-

ergy structures occur at neutron energies of
157

y
180' 350' and 370 keV ln Pay at 715

keV in 'Th, and at -1.4, -1.6, and -1.7 MeV in
' 'Th. They have a full width at half maximum

(FWHM) 2000 to 10000 times greater than the
spacing of the levels at the neutron separation
energy in the first minimum of the multihumped
fisSion barrier. In addition, they appear to be
composed of many narrower structures (hereafter
referred to as fine structure). Good examples of
fine structure are the 157-keV structure, and

possibly, the 370-keV structure in "'Pa. Further-
more, on a much finer energy scale, the shape of
the structure or fine structure is modulated by
low-amplitude structure (ultrafine structure) with

a smaller spacing than that of the fine structure.
This is evident in the neutron fission cross sec-
tions of "'Pa and '"Th.

Theoretical calculations, including mass- asym-
metric distortions, of the fission barrier for
nuclei with N-142 by M6ll. er ' and Mibller and

Nix predict, in addition to the second minimum,
a shallow third minimum at a much larger defor-
mation. Because the wave functions of the states
in the third minimum must be odd or even under
the parity operation on the octupole deformation

parameter a„' the states occur in pairs with op-
posite parities. The separation between the states
depends on the coupling between the two minima
at +&,. The rotational bands built on these states
have opposite parities but the same rotational
constant 4=5'/28 (8 is the moment of inertia of
the nucleus at the third minimum}, and the same
absolute value of the decoupling parameter g for
the K= —,

' bands; the sign of g is different for the
two bands. Invoking a shallow third minimum
that traps at least one vibrational state and pos-
sibly its associated rotational band can explain,
at least qualitatively, the structure observed in
the fission cross section in the subthreshold re-
gion.

Blons et al. ' use the rotational model to inter-
pret the fine structure at 715 keV in "'Th in
terms of the members of a K= —,

' and a K= &

band. From a shape-fitting analysis of just their
fission cross section data, they obtain 1.90+0.06
keV for A and -2.28 + 0.10 for a (both parities}.
When Blons et al, . ' allow the decoupling parameter
to be parity dependent and use, as well, available
anisotropy data, they obtain 2 keV for A. and for a
either 1.8 (K = —,

'
) and -1.5(-,' ) or -1.1(-,' ) and

1.1(—,
' ). Boldeman et al. ' recently reanalyzed

these data together with, all available anisotropy
data and obtain 1.85 keV for A and for a —1.1(—,

'
)

and 1.1(~ ). Blons et al. ' use the model to inter-
pret the structure at 1.6 MeV in '"Th in terms of
two K= 2 bands with rotational constants of 2.46
and 2.73 keV.

It is tempting& therefore, to associate these
small values for the rotational constant with the
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third minimum. Typical values for the ground-
state deformation are about 9 keV (Ref. 9} for
nuclei in this mass region. For the fission iso-
mers that occur in the second minimum of the
fission barrier, Specht et al. ' obtain 3.33 keV
for the 4-ns ' Pu isomer and Backe et aE."ob-
tain 3.36 keV for the 8- p.s "'Pu isomer. Because
the average thorium rotational constant is about
20'/z smaller than that for the fission isomers, a
larger moment of inertia is required; consequent-

ly, the minimum occurs at a larger deformation.
However, it is not clear, particularly ih "'Th,
whether the fine structure which is used to de-
duce the rotational constant is related to the mem-
bers of a K band or to fractionation of the vibra-
tional state into more complex configurations. "

A high-resolution fission cross-section meas-
urement delineates the structure in the cross sec-
tion, but the data alone do not show unequivocally
that the structure belongs either to special states
in the second minimum or to vibrational-mode
states in the third minimum. Additional informa-
tion is needed about the character of this struc-
ture, such as its angular momentum components

K, J, and parity m. A measurement of the angu-
lar distribution of the fission fragments can pro-
vide information on K, J, and sometimes m.

Traditionally these measurements fall into two
categories: (1) differential measurements with
reasonable angular resolution but at selected en-

ergy intervals greater than the width of the fine
structure and, in general, with poor resolution,
or (2} integral measurements (0 to e ) for a few
limiting angles 8 but at many energies over the
fine structure with an energy resolution compar-
able to that used in the fission cross-section
measurement.

In '"Pa below 370 keV where the fine-structure
width is greater than 2.5 keV, ' the differential
angular distribution data"' have a neutron ener-

gy resolution b, E„=2 to 40 keV. For the 715-keV
structure in "'Th where the fine-structure theo-
retical width is about 7 keV, ' the differential ang-
ular distribution data"" have AE„= 10 to 36 keV.
The time-of-flight (TOF) data" at 55' and 80' have

aE„&10keV at 715 keV. In '"Th, where the
structures have a width of about 70 keV, and the
fine structure has a width probably less than 10
keV, the differential angular distribution data""
have AE„=50 to 100 keV. And finally, the TOF
angle-integrated distribution data4 for 8 = 45'
have d E„=2.3 keV at 1.6 MeV.

Therefore, in all differential angular distribu-
tion measurements, with few possible excep-
tions, ""the neutron energy resolution is much
greater than the width of the fine structure. The
TOF measurements have the necessary energy

resolution, but because the structure is more
complex than at first thought, a, measurement of
the anisotropy at one angle, or for a rather large
angular interval, does not provide sufficient in-
formation to determine K, J, and n. However,
for an even-odd fission nucleus, such data do pro-
vide information on the relative strengths of the
K= —,

' vs K& —,
' components in the cross section be-

cause there are significant differences between
these two angular distributions: K= —, distribu-
tions are peaked in the fore-aft direction relative
to the beam direction whereas the K& —,

' distribu-
tions are peaked more at 90' to the beam direc-
tion.

For differential measurements that use mono-
energetic neutrons from a charged-particle reac-
tion, a further complication that arises is know-

ing accurately the energy of the neutron from the
reaction. An error of 5 keV, which is not unreal-
istic for such reactions, becomes important when
trying to measure the angular distribution for a
fine structure with a width of just a few kilovolts
or when comparing differential and fission cross-
section data taken with different experimental res-
olution.

What is needed, therefore, is a high-energy
resolution, good angular resolution, differential
fission cross- section mea, surement. Such a
measurement is virtually impossible with today' s
neutron intensities. However, as a compromise,
we have undertaken anisotropy measurements of
these isotopes at move than one limiting angle
using the TOF technique. In this paper we de-
scribe the "'Th measurement and the analysis of
the structure in the 1.3- to 1.8- MeV neutron en-
ergy region.

II. EXPERIMENTAL DETAILS

A. General

The neutron- induced fission cross- section and
fission- fragment anisotropy measurements for
"'Th were performed at the Oak Ridge National
Laboratory Electron Linear Accelerator using
the standard water-cooled tantalum target for
neutron production. The data were taken using
the TOF technique with a nominal time resolution
of 0.15 ns/m. The accelerator was operated at
either a pulse width of 5 ns (total data-acquisition
time of -343 h) or a pulse width of 6 ns (-190 h)

at a repetition rate of 800 Hz and an average pow-
er on target of 8.5 k%.

B. Fission detector

The fission-fragment detector, located at an
average distance of 41.68 m from the neutron
source, consists of a six-cell sealed gas scintil-
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lator filled with a 98% He, 2% N, mixture at STP.
The chamber is pumped for several days to a
pressure of less than 10 ' Torr before it is filled
with the gas mixture. The gas is not circulated
and filtered during the measurement. The fission-
fragment pulse- height distribution recorded s i-
multaneously with the time information shows no

pulse-height resolution degradation because of
impurity buildup in the gas or breakdown of the
molecules from alpha-particle radiation (over a
period of several months).

Five of the cells contain natural thorium and

one cell contains enriched uranium (93% "'U),
which is used to measure the neutron spectrum.
Thorium oxide is painted to an areal density of
2 mg/cm' of "'Th on both sides of a semicircular
foil of titanium, 20-cm in diameter and 12.5- p.m

thick that is sandwiched between two 20-cm-diam,
0.5-mm-thick titanium rings. The uranium is
electroplated on both sides of a 50- p.m-thick
stainless steel foil to an areal density of 0.5
mg/cm'. Each foil is placed in the center of a
cell that is optically isolated from the others by
aluminum reflectors on all sides of the cell. A

schematic diagram of the chamber is shown in

Fig. 1. Cell 3 contains the uranium foil, and

cells 4, 5, and 6 contain duraluminum grids
placed over the fissionable deposits. Hexagonally
packed holes machined into these grids limit the
maximum angle 8 of emission of the fission
fragments with respect to the beam direction.
The dimensional characteristics of the grids are
given in Fig. 2.

Each cell is viewed by two XP 2020 Q, 5-cm-
diam photomultiplier tubes. The tubes are sup-
plied with quartz flat-face plates. The cell win-

dows are made of quartz to achieve the maximum

possible ultraviolet transmission from the scintil-
lating gas to the photocathode surface of the tube.
'The tube is mounted in direct contact with the win-
dow and held in place by springs between the tube
base assembly and the chamber.

C. Electronics

The stop signal for a pair of tubes is derived
from a quadruple coincidence between a signal
from an ORTEC S34 constant fraction discrimina-
tor (CFD) that is used for time information, sig-
nals from each of the tubes, and a signal from
another CFD that is used for the fission fragment
energy bias. The stop signals from all cells are
encoded and sent to the stop input of an EG@G
TDC-100 time digitizer (TDC). The range on the
TDC is adjusted to cover the neutron energy re-
gion of interest and to exclude the time region of
the gamma burst. The zero flight-time channel
for each cell is obtained by disconnecting all stop
signals to the encoder except the one correspond-
ing to the cell being checked and increasing the
range to allow storage of the gamma burst. Also,
in this way, the time drift in the electronics for
each cell is periodically monitored during the
measurement. This drift varied by less than a
few hundred picoseconds over a period of months.

III. DATA REDUCTION

A. General

The TOF spectrum and fission-fragment pulse-
height spectra for selected TOF windows were
stored individually for each cell in a SEL 8108
computer. The data were dumped to magnetic
tape and the computer memory was cleared daily.
In this way, we could monitor conveniently the
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FIG. 1. Six-cell gas scintillator detector used in the
neutron-induced fission cross section and anisotropy
measurements of Th.

FIG. 2. Dimensional characteristics of the grids in
the detector.
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time drift, and time and pulse height resolution
of the detector. The 5-ns burst-width data were
recorded with a time/channel of 1 ns, and the
6-ns burst-width data with a time per channel of
2 ns. Because the resolution of the fine structure
in the 1-ns data did not improve perceptibly over
that of the 2-ns data, the 1-ns data were summed
by 2 channels and added to the 2-ns data. The
data from cells 1 and 2 were combined to form a
single ungridded data set. All thorium data were
corrected for deadtime and for a small time inde-
pendent background determined from the data in
the region below the fission threshold, where we
expect to see essentially no neutron-induced fis-
sion events. The uranium background was obtained
at low energy where o& is known. The "U data
were repeatedly smoothed with a third-degree
7-point smoothing polynomial before forming
ratios of the individual thorium data set to the
uranium data set. And finally, the ratios were
converted to cross sections using the ENDF/B-IV
evaluation for the "'U fission cross section. A

correction was included for the contribution of
U(7o/o) to the U-cell data, .

B. Normalization

The '"Th fission cross section at the neutron
energy E„for the ith cell integrated over the de-
posit-grid geometry (the ith integral fission cross
section) is given by

do '"'Eo-'(E i)-=~ ' ~dQ(i)

C, (E„) Q +35(E)
C235(E )

l f

where i=20', 30; 45', and 90' (Fig. 2), C',."and
C"' refer to the net counts/channel recorded for
the jth ' Th cell and "U cell, and A& is a nor-
malization constant that is related to the efficien-
cies for detection of fission fragments and to the
sample masses in the thorium and uranium cells.
By choosing an energy region where the angular
dependence of the fission cross section f(o.) and
the quantity o&232/a&235 are known, the normaliza-
tion constant can be determined experimentally
using the relation

o~32 QC235 W (3)
Q C232

where the sum extends over all channels in the
energy region, and W, (i) = jf(n)dQ(i) and dQ(i)
is the solid angle subtended by the ith grid.

The best measurement of o&232/o&235 is that of
Behrens, ' who obtains an average value of 0.127
+ 0.003 for the energy interval from 3 to 5 MeV.

Lo Nigro et al. "measured the angular dependence
of the fission cross section at selected energies
from 1.78 to 5.23 MeV. For the energy region
from 3 to 5 MeV, f(o) can be approximated by
the even-order polynomial 0.932+0.205 cos'n.
The calculated values of W,(i) (Ref. 22) are W,(20 )
=0.109, W,(30 ) =0.260, W, (45 ) =0.701, and

W, (90 ) =27I.

C. Sample thickness effects

The average range of a fission fragment in a
thorium dioxide deposit" is -7.5 mg/cm'. Be-
cause the thorium deposit is rather thick
(2 mg/cm', which represents a significant frac-
tion of the average range) the average maximum
angle of emission of fragments from the deposit
is -82'. In the normalization of the data, this af-
fects primarily the accuracy of the cross section
for the ungridded data at energies other than in
the normalization region, and only if the cross
section has an energy dependent anisotropy. This
can be seen by considering the correction to the
cross section at an energy E, which is given ap-
proximately by the ratio ff (o3)dQ/f f(a, E)dQ.
The limits on a are from 0' to -82'; the function
f(n, E) is the anisotropy of the cross section at
E, and f„(o.) is the anisotropy of the cross section
in the normalization region. At E, this ratio is
1 if f(n, E) is isotropic, &1 if f(n, E) is peaked
more fore-aft than in the normalization region,
and & if f(o., E) is peaked more at 90 .

We have ignored this correction because it de-
pends on knowing the anisotropy of the cross sec-
tion as a function of E, which is what we are try-
ing to measure, and it affects primarily the fis-
sion cross section for which there are several
high quality measurements that used rather thin
deposits. However, this effect should be kept in
mind when comparing our fission cross section
to those measured using thinner deposits.

IV. RESULTS

The "'Th neutron-induced angle-integrated fis-
sion cross sections in millibarns from 1.3 to 1.8
MeV for the grid angles 20', 30', 45, and 90 are
Presented in Figs. 3-6. Statistical error bars
are given every 10th data point. The curve
through the data is obtained by applying a third-
degree, 5-point smoothing polynomial, six times
to the data. In this way, hopefully, the true struc-
ture in the data is revealed while smoothing out
that from statistical fluctuations. The zero ord-
inate scales in Figs. 3-6 are suppressed to en-
hance the structure in the data. The smooth curve
reveals low-amplitude structure (ultrafine struc-
ture) which occurs at all angles and has a spacing
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FIG. 3. Integral fission cross section for the energy
interval 1.3 to 1.8 MeV for the 20 grid, The solid line
is obtained from smoothing the data with a 5-point,
third-degree polynomial applied six times.
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FIG. 5. Integral fission cross section for the energy
interval 1.3 to 1.8 MeV for the 45' grid. The solid line
is obtained from smoothing the data with a 5-point,
third-degree polynomial applied six times.

of about 15 keV. Over the 1.6-MeV structure the
energies of the 1.ow-amplitude structure peaks
agree within 1 to 2 keV (our energy resolution at
this energy is about 7 keV} with those observed
in the recent high-resolution fission cross-sec-
tion data presented by Blons et al. '

V. THEORETICAL CALCULATIONS

A. General

Figures 3-6 show considerable structure as
well as fine structure in the data at all energies.
The interpretations of the structures at -1.4,
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FIG. 4. Integral fission cross section for the energy
interval 1.3 to 1.8 MeV for the 30' grid. The solid line
is obtained from smoothing the data with a 5-point,
third-degree polynomial applied six times.

FIG. 6. Integral fission cross section for the energy
interval 1.3 to 1.8 MeV for the 90 grid. The solid line
is obtained from smoothing the data with a 5-point,
third-degree polynomial applied six times.
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-1.6, and -1.7 MeV in Th by Abou Yehia et al. ,
Blons et al. ,

' and Caruana et al. "require many
K-vibrational states, each with a rotational band

to explain, at least qualitatively, the general
features in the fission cross section. The inter-
pretation of the fine structure at 715 keV in "'Th
by Blons et al. ' requires two K bands of opposite
parity. Furthermore, numerical studies by
Bjornholm and Lynn" of the coupling of pure vi-
brational states to intrinsic states at the deforma-
tion of the second minimum indicated that pure
vibrational resonances are unlikely to occur in
odd-mass nuclei; some observable degree of
fractionation of the vibrational strength is to be
expected; that is, the structures in the thorium
isotopes, in particular for "'Th, may be rather
complex. For these reasons, and because the
statistical quality of the gridded data is poor, any
detailed theoretical analysis of our data or least-
square fitting of the structures is not warranted.
However, it is useful to derive values for upper
limits on the theoretical areas of individual K, J,
m resonances and the total area for each K band
(summed over all J~ K components) to compare
these with the experimental areas. The area of a
resonance with quantum numbers K, J, m for angle
i is related to the area for angle i' by just the
ratio W~«~'(i )/W«~'(i) which is independent of
the nuclear model chosen for the cross-section
calculations. This is in contrast to the total
K-band area which is a sum over individual J ~ K
components with weights that do depend on the
nuclear model. However, this model dependence
is weak, because for a particular K the W«~(8)
functions for all J ~ X (except K=J'=,) are very
similar, either forward peaked (K = -,) or sideways
peaked (K& —,').

B. Vibrational-resonance area

If we assume that the energy dependence of the
fission cross section for a vibrational resonance
located at an energy E„,„with quantum numbers
K, J, m is described by a Breit-Wigner function,
then the area of the resonance is given by

'(E„„i) = (w/2) o «~ '(E„,„,i) I' «~'

where o'z«~'(E„,„,f) is the integral fission cross
section at E„„for the grid angle i, and I'„,„' is
the FWHM of the resonance.

Vibrational-resonance soidN. To obtain an up-

per limit on the vibrational-resonance area A~~',
we need to choose a reasonable value for I', fy.
In '"Pa the resonance at 157 keV has an observed
width of -2.7 keV (resolution & —,

' keV). ' The
structure at -715 keV in "'Th is composed of
resonances with theoretical widths of -7 keV. '
In "'Th at -1.6 MeV our 30 data suggest a res-

onance width of less than 10 keV if we assume
that the structure, which has a total width of
-50 keV, is composed of several resonances. In

our calculations, we use I"„,„=10keV for all K,
J, m resonances.

C. Integral fission cross section

Using the Hauser-Feshbach theory ' for com-
pound reactions, the integral. fission cross section
at an energy E„for the reaction with quantum
numbers K, J, m is given by

o'c'N (EATS'(EAWV(f)Sn
T«'(E„) + T„'(E„)+ T

q (Eg '

where o c„' is the compound nucleus formation
cross section, T~&~ is the transmission coeffic-
ient for decay through the multihumped fission
barrier, T~' is the transmission coefficient for
radiative decay in the ground-state well of the
compound nucleus, T~~' is the transmission coef-
ficient for neutron decay including elastic and in-
elastic scattering to states in the target nucleus,

$„& is the level-width-fluctuation factor, which
in the present calculations is taken to be unity,
and W,"(f)=Jf"(&)«(f) .

1. Compound-nucleus formation cross section

The compound nucleus formation cross section
in the channel-spin representation at an energy
E„can be written as

(4)

where =~„ is the center-of-mass wavelength of a
neutron of energy E„, g(Z) =(2J'+ 1)/2(21+ 1), and

T„"is the neutron transmission coefficient for the
el.astic channel with orbital angular momentum l
and channel spin s. The neutron transmission co-
efficient is related to the strength function FJD
(FQD«1) in the following way:

y2 gS

T& (E) =27fF&*/D =47) " /&(E)

4m'S'sJ '(E )

where S„"is the average reduced-strength function
for the channel ls and P' is the neutron penetra-
bility for neutrons of orbital angular momentum E.

For larger values of the strength function a more
correct expression" 2' for T„" is 1 —exp(-4«S„"P').
This expression has the proper limiting values,
namely, T"=1 for S"»1 and T"=4mS"P' for
S„"«1. In our calculations we use this form for
T„"and ignore the channel-spin dependence.

Values of o ~c„'(E) at E„=1.6 MeV for 2" & J' ~-,'
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are listed in Table I. For S„"we use 0.019 (Hef.
28) for even values of l and 0.038 (Hef. 28) for odd

values of l.
2. Radiative transmission coefficient

To calculate the radiative transmission coeffic-
ient, we assume that only dipole radiation contrib-
utes significantly to the radiative process. There-
fore, the radiative transmission coefficient
T~'(E„), at an excitation energy E„ in the com-
pound system "'Th, is given by

E J+1
T~"(E„)=2 Is'„/D=C„g p'(E„- e, Jr'r)da,

0 J =1J-1(f
(6)

where p'(E„—Jzr) is the level density in the com-
pound system at an excitation energy E„-& for
final states with total angular momentum Jf and

parity mf, and C, =3.63 x 10 '. The normalization
constant is determined by using for slow neutron
capture (J = —,

'
) in '"Th the measured values 21.2

meV and 16.7 eV (Hef. 28) for I'„and D, respect-
ively.

At high excitation energy, the contribution to
the nuclear level density comes from combinations
of nucleons independently excited from the ground
state. This gives rise to the well-known indepen-
dent particle level density relation

(2J'+ 1) exp- [(2J+ 1)'/8v']
4

vw exp[-2v aU)]
X

12 1 /4U5/4

where o' = 0.0888aTA s", T = v U/a, and a = m 'p, /6.
The single-particle level density p, at the Fermi
surface is given approximately by A/12. 5. U is
the effective excitation energy corrected for pair-
ing effects in the nucleus using the method pro-
posed by Gilbert and Cameron, "and is given by

U =E„—c —P(Z) —P(N) .

For "'Th, P(N) = 0, P(Z) = 0.'t8, and g =31.6
MeV '. In the calculations of TJ", we use this
form for the level density and allow cr to vary with
energy according to the above dependence on U
through the nuclear temperature T. Values of
T~™(E„)at E=1.6 MeV for —,'~ J~-', are listed in
Table I. We have assumed implicitly, that to first
order, the nuclear level density is the same for
both parities.

Total neutron transmission coefficient

The total neutron transmission coefficient for
elastic and inelastic scattering to states in the
residual nucleus at an excitation energy E„ is
given by

EK-$N +1 2 J+s
T '(E)= I Q I 7'ta)p" (8„—S —f, l' )de,

0 I s=lE- /2I ~=( J-ql

TABLE I. For the compound system ' Th + n, values of the compound nucleus forma-
tion cross section ocN(E„), fission cross section nf (E„)(T~ = 1 ), radiative transmission
coefficient T (E„),and total neutron transmission coefficient (including elastic and inelastic
reactions) T~ (E„), for E„=1.6 MeV.

t +
2
3 +
25+
2
7 +
29+
2

6.9

12.0
15.4

16.3

17.2

0.45

0.87

1.22

1.48

1.64

ocN (mb)

199.9
280.3

420.5

78.2

97.7

crf (mb)

23.9

20.2

23.9

4.16

4.93

1

2
3

2
5

2
7

2
9
2

7.8
13.8
16.8

18.2

18.1

0.45

0.87

1.22

1.48

1.64

275.8

551.7

389.0
518.6

22.8

29.9
35.2

20.5

25. 1

1.10
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where ps(E„-8„-&,f '~) is the level density in the
residual nucleus "'Th, at the excitation energy
E„-S~- &; I is the spin of the residual nucleus
with parity vz=(-1) 'v; 8„is the neutron separa-
tion energy in "'Th, which is equal to 4.789
MeV "

Above an excitation energy E„-S„=0.8 MeV in
the residual nucleus, p~ is represented by the
constant-temperature level density relation,
p"(U) =Cg ~'~, where e is the nuclear tempera-
ture and C„ is the normalization constant that is
obtained from fitting the integral distribution of
known levels in ~"Th (Ref. 30) up to 1.6 MeV with
the func'tion

g (RE+ 1) exp- ",~'
*

f piU")dU.

The constant ~ implies that both parities contrib-
ute equally to the level density. For 8 =0.58 MeV
and v=5.3 (Ref. 27), C„=0.211. Below E,=0.8
MeV, discrete levels in "'Th are used to preserve
the known spin and parity of these levels.

Values of T~~'(E) at E„=1.6 MeV for 2" «8'» 9'
are listed in Table I.

4. Fission 0'ensInission coefficients

Calculations of fission barriers" for the pro-
tactinium and thorium isotopes show that the in-
ner barrier is lower than the outer barrier, and
furthermore, that the outer barrier is split into
two barriers separated by a shallow minimum.
In fact, the inner barrier height may lie below the
neutron separation energy. Consequently, if we
are interested only in the properties of the states
trapped in this shallow well, then the effect of the
inner barrier on these properties is minimal, .
Therefore, we can replace the triple-humped
barrier by a double-humped barrier.

The energy dependence of the penetrability or
transmission coefficient through a double-humped
potential represented by two inverted parabolas
connected smoothly to a third parabola can be
calculated exactly using the wave equation" or
approximately using the WEB method. "

Using the %KB approximation, the relations
between the fission barrier parameters and the
vibrational resonance parameters are

4T'~~a
~f, max( vih) (T + Z )2 &

7~ ~ =1 1+exp E ~- E„, , (10d
2m

B,C

where E~, E~ are the inner and outer barrier
heights, and Eire the depth of the intermediate
well, and 5~~, 5+~, and 5cu~r~ are the barrier
curvatures. Therefore, six parameters are re-
quired to define uniquely Ty p Fvgbp and E&gy
Measuring 7 and X'„„for one structure does
not determine the parameters of the barriers.
Conversely, without information on the barrier
parameters, T& and I'„~ can be chosen inde-
pendently of each other. Solving the wave equa-
tion produces similar results as long as the
trapped level is we11 below the height of the lower
barrier. Therefore, to calculate a maximum
resonance area, we can set Tz =1 (ignoring
the dependence of the fission penetrability on the
fission barrier shape) .

5. f ~(0.)+nctions

If we assume that the fission fragments are
emitted along the axis of symmetry of the nucleus
and that E is a good quantum number from the
transition state to scission, then the directional
dependence of the fragments is determined unique-
ly by the quantum numbers, 4, K, and M (the pro-
jection of j' onto the space-fixed axis, normally
taken to be the direction of the incoming project-
ile). The probability that a transition state de-
fined by J,K, M emits a fragment at an angle n
relative to the beam direction into a conical vol-
ume defined by the angular increment de is given
by"

dP"'"(~) = ~d„'go.')
~

dQ,

where id„jo.') i
is the absolute value of the angu-

lar part of the wave function of the Hamiltonian
for a rigid rotor. ~4 The angular distribution of
the fission fragments is given by dP™/dQ and
is normalized so that

id„'yo. ) i
sinndn=l.t '2J'+ I

In general, both y K projections contribute
equally to the distribution. In addition, for un-
aligned nuclei and for even targets, all projec-
tions of M carry equal weights. Thexefore, the
distribution must be averaged over + E and
summed over all allowed values of I

8(d

year

(TP'c)
2m

(10b)

E„„E~~~+h(o~lgn+-,'), n-=0, 1, 2, . . . , (10c)
(12)
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where m, is the minimum value of (Z, I+ —,') and I
is the target spin.

For an even target mo= —,', Eq. (12) can be simp-
lified to

even powers of p =coso. ,

(15)

(13)

And finally, multiplying Eq. (13) by 2w we arrive
at the expression for the f function

To reduce our data to cross section and to
calculate theoretical cross sections for a specific
E, J, we need to evaluate integrals of f ~(o, ) over
the geometry of the grid in the chamber. Rather
than deal with the d functions directly, we al-
gebraically reduce Eq. (14}to a polynomial in

Values of the coefficients a„~ and c for —,
' (E,

Z ('-, are listed in Table IL Equation (15) is nor-
malized so that for a plane source f,'f(n)dp =1.
The range on J, and therefore E, corresponds
to a range on the neutron orbital angular mo-
mentum of 0&1(4. Values of l)4 make a ne-
gligible contribution to the cross section in the
energy region of greatest interest in "'Th,
namely, E„ps MeV.

6. IVY~(i) integralS

These integrals depend on the angular momentum
quantum numbers X,J through the functions f (o.)
defined in Sec. V C 5 and can be written as

Eg P 2 8 (~) & (gg)
w, (i) = a„cos'""u rpdrd8dpdp,

0 0 gL (]) rl (]g) n~
(16)

where the deposit is defined by the coordinates

p, $, and the geometry of the grid by the coor-
dinates r, 8 Exp.licit expressions for 8~ U(i),

rz, ~(i, 8), and n are given in Ref. 22. Equation

I

(16) was evaluated using numerical and Monte
Carlo techniques. " The results of these calcula-
tions for the three grids and for a11 the functions
of f (o.} given in Table II are listed in Table III.

TABLE II.
ments emitted

KJa3

Values for the coeAicients c" and a„ in the expansion for the angular distribution of the fission frag-

from an even-odd transition nucleus.

J CKJ KJ KJ
ao a1

KJ
a4

I

2
1

2
1

2
1

2
1

2

1

2
3

2
5

2
7

2
9
2

1

2
3

4
1

16
5

64

45
—36

—165

294

0
0
0
175
—644

0

0

0

0
441

3

2
3

2
3

2
3

2

3

2
5

2
7

2
9
2

3

2
3

8
15

16
15

32

14

20

—15

27
—126

—21

252 —147

5

2
5

2
5

2

5

2
7

2
9

2

15

8
5

16
35

32

33 —69

0
35

0
0
45

7

2
7

2

7

2
9
2

35

16
35

128

—3

60 —186 188 —63

9
2

9
2

315
128
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TABLE III. Values of 8',"(i) for i = 20', 30', and

J 8'f (20')
(sr)

45', and for —, ( K,J,
8' (30')

(sr)

9

2

WJK(45')

(sr)
1

2
1

2
1

2
1

2
1

2

1

2
3

2
5

2
7

2
9
2

0.0964

0.1830

0.2670

0.3270

0.3830

0.2330

0.4290

0.5880

0.6760

0.7330

0.6340

1.0850

1.3040

1.3590

1.3730

3

2
3

2
3

2
3

2

3

2
5

2
7

2
9
2

0.0062

0.0225

0.0526

0.0933

0.0298

0.1050

0.2140

0.3490

0.1840

0.5430

0.8900

1.1010

5

2
5

2
5

2

5

2
7

2
9
2

0.0005

0.0029

0.0093

0.0050

0.0250

0.0710

0.0680

0.2710

0.5630

7

2
7

2

7

2
9
2

0.0000

0.0004

0.0010

0.0065

0.0280

0.1360

9
2

9

2
0.0000 0.0002 0.0117

Because the calculation of the multiple integral
for all values of K, J, and i requires considerable
computer time, Blons et a/. 4 replaced the multi-
ple integral by the single integral W, (i)
=2gJ f~"'f ~(n) sinn dn where the geometry of
the grid is contained in the parameter 8 (i), the
maximum angle of emission of the fission frag-
ment from the deposit for grid i. To investigate
the validity of this approach, we have evaluated
both integrals for three representative distribu-
tions: an isotropic distribution, f' "'(n), a
distribution peaked at 0', f '~2'5~'(n), and a dis-
tribution peaked at 90', f '~"'~'n. The comparison
is made in Table IV. The values of W, are 3 to 5
times greater than S', for the isotropic distribu-
tion and 9 to 16 times greater for the sideways-
peaked distribution. In fact, the ratio W, /W, is
not the same for each grid. Therefore, any
theoretical calculations of the cross section using
W, instead of W, would not properly reproduce
the trend in the data with angle, even if the cal-
culations were normalized to a particular set of
data.

20'
30
45

~KJ( )

(sr)

EJ = ——
2 2

0.096
0.233
0.634

~KJ( ~

)

(sr)

0.517
1.056
2.355

20
30'
45'

20'
30'
45'

5EJ= ——
2 2

0.267
0.588
1.304

5 5EJ= ——
2 2

0.00051
0.0050
0.0680

1.172
2.294
3.654

0.0082
0.0655
0.6118

TABLE IV. Values of W~ (i) (calculation with com-
plete grid geometry) and 8', (calculation with approxi-
mate grid geometry) for an isotropic source distribution,
for a distribution that peaks at 0', and for a distribution
that peaks at 90'.
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TABLE V. Values of theoretical K, J, areas A, (E„,i) for i = 20', 30', 45', and 90',
& K, J & 2, I „,b, ——10 keV, and T~,„——1 at E„=1.6 MeV.

I

2
I

2
I

2
I

2
I

2

+
2
3 +
2
5 +
2
7 +
29+
2

20'

(mb keV)

5.8

9.2
16.0
3.4

4.7

30'
(mb keV)

13.9

21.7

35.1

7.0
9.0

45'
(mb keV)

37.8

54.8

77.9

14.1

16.9

90'
(mb keV)

375.4

317.3

375.4

65.3

77.4

I

2
I

2
I

2
I

2
I

2

I—
2
3

25—
27—
29—
2

7.2

16.1

13.7

20.5

17.4

37.8

30.1

42.4

2.0

47.3

95.5

66.8

85.3

3.8

469.7

552.9

322.0
394.3

17.3

3

2
3

2
3

2
3

2

3 +
2
5 +
27+
2
9 +
2

0.3
1.5

0.5

1.5

6.3

2.2

4.3

9.3
32.4

9.3
13.6

317.3
375.4

65.3

77.4

3

2
3

2
3

2
3

2

3—
25—
27—
29—
2

0.5
1.3

3.3

0.3

2.6

5.4

13.4

1.0

16.2

27.8

55.8

3.0

552.9

322.0

394.2

17.3

5

2
5

2
5

2

5+
2
7 +
2
9 +
2

0.0
Q.O

0.1

0.3
0.3
0.9

4.1

2.8

6.9

375.4

65.3

77.4

5

2
5

2
5

2

5—
27—
2
9
2

0.0
0.2
0.0

0.3
1.6

0.2

3.5

17.0
1.5

322.0

394.3

17.3

7

2
7

2

7+
29+
2

0.0
0.0

0.0
0.1

0.3
1.7

65.3

77.4

7

2
7

2

7—
2
9

2

0.0
0.0

0.1

0.0
1.8

0.4
394.3

17.3

9
2

0.0 0.0 0.0 77.4

9—
2

0.0 0.0 0.0 17.3
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90'
(mb keV)

1210.9+
2
3 +
2
5 +
27+
29+
2

201.686.839.1
835.564.614.33.5
518.213.81.40.2
142.82.00.10.0
77.40.10.00.0

TABLE VI. Values of theoretical K-band areas A, (E„,i) for i = 20, 30', 45', and 90',

2
&K (

2 r.b=10 kev, and Tf',."——1 at E. =1.6 Mev.

Kg 20' 30' 45'

(mb keV) (mb keV) (mb kev)

1—
23—
25—
27—
29—
2

58.6

5.4

0.2
0.0
0.0

129.7

22.4

2.0
0.1

0.0

298.7

102.9

22.0
2.1

0.0

1756.2

1286.S

733.6

411.5
17.3

D. Results for the Vibrational resonance areas

Theoretical values of individual resonance areas
4, '(E, i) for i =20, 30, 45, and 90'(8„=90'),
2'-K, J'~-,", and E„=1.6 MeV are listed in
Table V. In calculating these areas, we use the
values of o& '(T&, =l) listed in Table l and let
1"„b=10 keV. These areas can be scaled by T&
x I"„~/10 for other choices of I'„h and T&, . The
areas for complete K bands,

IO.O

I.O—

J- 2

A, '(E„,i) = &, '(E„,i),
J&K

are listed in Table VI.
Tables V and VI, for i = 20' and 30', show that

the most important contribution to the area of a
structure in the 1- to 2-MeV region comes from
K= & and K=—,

' components. The K» components
are minimal even for i =45' and become important
only for i=90'. The gridded data (i=20, 30, 45')
are most sensitive to the K ~

& components.

O.l—

(K=I/2 )+2(K

VI. COMPARISON OF THE EXPERIMENTAL
AND THEORETICAL AREAS

A. General

Experimental values for the areas of the struc-
tures at -1.4, -1.6, and -1.7 MeV are plotted
in Figs. 7-9 as a function of the angle 8 (Fig. 2).
The lower and upper limits are 1.33 and 1.5 MeV
for the 1.4-MeV area; 1.5 and 1.65 MeV for the
1.6-MeV area; and 1,65 and 1.75 MeV for the
1.7-MeV area. These values represent the areas
above a baseline drawn under the structures that
approximates the plateau region above the fission
threshold at -1.3 MeV. The errors plotted are

O.OI
0

I

20 40 60
LAB ANGLE (deg)

I

80

FIG. 7. Comparison of the experimental areas with
theoretical predictions of complete rotational bands for
the 1.4-MeV structure. The solid lines connect the
theoretical areas for a K=2 band and a %=2 band.
The dashed line connects the areas for the combination
(K=~ )+ 2(E=~ ). All curves are normalized to the
experimental area at 8 = 33.7'. The predictions for the
positive parity bands are similar.
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conservative estimates of how accurately we can
define the areas.

The solid lines in these figures represent the
trend of the theoretical areas listed in Table VI
with angle for complete E=& and E =2 bands.
The dashed lines in Figs. 7 and 9 represent cases
for combinations of a E=2 band and a E =2
band with the weights indicated in the figures.

We have normalized the theoretical areas to
the experimental areas at 8 =33.7'. We are al-
lowed this freedom as long as the ratio of the
experimental to theoretical areas times I'„b does
not exceed the minimum observed width of the
structure. For instance, the theoretical areas
for the 1.6-MeV structure could be increased by
a factor of 5 [observed width of the structure in
the 30' data (-50 keV) divided by the actual width
used in Tables V and Vlj before violating this
constraint. However, not all members of a E
band could have a width of 50 keV and still pre-
serve an overall width for the band of 50 keV.

I 0.0

It is possible that the structure is composed of
several E bands in which case the theoretical
area would be a sum over these bands, and we
would not necessarily have to increase I'„b to
match the experimental areas.

In the following section we do not explicitly
specify the parity of the E band because both
parity bands give comparable results. In ad-
dition, we use the results in Tables V and VI for
E„=1.6 MeV and ignore the energy dependence
of these quantities.

B. Complete K-band area results

1. 1.4-Ne V structure

For the 1.4-MeV structure, the trend in the
experimental gridded areas with angle can be
explained almost entirely by a E =

& band. How-
ever, the E =-,' band underestimates the 90' area
by about a factor of 2. This can be improved

I O.0

I.O—
0
tP

l.o—

(K=lr2 )

Ql— ~ ~

il
O.I—

O.OI
I

20
I i I

40 60
LAB ANGLE (deg)

I

80

FIG. 8. Comparison of the experimental areas with
theoretical predictions of complete rotational bands for
the 1.6-Me V structure. The solid lines connect the
theoretical areas for a K=~ band and a E=2 band.
Both curves are normalized to the experimental area
at 8 =33.7'. The predictions for the positive parity
bands are similar.

I

80
0OI I ~ I i

0 40 60
LAB ANGLE (deg}

FIG. 9. Comparison of the experimental areas with
theoretical predictions of complete rotational bands
for the 1.7-MeV structure. The solid lines connect
the theoretical areas for a X=2 band and a X=+ band.
The dashed line connects the areas for the combination
(K= 2 ) + 4(K= a ). All curves are normalized to the
experimental area at 8 =33.7'. The predictions for the
positive parity bands are similar.
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slightly by combining a E = 2 band with a E = ~

band in the ratio of 2: 1 as shown in Fig. 7 by
the dashed line. These two bands in this ratio
more than account for the observed gridded
areas, which means T& and/or I'„,„can be
smaller. If we normalize the theoretical areas
for these two bands with the ratio 2:1 to the 33.7'
experimental area and use the ungridded area
to calculate the relative fission strengths (in-
tegrated over polar angle) for Ã= —,,

—„and ~ —,
'

bands, we find that they are in the proportion of
1.7:2.4: 1.0. A conservative estimate of the un-
certainty on these ratios is about +15%%uz.

Z. 1.6-MeV structure

For the 1.6-MeV structure the gridded areas
can be explained entirely by several E = 2 bands,
as shown in Fig. 8 by the solid line labeled E= 2.
A single E =2 band does not have sufficient area,
even if j."„bis greater than 10 keV, to account
for the experimental gridded areas. Likewise,
these bands do not account for all the 90' area;
in fact, they account for only about —,

' of the area.
Even if there is a significant E =2 component in
the 1.6-MeV structure, it would not help at 90;
A, '~'(90') «A, '~'(90'). Therefore, we are re-
quired again to invoke E» —,

' components in the
1.6-MeV structure. In this case, however, the
unaccounted for 90' area, about 4 bkeV, would
require many E» —', bands because they have re-
latively weak strength at 90'. Assuming that most
of the experimental area at 33.7' is a result of
E =& bands, the approximate relative fission
strengths (integrated over polar angle) for the
E =2, —,', and» —,

' bands are in the proportion of
0.0:2.6:1.0.

3. 1.7-Me V structure

For the 1.7-MeV structure neither a K=2 nor a
E =2 band accounts separately for the gridded
areas. However, if we combine these bands in the
ratio of 4(K= —,'): (K=-,'), then we can fit rather
well all experimental areas, even the 90' area,
as indicated by the dashed line in Fig. 9. The
sum of the theoretical areas for these two bands
more than accounts for all experimental areas,
again suggesting smaller values for T& and/or

F~fb Using the 4. 1 ratio for theE= & to K
strengths normalized to the experimental area
at 33.7', the approximate relative fission
strengths (integrated over polar angle) for the
E =2, &, and» —,

' bands are in the proportion of
1.0:2.8:0.0.

C. Individual Eg area results

So far, we have tried to explain the observed
areas in terms of complete E bands in which each

rotational member has the same T, and 1'„„
parameters. This is probably an oversimplifi-
cation. It is more likely that the fission barrier
parameters of individual states are different from
each other, and that not all members of a par-
ticular E band would have sufficient strength to
be observed in the data. An analysis in terms of
individual resonance with parameters unrelated
to each other except in some average sense would
be unmanageable without additional data and,
therefore, any result would not be very meaning-
ful. It is worthwhile, however, to mention two
general observations based on the data in Table V
and the experimental areas. Let us concentrate
on the 1.6-MeV structure because it is defined
better in the gridded data than the other struc-
tures. The experimental area of the 30' struc-
ture is about 97 mbkeV. An inspection of the
K= —, areas in Table V reveals that no single re-
sonance would exhaust this area even if I'„b is
increased to the observed width of -50 keV; for
the 1.6-MeV structure, many E =2 resonances
are required. In addition, the E = —,

' areas would
underestimate the experimental 90' area, thus
requiring E& —,

' components. A similar statement
can be made for the other two structures, namely,
that many individual resonances are required for
each structure, and except for possibly the
1.7-MeV structure, E» —,

' components are present
in the structures.

VII. COMPARISON O'ITH DOUBLE- AND TRIPLE-
HUMPED BARRIER CALCULATIONS

Two attempts have been made at a detailed
channel analysis of the structure in "'Th in the
1- to 2-MeV neutron-energy region using fission
cross-section and angular distribution or aniso-
tropy data. Caruana et al."compare the results
from a triple-humped model with those from a
double-humped model by fitting their angular
distribution data and the fission cross-section
data of Blons eg al.4 For the double-humped
model, they cannot fit both data sets with the same
set of K-band parameters, even after an exten-
sive trial-and-error search of many different
sets. For the triple-humped model, both data
sets in the region of the 1.6- and 1.7-MeV struc-
tures can be described adequately by either the
set (1) X=—,", —,

' (l.4 MeV), —,",~, ~, —,
' (1.6 MeV),

The energy in parentheses indicates the struc-
tures to which the preceding E bands apply. How-
ever, neither triple-humped set gives a satis-
factory fit to the 1.4-MeV region, although set
(2), which has K=~ and —,

' components, gives a
better fit to their 1.35-MeV angular distribution.
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Table VII. Transition state parameters (En;I „,b,Tf,„)for the structures at
-1.4, -1.6, and -1.7 MeV in 233Th.'
Structure Em I„b

(MeV) (keV)
f +
23+
2

0.29

0.53

+
2
3 +

'+
5

2

107

82

53

83

0.11

0.49

1.7 j +
2

47

42

'Based on the barrier parameters of Abou Yehia et al. (Ref. 24).

0.40

In general, set (2) agrees better than set (1) with
our results, although we r'equire E=& com-
ponents for the 1.7-MeV structure, and most
certainly, E~ —,'components for the 1.4-MeV
structul e.

A significantly better fit to the fission cross
sec'tloll Rlld to Rll I(0 )/I(90 ) datR ls Obtained by
Abou Yehia et al. '~ for a double-humped model
with the transition states listed in Table VII. The
values of j. „b and T& are calculated from their
barrier parameters using Eqs. (10a)-(10d). If
we assume that our values of g& are about the
same as those used in the analysis in Ref. 24 and
that TN+T„» Tt [consequently their areas are
equal to our areas (Tables V and VI) multiplied
by I"„~xTI „ /10j, then their predictions about
the relative strengths of the K bands are in re-
markable agreement with our results, particular-
ly for the 1.7-MeV structure. Their ratio of
(K= —',):(K= —,') for the I.V-MeV structure is 3.6,
and we estimated about 4. For the 1.4-MeV
structure, their values for 1"„bxg~ give 1.95
for the ratio (K= —,'): (K= —,'). This is the source
of the factox of 2 for the dashed line in Fig. 7.
And, for the 1.6-MeV structure, their parameters

ppo t l '
th t ylttl E=—,

'
ponent is required to account for the areas at all
angles.

VIII. SUMMARY

%'e now know from all analyses what the pri-
mary E components of the fission strength of the

stxuctures are at -1.4, -1.6, and -1.7 MeV in
233Th. From our results me can give the relative
strengths of the K components in each structure.
%e find the approximate proportion of E =

& to
E= —,

' to E~ —,
' strengths in the ratio of 1 7:2.4:1.0

0.0:2.6:1.0, and 1.0:2.8:0.0 for the three struc-
tuxes, respectively. Furthermore, if the fine
structure has a width of about 10 keV (with a
limit of g50 keV) then a very large number of
states are required to account for the area of
each structure in the fission cross section.

And finally, because our E-component strengths
are derived without assuming a particular fission
barrier shape, they do not confirm the existence
of the shallow mass-asymmetric mell predicted
by Moiler and Nix' even though they are consis-
tent with recent triple-humped bax rier calcula-
tions.
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