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Adiabatic description of dissipative processes in heavy-ion reactions and fission. I.Microscopic
theory: Statistics of matrix elements
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The statistical properties of matrix elements which couple the collective {or shape) degrees of nuclear motion with

the intrinsic degrees of freedom, are evaluated in the adiabatic representation. The results will be used in a future

paper for the calculation of transport coefficients which describe the irreversible {dissipative) transfer of energy from

the collective degrees of freedom to the intrinsic ones. As input we use a random-matrix model for the residual

interaction, and salient properties of single-particle levels in nonspherical potentials,

NUCLEAR REACTIONS Random-matrix model applied to heavy-ion reaction
and fission.

I. INTRODUCTION

Dissipative processes play an important role
in heavy-ion induced nuclear reactions and in
induced nuclear fission. During the final stage
of a, deeply inelastic heavy-ion reaction (i.e. , be-
fore the nuclear complex breaks up), and during
the fission process, shape deformations of large
amplitudes occur. The characteristic times as-
sociated with these processes are of the order of
10 "sec or larger, and thus about one or two
orders of magnitude bigger than the characteristic
times of single-particle motion in the nucleus.
This suggests that a theory of these processes
might advantageously use a decomposition of the
Hamiltonian into a "collective" part (describing
the dynamics of the shape degrees of freedom)
and an "intrinsic" part (describing the remaining
degrees of freedom which we loosely associate
with the single-particle degrees of freedom, cf.
below). The intrinsic motion should be well
approximated by an adiabatic treatment in which
the intrinsic degrees of freedom adjust instan-
taneously to the nuclear shape. If one assumes,
moreover, that the intrinsic motion loses memory
very quickly and therefore acts, qualitatively
speaking, as a heat bath, one is in a position to
derive transport equations for the collective de-
grees of freedom. Various transport equations
have been derived along these lines. ' '

It is the purpose of the present paper to provide
the microscopic input needed for the evaluation
of the transport coefficients in an adiabatic basis
(the actual derivation and evaluation of these
coefficients is the topic of a future paper). The
procedure we use is patterned after the work of
Barrett et al. '. The intrinsic motion is modeled

as single-particle motion with residual inter-
actions, the latter being represented by a random-
matrix model. Because of the adiabatic basis
chosen, the details of the derivations are quite
different from those of Ref. 4. In Ref. 4, a sudden
basis was used, and the coupling between collec-
tive and intrinsic degrees of freedom was given
by the matrix elements of the potential containing
both kinds of variables. In the present paper,
the coupling between collective and intrinsic de-
grees of freedom is caused by the collective velo-
city, and the coupling matrix elements are those
of the kinetic-energy operator.

The aim of this paper is the deduction of the
statistical properties of the coupling matrix ele-
ments; more precisely, of their joint probability
density. Once this is known, one can use the
method of Ref. 5 to derive the transport equation
and explicit expressions for the transport coeffi-
cients. In doing so, we shall determine the limits
of usefulness of the adiabatic representation, and
the limit of validity of linear response theory.

We do not pay any attention in this paper to the
problem of how to determine all the relevant col-
lective variables, and how to set up the collective
part of the Hamiltonian. The first problem has
had no definitive solution up to now. For the
second, well-known methods are at hand, once
the choice of a collective variable has been made;
the Strutinsky averaging procedure' yields the
potential energy, and generalized cranking pro-
cedures, ' the inertia parameters. In our numeri-
cal examples and estimates, we use a constrained
single-particle motion to simulat;e the adiabaticity
condition. The constraint consists in keeping the
shape of the single-particle potential fixed. By
taking the motion of the A nucleons as being other-
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wise independent, we obviously do not fully take
into account the existence of coQective variables,
and we encounter the usual overcounting problem.
%e do not believe, however, that this has any
noticeable effect on the problem of interest in the
present paper, namely, the statistical proper-
ties of the coupling matrix elements.

In Sec. II we establish the notation and introduce
the adiabatic basis in the framewrok of both a
classi. cal and a quantum description of the collec-
tive motion. In Sec. III we derive the statistical
distribution of the coupling matrix elements, and
we estimate the relevant parameters which
characterize this distribution. Section IV con-
tains a brief summary.

II. THE ADIABATK BASIS

A. Collective variables

This paper does not aim at a broad discussion
of how to define collective variables, a problem
on which there exists a vast body of literature
(see Ref. V and the papers cited therein). We
simply wish to describe one approach which is
particularly convenient for our purpose, without
relating it to other approaches.

Iet x„ i=i, . . . , A. be the operators of the

e'
(&;)'+g I'(y», y&),2 f?g

(2 I)

where the yf stand for the space, spin, and iso-
spin variables of each nucleon (in the sequel the
latter pair of variables is suppressed}. Given Q
and the g,-, we can write the potential part of II as
a function of these variables, V(Q, q„.. . , »I» 4).
For the kinetic energy, we find

Cartesian coordinates of the A nucleons. A collec-
tive variable Q (in our case, a shape deforma-
tion degree of freedom} is a function of the x». In
order to be able to separate the Hamiltonian into
intrinsic and collective parts in a manner consis-
tent with the exclusion principle, we must re-
quire @to be a symmetric function of the x,.
Trivial examples are the c.m. coordinate, the
operator for quadrupole deformation, ete. For
simplicity we consider a skag/e collective variable
in the sequel; the generalization to several vari-
ables is straightforward. Aside from the coQee-
tive variable and the three degrees of freedom
of the c.m. motion (which we disregard in the
sequel), we introduce further independent vari-
ables q&, j= 1, . . . , SA —4 which we do not specify
in detail, save for condition (2.3) below.

For the Hamiltonian we write

+

Bng 8 BQ n Bn 8'g» 8 Bib Btln 8
+ 2+ +

» l rr l BX»cs 8»Q BX»ts BQ BS»tr Btl» BX»cr Bg»tr 8 gjBgn

Bq 8 8'

~&fa @&fn (2 2)

This expression simplifies if we use the ortho-
gonality condition'

= 0, all j= I, . . . , 3& —4 . (2.3)
f=1 Cf"-1 fa fe

~c.m. ~~g + ~intrinsic (2.4)

Geometrically this condition means that the hyper-
surfaces Q = constant and the hypersurface »I»

=constant, j= 1, . . . , 3A -4, are orthogonal. Vfith
this condition, the kinetic energy becomes a sum
of two terms,

,—;.'i~;„'.- .=;.
' ji(;„,)'

(2.6}
The intrinsic part of the Hamiltonian (which de-
pends upon Q only parametrically) is given by

+tntrtnnc Tintrinsic + ~(sq ls ' ' ' r 1»-4}

B. Adiabatic states

(2.7)

They are defined as antisymmetric eigenstates of
Ht„„;„„., for a fixed value of the collective variable

8
~cc»t tl(@r Ilr ' ' ' s 1 $A 4)

BQ
82—t, (Q, »I„.. . , »}.A, ) @, ,gQ (2.5)

+intrinsic P»(@ lttr ' 'r' rq SA-4}

=~„(~»„(~;n,. . . . , &, ,}, (26)

and obey the orthonormality conditions
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&y. (Q)ly„(Q)& =5.„. (2.9)

(2.10)

The expansion coefficients obey the equation

I.E -E„(Q)la„(Q)=g M„,(Q)a, (Q), (2.11)

The bracket symbolizes integration over g„.. . ,
ri,„«and not over Q. The full wave function 8,
an eigenfunction of H, can be written as

gy depends smoothly on the variables g&, j = 1, . . . ,
3Q —4, so that the off-diagonal contributions
( p, g v) can be neglected, and the diagonal contri-
butions ( g = v) can be assumed to be independent
of p. for the range of p, values that are of physical
interest, Deviations from adiabaticity are then
caused only by the time dependence of Q. Ex-
panding the wave function 4 (Q, ],q„.. . , q» «)
into the adiabatic wave functions g„, we find for
the expansion coefficient a„' the well-known equa-
tions

where we have introduced the operators ina j' =Ev av' —in g Q&r/I/I Bq I l/J„&a„"' . (2.14)

M„,(Q) = Q„IT..„Iy,&. (2.12)

Deviation from adiabaticity, i.e. , changes in
the coefficients a&(Q), are caused by these opera-
tors M„„(Q). Explicitly, they are found by in-
serting Eq. (2.5) into Eq. (2.12),

-M»(Q) =&PJKIP.& —, +Q Jf2IP.&
B

~

+&(vlf IBoy&+2&@vlf IBoy & +&)vlf IBoy& ~

(2.13)

If Q denotes a multipole operator of low multi-
polarity, the dependence of Q on the x~ is very
smooth, and so is, therefore, the dependence
of t, and t, on the q&, j =1, . . . , 3A. —4. We there-
fore expect the main contribution to the nondiago-
nal parts (rig v) of M„, to arise from the terms
1nvolv1ng 8+4~ and ~ O~.

C. Classical approximation for Q

Collective motion in nuclei is often treated clas-
sically. One reason is that the inertial paramet-
ers are expected to be large. The transition from
the Hamiltonian H = 7„„+II;„,„;„„,to a new Hamil-
tonian H" depending on the classical variable Q
and its conjugate momentum P can be made in
the usual way, transition from the Schrodinger
to the Heisenberg picture, and replacement of
the commutator brackets by Poisson brackets.
The quantities p&, j = 1, . . . , 3A. —4 remain quan-
tum-mechanical operators. The Hamiltonian &"
can again be used to construct an adiabatic approx-
imation. This Hamiltonian consists of two pieces,
the intrinsic Hamiltonian II;„„,„,„defined in Eq.
(2.7) which depends parametrically upon Q(f),
and the classical collective kinetic energy T„'.„'„(Q,
P) which depends parametrically upon qz, j= 1, . . . ,
3A, —4. The adiabatic wave functions 4& and
eigenvalues E„are again defined by Eq. (2.8) and
obey Eq. (2.9). It is consistent with the remarks
made at the end of Sec. IIB to assume that the
inertia parameter for the collective kinetic ener-

We see that the terms causing deviations from
adiabaticity are the nondiagonal matrix elements
of Bo. This is the same situation as in Eq. (2.13)
where, under the assumption of smoothness of
the inertia parameters t, + = 1, 2, and with

&+Jf.l@.& -=5„,&+Jf.l+„& =-5„.&+.If I+.&, we»so
find that the principal contributions to deviation
from adiabaticity arise from the nondiagonal ma-
trix elements of 8 and 8'.

It is therefore our aim in the sequel to study
the statistical properties of the matrix elements
&e„lB,ly,& and &e„lB,'ly, &.

III. STATISTICS OF THE MATRIX ELEMENTS

In the spirit of statistical nuclear spectroscopy,
we consider the adiabatic states g„and the eigen-
values E„as stochastic quantities. This is per-
missible if (i) the excitation energies E„are suf-
ficiently large (typically E„&1 MeV for heavy
nuclei), and (ii) all collective features of the nu-
clear system are described by Q. If condition (ii)
is not met, further collective variables must be
introduced.

In order to work out the statistical properties
of the adiabatic wave functions +& and thereby
those of the matrix elements g JBol4„& and

g „IBo'lg,&, we introduce a model. We replace
If;„„,.„,.„, of Eq. (2.7) by a single-particle Hamiltoni-
an with residual interactions, the latter being
given by a random-matrix model.

Because of the introduction of the collective
variable(s) Q, not all the single-particle degrees
of freedom are really independent. We disregard
this problem and take the value of Q only as a
constraint on the form of the single-particle po-
tential. Our results on the statistical properties
of the functions +& do not depend on the number
of particles present, and on the number of degrees
of freedom involved. Therefore, we do not be-
lieve that a more complete inclusion of the con-
straints imposed by Q would alter our results in
a qualitative fashion. A similar comment applies
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to our neglect of self-consistency in the definition
of the single-particle field. The reader will ob-
serve that the main ingredient in our derivation
is the characteristic dependence of the single-
particle energies on the value of Q. The charac-
teristic features which we use are the same for
a self-consistent and a phenomenological single-
particle potential.

A. Statistical properties of the wave functions 4

g„=P A& (Q) 4 (Q; x„.. . , x„). (3.1)

While the 4 do not have stochastic properties,
the 4„do, since they are obtained by diagonalizing
a Hamiltonian given by a random-matrix model.
The stochastic features are contained in the ex-
pansion coefficients A&(Q). The stochastic prop-
erties of the +& determine the statistical distribu-
tion of the matrix elements (4Jso~4,}and (4 Jbo'
~4,). We shall show below that the matrix ele-
ments have a Gaussian distribution characterized
by its first and second moments. These moments
can be evaluated once the distribution of the A„
is known.

Usual arguments used in random-matrix theory'
show~ that the A"„(Q) have a Gaussian distribution
with zero mean value, and with a second moment
given by

AP(Q)A$F (Q') = 5„„i5pqiCq (Q, Q'), (3.2)

For Q fixed, let p (Q, x) be a complete set of
single-particle wave functions (i.e. , solutions of
the Schrodinger equation with a deformed poten-
tial), and e„(Q) the associated eigenvalues. As
we change Q, we follow these wave functions
diabatically: At each Landau-Zener crossing of
eigenvalues i™„and&z, we stay on the branch
which gives maximum overlap with the original
eigenfunction. This procedure introduces a slight
discontinuity of Fp and i at the Landau-Zener
crossing which we remove by a suitable averaging
procedure which involves a small interval b, Q
around each Landau-Zener crossing. We denote
the averaged functions and eigenvalues by (If) and

z, respectively. They are approximate eigen-
functions and eigenvalues of the original single-
particle Hamiltonian H, + (Q); we disregard the
difference between If„, (Q) and g„eJyg(yj.

A complete set of Slater determinants @ (Q;
x„.. . , x„) is constructed from the functions

y„(Q, x), with eigenvalues E„(Q) given as an appro-
priate sum over the e~(Q). The functions g&(Q)
are obtained by diagonalizing the full II „.„.,
(including the residual interaction) in the space
of functions 4 . Therefore, the +„have the form

while A&(Q)A"„(Q') = 0 due to the randomness of
phases occurring in the unitary matrix', &. The
Kronecker symbols in Eq. (3.2) arise from the
same source.

Postponing a discussion of the correlation func-
tions C„ to Sec. IIIC, we notice that the Gaussian
distribution and the form (3.2) alone suffice to
deduce that the mean value of the nondiagonal
matrix elements (4 J&u(4„} and (4 JB+4„}(p, tv)
is zero, and that due to the law of large numbers,
these matrix elements have a Gaussian distribu-
tion. It remains to determine the second moments.
These are expected to contain a correlation length
in Q. This correlation length is determined either
by the length o, over which the basis states 4
change, or by the correlation length 0, contained
in C„(Q,Q'), whichever is smaller. In the next
three subsections, we estimate o, and a, and show
that 0, && o,. This implies that the correlation
length of the second moment of the matrix ele-
ments is given by o,.

B. Estimate of the length oo

Since each 4 is a Slater determinant, its Q
dependence is given by that of the constituent
single-particle wave functions y (Q, x). We have
evaluated the change with Q of the latter as fol-
lows. We have used a Nilsson scheme'(which we
take to be representative of any deformed single-
particle potential), in which we have varied the
quadrupole deformation Q. (Q corresponds to
the unitless deformation parameter 5 as defined
by Nilsson. ') Generally, we can write

y„(Q', x) = Q(y„(Q, x)~y„.(Q', x))y„(Q, x); (3.3)

we can therefore confine the discussion to the
Q-Q' dependence of the overlap matrix elements
(a, Q ~n', Q') =(P, (Q', x)). In Fig. 1 we show,
for a number of Nilsson orbitals as indicated in
the figure, the change of the diagonal terms
(ct, Q~n, Q') with increasing distance between Q
and Q'. The average of these can be fitted with
a Gaussian with a variance o, = 0.225. The Gaus-
sian approximates the mean value of (n, Q~a, Q');
this approximation is meaningful only if the vari-
ance of the variation of the matrix elements is
sufficiently small. We have calculated this num-
ber; for AQ& 0.4 we found it to be about 15%.
The behavior of the totality of the nondiagonal
matrix elements is in each case given by ortho-
normality; some cases calculated explicitly are
displayed in Fig. 2 (and Table I).

We take a ratio of two of the major to the minor
axes of the spheroid as a measure of the maxi-
mum physically possible value of Q, denoted by
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Q,„. The variable q =Q/Q „thus typically ranges
in the interval I+-„+ll. Expressed in these units,
the variance cr, of the Gaussian introduced in the
previous paragraph has the value v, = 0.33. There-
fore, typical lengths over which the quantities
(ngln'Q') change are 0.33 or so in these units.

This number can be used to estimate the varia-
tion with Q of the matrix elements of the residual

FIG. 1. Dependence of the diagonal elements
(nQI&Q') on Q-Q'. The orhitals InQ) are specified in
terms of the Nilsson (Ref. 9) quantum numbers N and 0
and by their energy E for a deformation p =2 (in the
units given in Ref. 9). A change of Q by 0.1 corresponds
to a change of g by 2,0. Upper right: N=5, O=~~; E
=0.918, oE=1.865, &E=-9.169, +E=-10.230, +E
=-20.692. Upper left: N=5, 0=» E=3. 162, oE
=2.149, +E=-4.868, &E=-10.324, +E=-11.269) +E
=-21.152. Lower right: N=6, 0=— E=3. 270, OE

1.003, &E= 6.198, ~E=-14.358, ~E= 15.386, +E
=-27.524. Lower left: ¹6,0=2; E=-26. 794, OE
=-3.487, +E=-13.048, +E = 14.039, +E=

Q-Q'

FIG. 2. Dependence of the nondiagonal elements
(nQln'Q'& on Q-Q'. We use the same notation as in

Fig. 1. The labels A- L denote the overlaps between the
pairs of levels listed in Table I.

interaction. We take a random two-body interac-
tion with antisymmetrized two-body matrix ele-
ments written as (nPI Vly5). For Q fixed, these
are supposed' to have a Gaussian distribution
with zero mean value and a second moment of the
form

&np
I VI yv) &n'p'I vl y'f")

=(5, , 5, , 5„„,5„,+ ) I( pl vl&5) I'. (3.4)

Here, the dots indicate terms obtained by the ex-
change of indices in an obvious fashion.

The correlation function of the two matrix ele-
ments taken at different deformations Q and Q'
can be evaluated with the help of the transforma-
tion matrix (nQ

I

n'Q'). We find, using relation
(3.4),

TABLE I. Tabulation of the pairs of levels, here distinguished by the indices 1 and 2, the overlaps of which are
denoted by A-L on Fig. 2.

A E H

E) —11.269 -11.269 -11.269 -11,269 -4.868 -4.868 0.918 0.918 -15.386 —6.868 -10.324 -10.324

Ng

2 2 2 2

5 5

1 1 1 1
f 2 2 2

3
2

3
2

E2 -10.324 -16.571 -24.834 -29.436 -13.537 -16.571 -1.323 -0.438 -16.881 -16.881 -15.732 -20.742

N2

1
2

1
2

1
2

1
2

3
2
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&upi Vl»&, &u'p'l Vly'~'&,

=(&u'Q'l Q& &p'Q'l pq&&yqly'Q'&(~ql ~'Q'&+" ]
x l&uplvly&&l'. (3.5)

The dots have the same origin as in Eq. (3.4). We
now use the fact that for a g n', the elements of
the transformation matrix (u, Q l

u ', Q') are smail
and have either sign, while for u = a', they fall
off with the Gaussian introduced above. Accord-
ingly, we find that, on the average, I'd/(2v)

[E (Q ) —E.(q,)]'+-'(I')' (3.9)

The matrix elements (m
l
Vln) of the residual in-

teraction with respect to the functions 4 can be
trivially expressed in terms of the (upi Vly5& m-
troduced earlier.

Let A (Qo} be given at some point Q =Qo. The
average distribution of these quantities describes
the spreading of a state 4„over the states 4 or,
conversely, that of a state C over the states ~If,.
%e thex efore write

=(n...~„,~„,~„,+" ) l&uplvly~)l'

x exp[-2(q —q ')2/cro2] . (3.6)

H.„=Z.(q) ~.„+(m
l
Vln) . (3.8)

C. Estimate of the correlation length 0&

Having estimated the typical length over which
the 4 and the matrix elements (upi Vly~&o
change, we now x'eturn to the correlation function
C~(q, Q'). It is defined as the mean value of the
product of two random functions, and we there-
fore expect it to have the form

C„(q,q'} = lA, (q) l'exp[-(q- q')'/(2o, ')].
(3.7)

It is our aim to estimate the coxrelation length o;.
%e are going to show that 0, «op, where o, was
introduced in the previous subsection as the' typi-
cal length over which the function 4 and the ma-
trix elements (upi Vly5& change. We therefore
proceed by assuming that the 4 and the matrix
elements (upi Vl 5y& are independent of Q over an
interval of length o„and estimate o, under this
assumption. If the resulting value indeed fulfills
ay «op, our proof is complete.

The coefficients A„(Q} are the elements of the
unitary matrix which diagonalizes the Hermitian
Hamiltonian matrix

This form fulfills the orthogonality conditions

(3.10)

The spreading width is I'~, and d is the mean level
spacing, taken to be the same for the states 4
and + ~ In order to estimate 0' we write Q „ ln
the form H„„=H „(Q,}+~„and estimate the
change of A„(Q) with b, H„„. Using the assumed
independence of (ml Vln) of Q, and writing Z„(q)
=E (Q,) +f(Q) + E„(Q), where f(Q) is a suitably de-
fined average value of E„(q) —E (Q,} (averaged
over many levels in an interval of width I' ), we
transcribe H „by multiplication with A„(Q,) and

A„*'(Qo) into the form

H..=[ E(Q.} f+(Q)]~.. +Q A„(Q.)& (Q)A*."(Q.).
(3.11)

The last term on the right-band side (rhs) is the
cause of the change of A~(Q) with Q. We have ex-
tracted from E„(Q) the average value f(Q): A uni-
form change of all E„(Q) with Q leads to a diagon-
al contribution and does not change A~(Q).

The eigenfunctions 4 „[and the coefficients
A"„(Q)] will change qualitatively over a distance
6Q over which the perturbation series with re-
spect to the last term on the rhs of Eq. (3.11}di-
verges. This series has the form

4.(Q) =4.(Q.}+ g ([E.(Q.) -E.(Q.)] ' g A*."(Q.}A„(Q.)~.(Q) 4.(Q.})+ "
~ (3.12)

Convergence terminates, or the wave function
changes qualitatively, when the sum of the squares
of the 1st-order expansion coefficients is about 1,

We evaluate the average using Eqs. (3.2) and (3.9)

and find, after a straightforward calculation,

(Z.'(Q) ) = I'd, (3.14)

where the brackets denote an average over an in-
terval of width I ~.

Equation (3.14) is the central result of this
paper: The correlation length o, is given by that
distance b, Q, over which the spread in eigen-
values E becomes comparable with the product
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This result is physically plausible; recalling
that I' =2vV'/d (where P is the mean square
matrix element of the residual interaction), we
see that it can be read as a comparison between
the strength of the residual interaction, and the
reordering of the eigenvalues E caused by the
change of Q.

D. Numerical estimate

To estimate cr, numerically, we use d =30 eV
(a conservative value even at neutron threshold)
and I" = 10 MeV (which we also believe to be a
conservative estimate up to excitation energies
of several 10 MeV; we recall that giant reson-
ances have spreading widths of several MeV).
Then, o, is given by that value of b, Q for which
the variance of the energies E has roughly the
value 20 keg. Our remaining task consists in re-
lating the variance of the E to that of the single-
particle energies & (Q) and in evat. uating the latter
in terms of a Nilsson model.

It is preferable to use the excitation energies
E —A&~ (where c~ denotes the Fermi energy)
instead of the energies E themselves; a signifi-
cant part of the mean value f(Q) is thereby taken
into account. For the variance of E —A&~ we find

o[E (Q) -Ae~(Q) —E (Q,)+Ac (Q,)j
= 42iV a[~.(q) —~.(q, ) j, (3.15)

where o(a, ) is the variance of the s.p. energies
q, and X the number of particle-hole pairs ex-
cited on the mean at a given excitation energy.
Equation (3.15) is intuitively reasonable on statis-
tical grounds; it can be verified by using combin-
atorial arguments which we do not reproduce here.
Taking for N a value between 2 and 20 (typical for
excitation energies up to several 10 MeV in heavy
nuclei), we find

5[& (Q) —s (Q, )]= several keV (3.16)

as the condition which determines a, . According
to the statistical model, X is proportional to the
root of the excitation energy E~ and 0, thus pro-
portional to (E*)'~'. Hence, o, does not depend
sensitively upon E ~.

To estimate o[e (Q) —a (Q,)], we take a simple
model withe single-particle energies, their slopes
versus Q being distributed equally between —k
and+k, where k is the maximum slope versus
a change of Q. This yields in a straightforward
fashion at lQ -Q,

l
=o, for o[c (Q) -s (Q,)] the

value (1/v 3 )o,k. Hence, we find

6, = several. keV/0 . (3.17)

7.'he constant k can be determined from numerical
evaluations of s.p. energies in deformed potentials.

We have used Ref. 11 for this purpose, especially
Fig. 5. In the units given above (q =Q/IQ

I ),
we find typically k= 1 MeV/0. 06, which yields
for o, the approximate value

0'~ 10 (3.18)

-&4„ls lk„), (f, ls IC,),
(Q- )'—= 5„,5„, —, exp[- (Q -Q')'/o, ']

1

~ IA."(q) I'IA."(q) I' (3.19)

Equation (3.19) yields the value zero at Q =Q'.
'This is a consequence of the Gaussian correla-
tion between the A" (Q); the Gaussian has a vanish-
ing derivative at Q= Q'. The other, neglected
terms arising from Bog„do not have this feature.
The last term on the rhs of Eq. (3.19) can be eval-
uated using Eq. (3.9), and the factor (Q -Q')'
can be approximated by 0,'. This yields finally

—&e. I so I &,&o &&. I so I 4'&o

—= + 5,5„,exp[- (Q —Q ')'/o, ']

I"d/n

o, (E„E„)2+(I")'- (3.20)

This shows that the correlation length inQ is given
by V2 cr„and the energy range of the possible
deviation from adiabaticity by the spreading width

Larger jumps in lE„-E„l than given by I"

Comparing this with o,= 0.2 we see that oy«op
so that the assumptions introduced above are in-
deed met. Using Fig. 12 of Ref. 11 for the neck
parameter, or Fig. 13 for the asymmetry para-
meter, we find similar values.

E. Statistical properties of the matrix elements

For simplicity, we consider the nondiagonal
elements (4'~ Iso I4'„), p, + v, which appear in the
semiclassical approximation of Sec. IIC. (The
arguments apply similarly to the matrix elements
(4„ I

Bo'l 4„) used in the full quantum context. )

It was shown in Sec. IIA that because of the
properties of the expansion coefficients A and
the law of large numbers, these matrix elements
have a Gaussian distribution with zero mean
value.

'To calculate the second moment, we use Eqs.
(3.2) and (3.7) and the inequality o,»o„so that
we execute the differentuation 8 always with
respect to A~(Q), not Q„(Q). This yields in a
straightforward fashion (recall that we put p 0 v

and pl 7')
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are suppressed because when expanded into the
shell-model states P, the functions P„and t/i„

do not have any significant overlap. 'This is com-
pletely analogous to the results of Ref. 4.

The occurrence of the factor (Q -Q')' in Eq.
(3.19) is caused by our assuming a Gaussian form
for the correlation function C„. However, C„
could also be an exponential. Moreover, the be-
havior of C„over very short distances (Q -Q')
is irrelevant; what matters is some integral
of C„over the relevant values of (Q -Q'),
as will be shown in a future paper. 'This is why
we replace (Q —Q')' by a,'.

For g= r, v= p, the rhs of Eq. (3.20) is positive.
This is as it should be since orthogonality implies
(y. I so I &.&*= —((, Iso I V. & showing tha«he le«-
hand side (lhs) of Eq. (3.20) is an absolute square.

The Lorentzian factor (I"d/n')
I
(E„-E„)'+I'~'

~

'
on the rhs of Eq. (3.20) originates from the spread-
ing of the states ((I„and is normalized to 1 if we

t

sum over E„, keeping d constant. In later appli-
cations, the level spacing d changes significantly
over distances 1'= 5-10 MeV. In such a situation,
the use of a I.orentzian is not useful, since the
exponential rise of the level. density with excita-
tion energy causes sums over intermediate states
p, to diverge, if the I,orentzian is the sole cutoff
factor in the summation. For this reason, we
proceed as in Ref. 4 and replace the Lorentzian
by a Gaussian, exp [-(E„-E„)'/(2I")']. To pre-
serve normalization, the Gaussian must be rgulti-
plied by (v'2v I") 'x [d(E„)d(E„)]' 'exp[-P'(I")'/8],
where P = (kT) ' and the nuclear temperature T
is that appropriate at the excitation energy E„
=E . The factor [d(E„)d(E )]'~' is a (symmetrized)
version of the factor d appearing in Eq. (3.20),
and the exponential arises if one replaces in the
summation over p, the ratio [d(E„)/d(E„)]'~' by

exp[(p/2)(E„-E„)]. In summary, we replace Eq.
(3.20) by the formula

—(g„Isu I P„&u (P, Is+ I P, &o
=—5„,5„, ,exp—[-(Q-Q')'/e, '] "—", exp[-P'I" /8]exp[- (E„—E„)'/(2l")']., [d(E„)d(E„)]'~'

(3.21)

IV. SUMMARY

We have evaluated the statistical distribution
of the matrix elements ()„I 8+ I P„&o, where the
P„are the eigenfunctions of the full intrinsic Ham-
iltonian including the residual interaction and
subject to the constraint that one (or several)
collective variable(s) Q exist. We have shown

that, using a random-matrix model for the re-
sidual interaction, these matrix elements have,
for p4 v, a Guassian distribution with zero mean
value and a second moment given by Eq. (3.21).
The Kronecker symbols in this equation are a
direct consequence of the random nature of the
residual. interaction and of the associated random
signs of the wave functions g„. The occurrence
of the Gaussian is due to the spreading of the
functions g„over the shell-model wave functions

; large values of IE„E„Iare supp-ressed
because the associated functions g„,P„have ortho-
gonal constituents. We estimate I"~ 10 MeV.

The Gaussian with correlation length (W2) 'e, arises
from the correlation function of the expansion co-
efficients A„"(Q) of the P„ in terms of the Q„.
Among the possible factors which lead to a finite
correlation length —the change of the s.p. wave
functions and of the s.p. energies with Q —we have
identified the change of the s.p. energies as the
most important factor. A redistribution of the
s.p. energies over an energy interval roughly
given by the root mean square matrix element of
the residual interaction destroys the correlation.
Because of the strong dependence of (diabatic)
s.p. energies upon the shape of the s.p. poten-
tial, this happens over very short intervals
IQ -Q'I. When expressed in units of the dimen-
sionless quantity q =Q/IQ I, o, takes the very
small value of = 10 '. We note that this small
value of o, pertains independent of whether the
E„(Q) as functions of Q do or do not show Landau-' ener behavior,
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