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The aim of this work is to show how we can improve systematically the rate of convergence of a recently proposed
method for iterative solution of scattering integral equations. The method relies on the introduction of an auxiliary

equation containing an arbitrary function, whose kernel is much weaker than that of the original equation. The
solution of the original equation is then expressed in terms of that of the auxiliary equation which is supposed to
have a convergent iterative solution. In this work we introduce successive subtractions in the kernel in order to make
it weaker. Such subtractions in the kernel are very simple to implement in practice and the present method appears
to have some advantage over the other existing methods. We explain how to generalize the method for multichannel

scattering equations. Using the present method we show how to modify a method by Fuda for three-particle

scattering equations in order to have a method which uses the iterative solution only of nonsingular equations above
the three-body breakup threshold. The method is used numerically to compute phase shifts, scattering lengths, and

fully off-shell t matrix elements for neutron-deuteron scattering in the s-wave Amado model and for nucleon-

nucleon scattering with the Reid S, potential. The iterative solution of the auxiliary equation is found to converge
much faster than the conventional Pade technique in the case of the neutron-deuteron scattering and yields results

with high precision.

NUCLEAR REACTIONS Multichannel scattering equations, iterative solution of
auxiliary equations, Reid So potential, Amado model, off-shell t matrix ele-

ments and phase shifts computed.

I. INTRODUCTION &(p, ~;&) = v'(p, ~)

Iterative solutions of scattering integral equa-
tions are attractive because of their formal and
numerical simplicity over methods using matrix
inversions. A divergent iterative series can be
summed by the use of Pade approximants. "' The
method of Pade approximants has been success-
fully used in the solution of few-body scattering
integral equations. " An alternative method for
iterative solutions of scattering equations was
recently proposed. "' Here we propose a gen-
eralization of the method of Refs. 5 and 6, which
has certain advantages over the conventional
Pade technique.

The method of Refs. 5 and 6 relies on solving
an auxiliary equation whose kernel contains an
arbitrary flexible function. The solution of the
original equation is then related to that of the
auxiliary equation. If the freedom in the choice
of the arbitrary function is exploited the kernel
of the auxiliary equation can be made sufficiently
weak in order to have a convergent iterative
solution. Another advantage of the method is that
certain types of fixed point singularities can be
removed from the kernel of the original equation
so that the auxiliary equation has a less singular
or nonsingular structure. '

Following Ref. 5, a single channel one variable
partial wave Lippmann-Schwinger -type equation
can be written as

+ dqq'f(q) V(P, q) G,(q)t(q, r; E),

~(P, ~;&) =1'(P, ~)+ dqq'&(P, q;&)T'(q, ~;&),

where

(1.2)

&(P,q; &) =[ ~(P, q) —~(P, k) y(k, q)]f (q) G.(q),

(1.3)

and where y(k, q) satisfies

y(k, k) =1. (1.4)

The kernels of Eq. (1.2) does not have the fixed
point singularity of G, (q). We know from our
previous experience that if the function y is

with G,(q) =(k' -q'+it) ', k' =E, in units k
=2& =1, where P, q, and x are momentum
variables and p is the reduced mass. Unless
explicitly shown the integration limits in Eq. (1.1)
and in the rest of the paper are from 0 to ~. The
function f (q) is some weight function which in the
case of s-wave Lippmann-Schwinger equations
is a constant ~. As in Ref. 5 we introduce the
auxiliary equation

1981 The American Physical Society



LAURO TOMIO AND SADHAN K. ADHIKARI

conveniently chosen, the kernels ean be made
very weak compared to that of Eg. (1.1)."' Now

t(p, r; E) can be expressed in terms of I'(p, r; E)
as '

I'(P, k; E) I"( r, k; E)
I'(k, k;E) I'(k, k;E)

( )
1(p, k; E)I (k, r; E)

I'(k, k;E)

(1 5)
where

f(k) = t(k, k; —E)

=I'(k, k;E) 1- dqq'y(k, q)f(q)G, (q)I'(q, k;E)

In Eq. (1.2) we have introduced one subtraction
in the kernel of Eq. (1.1) in order to make it
weaker, and Eq. (1.2) with a proper choice of y
may have a convergent iterative solution. If the
rate of convergence of the iterative solution of the
auxiliary equation (1.2) is not satisfactory we
show how we can improve the rate of convergence
of the method by introducing further subtractions
in the kernel. It is worthwhile to note that Eq.
(1.5) has certain advantages as have been first
pointed out by Kowalski and Noyes. ' The quantity
in the first set of square brackets is separable
and is known in the literature as the Kowalski-
Noyes approximation' for the t matrix, and it is
exact for half-on-shell values of momentum
variables. The term in the second set o'f square
brackets is the residual term. This term is real
and it is zero for half-on-shell values of mo-
mentum variables. A multichannel generalization
of Eq. (1.5) wa, s also given in Ref. 6.

The applicability of the present method is by
no means limited to the case of scattering in-
tegral equations of the Lippmann-Schwinger type. '
The present method can be applied to the case of
general integral equations of the Fredholm type
as has been demonstrated elsewhere. '

The method is applicable to the case of two-
and three-body equations as has been shown in
Befs. 5 and 6. In the case of Lippmann-Schwinger
equations the fixed point singularity of the kernel
of the original equation can be easily removed
and we have a nonsingular auxiliary equation.
The same is true below the breakup threshold
for three-body equations. But above the breakup
threshold it is difficult to write nonsingular
three-particle scattering equations because of
the appearance of complicated logarithmic sin-
gularities. " Fuda" proposed a method for solving
three -particle scattering equations by solving

auxiliary nonsingular equations above and below
the breakup threshold. We show that using idea. s
of Ref. 9 all the auxiliary equations of the method
by Fuda can be solved by iteration. Hence it is
possible to solve the three-particle scattering
above the breakup threshold by solving auxiliary
nonsingular equations by iteration.

The present method is simple to implement
and for reasons discussed later is expected to
yield accurate results. The generalization pro-
posed in this paper maintains all the advantages
of the previous papers. "' The present method is
equally good for on-shell, half-on-shell, and
off-shell t matrix elements. In the case of three-
body equations, of course, special care is needed
to write nonsingular scattering equations above
the three-body breakup threshold. " For example,
one may use the technique of contour rotation""
or the method by Fuda" in order to write non-
singular equations above the breakup threshold.
It is known that iterative solution of scattering
integral equations preserves the analytic structure
of the solution. '~ Hence the correct analytic
structure will be built in the approximate solution
of the present method. Moreover, below the
(three-body) breakup threshold each order of
iterative solution of three-body equations pre-
serves the constraints of unitarity. ' Unlike in the
method of Pads approximants' there are no
spurious poles or singularities in the approximate
solution of the present method.

We tested numerically the method in the simple
case of s -wave elastic neutron-deuteron scattering
with separable two-body interactions with Yama-
guchi" form factors —commonly known as the
Amado model" —for energies below the brea, kup
threshold and also in the case of elastic nucleon-
nucleon scattering with Reid 'S, interaction" and
find that the method converges rapidly in both the
eases. We find that the method eonverges sig-
nificantly faster than the iterative solution of
Refs. 5 and 6. We also find that in the case of
neutron-deuteron Amado model the method con-
verges much faster than the method of Pads ap-
proximants. ' The present method is also slightly
simpler to implement than the Pads technique
because it is numerically somewhat more tedious
to construct the Pads approximants using the
iterative solution than to construct the solution
using that of the auxiliary equation in the present
method.

The plan of the paper is as follows. In Sec. II
we give a brief description of the method. We
show how to introduce successive subtractions
in the kernel in order to make it weaker. In Sec.
III we discuss the generality of the present ap-
proach and apply it to multichannel scattering
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equations and to the three-body scattering above
three-body breakup threshold. In See. IV we
present numexical results fox' the s-wave neutron-
deuteron scattering in the Amado model and for
the nucleon-nucleon scattering for the Reid '8,
potential. Finally, in Sec. V we present a bxief
summary and concluding remarks.

(2.5)

&,(P,r; &) =[ 1', (P, r; &) - 1',(p, k; &)y(k, r)]

II. THE METHOD
xf (r) ~.(r) (2.6)

In Befs. 5 and 6 we introduced the auxiliary
equation (1.2) and write the solution of Eq. (1.1)
in terms of the solution of the auxiliary equation
as in Eq. (1.5). In Eq. (1.2) we have made one
subtraction in the kernel of Eq. (1.1) in order to
make it weaker. With a proper choice of y, Eq.
(1.2) is supposed to have a convergent iterative
solution. Here we show how to introduce suc-
cessive subtractions in the kernel in order to
improve the rate of convergence of the iterative
scheme. Following Ref. 9 we introduce an auxi-
liary equation

&U, ~;&) =&(p, ~)+J &ee'&la, e;~)~ (e, &;~),

(2 1)

where

B(P,q;E) =A(p, q;E) -A(p, k„E)y,(k„q), k, ek.

(2.2)

The function y, (k„q) is again an arbitrary flexible
function such that

I(r;&) = dqq'y, (k„q) 1'(q, r;E).

From Eqs. (2.5) and (2.6) we find that I(r;E)
satlsf les

I (r; E) =I,(r; E) + Z, (k„E)I(r; E),

I,(r;&) =
'~ dqq'y, (k„q) 1",(q, r;Z)

Z (1r; E) =, i dq q y, ( k1, q) j,(q, r; &) .

Now from Eqs. (2.5) and (2.8) we get

z( .@) 1 ( .@)
1 —J', ( k„E)

(2.7)

(2.8)

(2 9)

(2.10)

y, (k„k,) =1, (2.3)

F(P,r;&) =1'(P, r)+ dqq'B(P, q;&)1(q,r'@

+A(p, k„E) dq q'y, (k„q)1'(q, r; &) .

(2.4)

Now using the method illustrated in Hefs. 5 and
6 the solutions of Eqs. (2.1) and (2.4) are related

where 4, is an arbitrary chosen point, if the
kernelA [see Eq. (1.3)] does not have another
fixed point singularity in the function f (q).

Here we suppose that the kernel A. has no other
fixed point singularity, so we use the form 8
given by Eq. (2.2), and we note that in this case

(PB, k„)8=0, whereasA. of Eq. (1.3), though
nonsingular, is always nonzero. So we expect
that 8 ean be made much weaker than A and this
will improve the rate of eonvergenee of the auxi-
liary equation (2.1). Now it remains to relate
the solution of Eq. (2.1) to that of Eq. (1.2). For
this purpose we rewrite (1.2) as

The method solves Eq. (2.1) by iteration and
constructs the solution of Eq. (1.2) by Eqs. (2.6)
and (2.9)—(2.11), and then constructs the solution
of Eq. (1.1) by using Eq. (1.5). We have seen that
the kernelA of Eq. (1.2) is already weak and may
have a convergent Neumann series solution for
two and thx'ee nucleon scattex ing equations. In
the kernel B of Eq. (2.1) we have introduced
another subtraction and we expect that Eq. (2.1)
will have a mox'e rapidly convergent iterative
solution. After we construct the iterative solution
ox' ~, we need to evaluate only several integrals

in order to find the t matrix elements. For
example, in order to find the on-shell t matrix
element t ( k) we need to evaluate only four in-
tegrals once the iterative solution of Fy is kllowIl.
If the rate of convergence of the iterative solution
of Eq. (2.1) ls 110't sat1sfac'tol'y lt is easy 'to tn-
tx'oduce further subtractions in the kernel in
order to make it weaker.

In order to achieve this we xepeat the same
steps that give Eq. (2.11) from Eq. (2.1). We
introduce another subtraction at the point k, and
rewrite Eq. (2.1) as
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I'i(p, r;E) =1'(p, r)+ dqq'G(p, q;E)I",(q, r;E)

+&{P k.; E) ' dqq'y2(k. ,q)I'&(q, r;E),
(2.12)

where

~(p, q; E) =13(p, q; E) &(p-, k2,'E)y, (k„q) {2»)
with

y, (k„k,) =1 (k, tk„k).

Now we introduce the auxiliary equation

1",(p, r; E) = V(P, r) +
J dq q' C(P, q; E) 1",(q, r; E) .

(2.14)

Relating Eq. (2.12) with Eq. (2.14)'we have

I', (p, r; E) =I', (p, r; E)+p,(p, k„.k„E)I,(r; E),
(2.15)

'JJ, (p, k, ;k„E)=[1,(p, k„E)—I', (p, k; E)y(k, k, )]f(k, ) G,'(k, ) —[I',(p, k„'E) —12(p, k; E)y(k, k, )]

&&f(k,) G, (k, )y, (k„k,),

P

I2(r;E) =
~ dqq2y2(k2, q)I', (q, r;E).

~J

Using Egs. (2.15) and (2.17) we get

I,(r; E) =I„(r;E) +J',(k„E)I,(r;E),
where

I„(r;E) = Jt dqq'y, (k„q) I', (q, r; E),

(2.17)

(2.18)

Schwinger-type equations. %e can apply the
present method to any type of Fredholm integral
equations —single channel or multichannel, Lipp-
mann-Schwinger type or not. First, we demon-
strate the applicability of the method to the case
of multichannel scattering equations and then to
the case of a three-body method suggested by
Fuda" in order to demonstrate the generality of
the present method.

A. Multichannel scattering

J', ( k„E)= dq q'y, ( k„q) &,(q, k„k„E). (2.20)

Now using Eqs. (2.15) and (2.18) we have

(p r.E) —p (p r, E)+ $2( I 2! 1$ 22'~ u .~ .E~~ i~ E~

1 —J', (k2; E)

(2.21)

Using Egs. (2.14)-(2.21) we can construct 1', and

hence the t matrix elements using Egs. {2.6)-
(2.11) and Eg. (1.5).

Although it is possible to improve the method
to a desired degree of accuracy by introducing
successive subtractions, in this paper we shall
be limited to the consideration of two subtractions
only; i.e. , we shall consider only equations up to
Eg. (2.11) in the following. With this introduction
about the method we turn to a discussion about
its applicability.

III. APPLICATIONS

The multichannel scattering equations in general
have the same form as Eq. (1.1), but now the
various variables have channel indices over and

above the momentum labels. In explicit notation
the multichannel generalization of Eg. {1.1) is'

t~„(p~,r; E) =V~, (p~, r, )

+ g „dq.q.'f.(q.) 1 8.(p&, q.)

x G,(q, ) t, (q„r;E),

where G,(q,) =(k,' -q,' +is) ' carries the possible
singularities of the cr channel, while f,(q,) is a
weight function, which is a constant for the s-wave
L'pp -Sh '

g q t' dk, ' th
shell momentum for channel o.

Following Ref. 6 we can write the solution of
(3.1) as

t,.(p„r.; E) =I'„(p„r.; E)

+ Q I'~, (pq, k„E)I,~(k„r„;E),
In this section we consider examples where we

can use the method of Sec. II. It is clear that the
method is applicable to single channel Lippmann- wher e 2~~ is the solution of

(8 2)
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r,.(k„r.;E) =d,.(k„r.;E)

with

+ g dz, ( kz, k„E)I, (k„r;E),

d, ( k„r;E) = dq, q,' G,(q, ) y, ( k„q,)

x I', (q„r;E) . (3.4)

+ g dq, q, 'A~, (p~, q„E)

x I' (q, r; E) . (3.5)

Here

A, (P„q„'E) = [ V„(P,q.) —V„(P„k,)y,(k„q,)]
(3 6)xf.(q.) G.(q.)

and y,(k„q,) is a function which satisfies

y. (k. , k. ) =1.
Equations (3.2) to (3.6) are the fundamental

equations of the multichannel formulation of Ref.
6. The final result, Eq. (3.2), can be written
in the Kowalski-Noyes form' as has been shown
in Ref. 6. In this subsection we introduce more
subtractions in the kernel of the auxiliary equa-

In Eqs. (3.2) and (3.4), I'z (pz, r; E) is the solu-
tion of the following auxiliary equation:

r .(P,r.;E) =V,.(p„r.)

tion (3.5) and writing the result in the Kowalski-
Noyes form is not important from this point of
view. In Eq. (3.5) we have introduced one sub-
traction in each channel. Of course, by taking
some of the y, 's to be zero we can introduce one
subtraction in some of the selected channels of
Eq. (3.1). This is important because kernels of
some of the channels may be very weak and may
not need any subtraction so that we may take
y, =0 for these channels. On the other hand, some
of the channels can be very strong and may need
more than one subtraction in order to have a
rapidly convergent iterative solution of the auxi-
liary equation. A good example of this is the
case of three-body equations with finite rank
potentials. If we make an unitary pole expansion"
for the two-body t matrix, the first term, called
the unitary pole approximation (UPA) is the most
important term. With such an expansion the
three-body equations have the same structure
as Eq. (3.1), where the channel containing the
UPA gives a good account of the full solution and
hence is more important and stronger compared
to other channels. Hence a second subtraction
in the kernel of the three-body equations in such
channels could be useful in having an auxiliary
equation with rapidly convergent iterative solu-
tion. Here we show how to introduce a second
subtraction in Eq. (3.5).

For this purpose we rewrite Eq. (3.5) as

I'~ (pq, r;E) =V~ (pq, r ) Q dq, q, Bq, (p~, q„.E)I', (q„r;E)

+ QAq (Pq, k„;E)), dqg y| (k„,q )1' (q, r;E), ki wk (3 7)

and introduce another auxiliary equation by

I"z (Pz, r; E) =
VB (Pz, r ) + g dqg, 'Bz,(P~, q, ;E) I'„(q„r;E), (3.8)

where

(3.9)B ,(P , q„E) =A ,(P , q„E) - A, (P , k„;E)y„( „k,q, )

and y„(k„,q, ) is a function which satisfies y„(k„,k„)=1.
Now it is not difficult to relate the solutions of Eqs. (3.7) and (3.8). Using methods of Ref. 9 we have

I'~ (p~, r;E) =I'z (P~, r;E)+ g [I'~,(P~, k„;E)—I'~, (P~, k„E)y,(k„k„)]G,(k„)f,(k„)I„,(k„,r ),

where

(3.10)

I„(k„,r ) = dq, q,'y„(k„,q, ) I', (q„r;E) (3.11)
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satisfies the following set of linear equations:

Iz (k~, r ) =J~ (k~, r )+ g [Jz,(kz, k„) -Jz,(k~, k,)y,(k„k„)]G,(k„)f,(k„)I, (k„,r ),
where

(3.12)

(3.13)

8. Fuda's method

Fuda" proposed a method for solving three-body equations with the help of auxiliary nonsingular equa-
tions. He considers three spinless bosons interacting via separable two-body transition operators

(3.14)

The half-off -shell partial wave three-body equations with this interaction are

J~ (k~, r ) = dq~q~'y~(k~, q~) I',
~ (q8, r;E).

4

Equations (3.7) to (3.13) constitute the multichannel generalization of the method of Sec. II. As before the
kernel B of Eq. (3.8) is expected to be weak and Eq. (3.8) is expected to have a rapidly convergent itera-
tive solution. The solution for the f matrix is constructed by using the iterative solution of Eq. (3.8).
With this discussion of the multichannel scattering equations we turn to a discussion of the Fuda method'
for solving the three-body equations.

Xz (q, k; E) = Zz (q, k; E) + Zz(q, q'; E)q' dq'7(E —4 q'' )Xz(q', k; E),
4 0

where
1

Z (q, q';E) = dxI' (x)g()-'q+q'()g()-,'q'+q ()(E-q'-q™-qq'+is)-',

(3.15)

(3.16)

where x is the cosine of the angle between q and q'. Fuda separates the logarithmic singularities of S~ by
using the relation

Zz (q, q'; E) = W~ (q, q'; E) + Y~ (q, q'; E),
where

(3.17)

and

-e(c -q)g[(E--'q')' ']g[(E--'q")' ']e(c -q')]

2 f2

Y,(q, q';E) =e(c -q)g[(E--,'q')' ']
qq'

x 0(c -q')g[(E--,'q")' '],

(3.18)

(3.19)

40
dq'q"R~(q, q'; E)

x r(E ——,'q")X~(q', k; E), (3.20)

where B~ satisfies

R ~ (q, q'; E) = W~ (q, q'; E)

"0
(q qe. E)q+2dqe

x 7 (E - q"2)R~ (q, q'; E) . —(3.21)

with c=(4E/3)' '. The term Y~ contains the lo-
garithmic singularities. Using Eqs. (3.15) and

(3.17) we arrive at

X~(q, k; E) =R~(q, k; E)

The logarithmic singularities of Eq. (3.21) can be
treated by iterating the equation once to give

1"c
R (q q'E) B (q q'E)+J V~(q, q" E)q"'dq"R~(q", q';E),

(3.22)
where in operator form Bz =We+Ye 7 Wz an

V~ = Y~vY~r. Explicit representations of B~ and

V~ are given in Ref. 11. Equation (3.22) is a
nonsingular equation and may have a convergent
iterative solution. It is interesting to note that the
structure of Eq. (3.22) is not of the Lippmann-
Schwinger type, but even in this case the present
method can be applied. If the iterative solution
of Eq. (3.22) does not converge, or if it converges
slowly, we can introduce a subtraction in the
kernel of Eq. (3.22) and rewrite it as
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P g

Rz(q, q'; E) =Bz(q, q'; E) + q" dq"&z(q, q"; E)Rz(q", q', E) + V+(q, k; E) q dq"y(k, q")Rz(q", q'; E),
0 4 Q

(3.23)

where

{q q"'E) =[V (q q" iz) V (q kiz)y(»q")l.
(3.24)

Now, following Ref. 9, we introduce the auxiliary
equations

r„(q,q; E) =B,(q, q; E)

(3.25)

+)t &&(q, q";E)q"'dq"I' &(q",q';E),
0

I',z (q, q'; E) = Vz (q, q'; E)

+ Az(q, q"; E)q" dq"I'»(q", q';E).
+0

(3.26)

We can express the solution of Eq. (3.23) in terms
of those of Eqs. (3.25) and (3.26) by

worthwhile to comment that we can also remove
the singularities of Eq. (3.15) by the method of
contour rotation'"" and apply the reduction tech-
nique of Sec. II directly to this equation and solve
it by the use of the iterative solution of nonsingular
equations on the rotated contour.

IV. NUMERICAL RESULTS

Now we are left with the problem of choosing
the function y. In Befs. 5 and 6 we were mainly
concerned with various ad hoc and intuitive at-
tempts to choose y. We shall consider in this
paper the only choice, called choice D in Bef. 6,
based on the idea of minimizing the square of
the kernel of the auxiliary equations. In Eq. (1.2)
a sufficient condition" for having a convergent
iterative solution is

(q, q';Z) =I, (q, q';E)+r, (q, k;E)f(k, q'),
dq dP q'A P, q', E ' &1. (4.1)

(3.27)

where

f'c
I(k, q') =

Jl y(k, q")q" dq" R (q",q', E)
0

J;y(k, q) q'dq I',z(q, q'; E)
2

. (3.28)
1 —J;y(k, q) q'dq I',z (q, k; E)

Although Eq. (3.23) is not of the Lippmann-
Schwinger type, the present method reduces it to
Eqs. (3.25) and (3.26), which are to be solved by
iteration, and then we construct the final solution
through (3.27). Of course, as Eq. (3.23) is not
of the Lippmann-Schwinger type, we have to solve
two equations, Eqs. (3.25) and (3.26), by iteration.
It is interesting to note that the kernels of these
two auxiliary equations are the same, but the
inhomogeneous terms are different. Once A~ is
known we have to solve Eq. (3.20), which is of the
Lippmann-Schwinger type, and the usual reduc-
tion technique of Befs. 5-7 is applicable. So by
introducing an auxiliary equation we can solve
Eq. (3.20) by iteration. Through the discussion
of the present section we demonstrate two things.
First, we develop a method to solve three-body
scattering equations above the three-body breakup
threshold, through the iterative solution of non-
singular auxiliary equations. Second, the present
method is applicable to general Fredholm equa-
tions and not only to equations of the Lippmann-
Schwinger type. Before ending this section it is

Condition (4.1) is much stronger than the neces-
sary condition for convergence. ' We can mini-
mize the left hand side of Eq. (4.1) by minimizing
the integrand in the curly brackets of this ex-
pression. With a hope of getting a weaker and
more general condition, we choose y in order to
minimize

„dP ~(p)[ V(P, q) —V(P, k) r(k, q)] ' (4.2)

f ~(p)dp V(p k) V(p, q)
y(k, q) =

J ~(p)dp V(P, k) V(P, k)
(4 4)

An interesting observation at this point is that
for a one term separable potential the kernels
with choice (4.4) of y is identically equal to zero
and the zeroth iteration of the auxiliary equation
(1.2) leads to the exact result for the f matrix.
In such a case the Pads approximant gives exact
results after two iterations, ' and the present
method is superior to the method of Pads approxi-
mants. In cases where the potential can be ap-
proximately represented by a single separable
term, and this is the case in many of the physi-

with respect to small variations 5 of y, where
+(P) is a weight function. Hence we claim

6 J dp~(p)[ v(P, q) —v(P, k)r(k, q)]'=0,
(4.3)

which yields the following functional form of y:
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cally interesting scattering equations, the present
method is expected to work better than the method
of Padd approximants.

Similarly, if we apply the same idea, which
gives Eq. (4.4), to the kernel of Eq. (2.1), we get
in a similar way the following functional form of
yl'

fdP ~,(P)A(P, q; E)A(P, k„E)
r, (k„q) =

fdp (g, (P)A(p, k„E)A(p, k„E) '

(4.6)

where ru, (P) is some weight function. In the case
of multichannel equations the choice of y, in Eq.
(3.6) is given by the following generalization of
Eq. (4.4) to the case of multichannel scattering
equations:

+f dP (d, (P) V„(P,k, ) V,(Pqq)
y, (k„q) =

Z fdp (d, (P) V,(p, k, ) V,(p, k, )

(4 6)

Now it is not difficult to write the functional form
for y for other auxiliary equations. In this work
we use a. simple analytic form for (q)(P), e.g. ,
&u(P) =P", where n is small integer, e.g. ,
1,2, 3, . . . . Such a choice enhances or suppresses
parts of the integrals in Eqs. (4.4)-(4.6) and hence
generates a wide class of y. It should be noted
that an important restriction on the choice of
~(P) should be such that the integrals in Eqs.
(4.2)-(4.6) are well defined and convergent.

We apply the present method to compute numer-
ically the t matrices for nucleon-nucleon elastic
scattering with the Beid 'S0 potential" and for
neutron-deuteron scattering in the Amado model. "
The Lippmann-Schwinger equation that we solve
in the case of the Reid 'S0 potential has appeared
in Ref. 5 and we do not write it explicitly here.
The Amado model equations that we shall use
have appeared in Ref. 6 and for the sake of com-
pleteness w'e quote them here.

The equations for neutron-deuteron elastic scat-
tering in the Amado model are given by

x '.*(p,p', q)=2™(p,p', 2)+ g f q'qq&. '*(p q)f (q)G ( ™q)q( 'q; p)2
m 0

(4.7)

with

8w2 s
" ' dxPL(x)g„(I2'p+p'i)g„. (I-2'p'+p I) (4.8)

g.(q) =&.(q+ p,') ',
where

(4.9)

where x is the cosine of the angle between p and
p', and g„(q) are the Yamaguchi form factors given
by

G, (P) = (k'-P'+is) ',
G (P) (~ o)

I
+ [c( 2+ 2 (P2 k2)]1/2]-2

(4.11)

(4.12)

where n0' is the deuteron binding energy and Ql'
is the energy of the singlet state. Here

X„=1/ '[~c(„~p„(-o(„+p„)2]1/2, P1=0, 1 (4.10)

2 [P +[~ '+-'(P'-k')1"')]~ ~+[~ '+-'(P'-k')]"']
~
o.'„~ (o.'„+ p)j2 „pa+„[+L202+(~2P' —k')]" ]

I

(4.13)

and J's are the spin-isospin overlap factors. The
nonzero spin-isospin overlap factors are given by
J 1/2 J 1/2 1 J 1/ 2 J 1/2 3 and J 3/2

00 ll + & 01 10 && 00
The on-shell three-body momentum k is defined by

3/2 (y 2 (4.14)
Now the auxiliary equations for I"s are given by

rLs(P P';E) =zLs(P P'E)+ Q )t q'dqAL (P, q;E)

x rLs, (q P'E)
(4.15)

with

A.'„'(P,q; E) = [Z.".(P, q; E) -Z.".(P, k', E)r.(k', q)]

&f.(q)G. (q) . (4.16)

If we would like to introduce more subtractions at
this stage, it would be straightforward to write
the auxiliary equations and we need not show
them explicitly here. This completes the defin-
ition of the basic equations in the Amado model.

In order to see how the method works in prac-
tice we now present numerical results for elastic
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nucleon-nucleon scattering with the Reid soft-core
~So potential and for elastic neutron-deuteron s-
wave scattering in the Amado model. The numer-
ical parameters for these two problems are de-
fined in Befs. 5 and 6. We use 5'jm =41.47 MeV
fm', where m is the nucleon mass. We convert
momentum space integrals in the range 0 to ~ to
integrals in x in the range -1 to +1 by the trans-
formation

(4.17)

and transform the x integrals to summation by
using Gauss- Legendre 'quadrature s.

First we present numerical. xesults for the
Heid 'S, potential. In Eg. (4.17) we took c =5
fm ' and approximated the x integral in the range
-1 to +1 by 48 point Gauss-Legendre quadratures,
which was enough for obtaining results with a high
degree of accuracy. In order to make a numerical
calculation we have to choose y, y„and k, of Eqs.
(1.3) and (2.2}. For &u and &u, in Eqs. (4.4) and
(4.5) we choose simple weight factors such as P",
where s ls R sm Rll positive iDtege r. We found
some y's of Eq. (4.4) which gave good con-
vergence but in our calculation we use @=1.0 be-
cause in this case the convergence was equally
good and it is simpler to use. It was previously
found that such y = 1.0 gives good convergence for
R wide rRDge of potentlRls ln s-wave Llppmann-
Schwinger equations. ' " Next we are left with
choosing &u, (p) and k, of Eg. (4.5). We found that
a wide range of v, (p) and 0, gave good conver-
gence. This is because Z, of Eg. (4.5), by con-
struction, is expected to give a good convergence
rate of the auxiliary equation. After some experi-
mentation we found that at zero energy u&, (p) p'
and k, =18.4 fm ' gave the best convergence. %6

stress that other factors of &u„ for example, tu, (P}
=p, p2, also gave good convergence for a certain
range of k, . The convergence in this case is par-
ticularly striking because the Born series of the
original s-wave Lippmann-Schwinger equation div-
erges very strongly at zero energy —the limit p,

of the ratio of successive terms in the Born ser-
ies after a large number of iterations being -15.9.
We repeated the calculation with the same z, Z„
and 0, at other energies. The results for the scat-
tering length and phase shifts in this case for
various iterations are shown in Table I. The off-
shell and half-on-shel. l t matrix elements at zero
and other energies converges equally rapidly. In
Figs. 1(a) and l(b} we show the convergence of the
off-shell t matrix elements t(p, 0.77) and t(O. VV, P)
at E, = 72 MeV for different values of iterations

¹ %6 use the same definition of I, matrix ele-
ments as in Ref. 5. In all tables and figures in
this paper %=0 corresponds to no iterations and
corresponds to keeping the "Born" term (I', = V)
in the auxiliary equations. It is easy to check
that the convergence of the present method is
significantly faster than that of Ref. 20 where only
one subtraction is used in a half-shell version of
the present method.

Next we present numerical results for the Am-
ado model below the three-body breakup threshold.
In this case we took c =O.l fm ' in Eq. (4.17) and
Rppl'oxlnlRted the x lntegrRl lD the 1 Rnge -1 to
+1 by a 32 point Gauss-Legendre quadrature. In
the case of the spin quartet Amado model the
equations are of the single channel type and hence
the formulation of Sec. II can be directly applied.
But in the case of the spin doublet Amado model
the equations couple two channels and hence are
of the multichannel type. We introduce two sub-
tractions in each of these cases. In the spin

TABLE I. The on-shell phase shifts for the acid &0 potential for different N. Entries for zero energy are scatter-
ing lengths in fermis.

+c,m, (MeV)
48 72 104

0
1
2
3
4
5
6
7
8
9

10
11
12

0.067 44
-1.1369

-12.162
-16.931
-17.145
-17.139
-17.143
-17.151
-17.147
-17.146
-17.147
-17.147
-17.147

-0.061 74
0.243 50
0.781 71
0.852 50
0.859 64
0.860 51
0.860 65
0.860 71
0.860 70
0.860 69
0.860 69
0.860 69
0.860 69

-0.104 24
0.184 09
0.61341
0.675 60
0.683 28
0.68441
0.68460
0.68466
0.68466
0.68465
0.684 65
0.684 65
0.684 65

-0.175 50
0.052 48
0.375 79
0.430 15
0.438 41
0.439 88
0.440 15
0.440 22
0.440 22
0.440 22
0.440 23
0.440 23
0.440 23

-0.235 39
-0.062 82

0.202 36
0.252 32
0.260 90
0.262 62
0.262 95
0.263 03
0.263 05
0.263 05
0.263 05
0.263 05
0.263 05

-0.303 25
-0.19214

0.02326
0.069 05
0.077 84
0.079 79
0.080 19
0.080 30
0.080 33
0.080 33
0.080 33
0.080 33
0.080 33

-0.387 28
-0.348 79
-0.182 16
-0.14127
-0.132 48
-0.130 30
-0.129 81
-0.129 68
-0.129 63
-0.129 63
-0.129 63
-0.129 63
-0.129 63

-0.423 46
-0.415 11
-0.266 74
-0.228 03
-0.219 33
-0.217 09
-0.216 57
-0.216 42
-0.216 37
-0.216 37
-0.216 36
-0.216 36
-0.216 36
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FIG. 1. (a) The real and (b) the imaginary parts of the
off-shell t matrix elements for the acid So potential
for different N.

quartet case the two subtractions are introduced
in the only existing channel and in the spin doublet
case one subtraction is introduced in each of the
two channels. Next we have to choose y, y„and k,
(k is always the on-shell point). Convergence was
much easier to obtain in this case than in the
case of the Heid soft core 'S, potential. This is
because the original multiple scattering series
diverges slowly here. Equation (4.7) for the spin
quartet state diverges at zero incident neutron
energy, the limit of the ratio of successive terms
in the multiple scattering series p. being -2.68.
In the spin doublet case the corresponding value
of p, is 2.45. We may recall that in the case of the
Reid 'S, potential the value of p, was -15.9. We
use the same functional form for y and y, and we
find after some experimentation that the best con-
vergence was obtained for (a) the spin 2 case with

z(p) =P', u&, (p) =p', and k, =0.3 fm ', and (b) the
spin ~ case with cu(P) =p', &u, (p) =p', and k,
=0.1102 fm ' (this is one of the mesh points).
Very good convergence was obtained with other
sets of parameters also. We recall that in the
spin quartet case both subtractions are introduced
in the same channel —there is only one channel in
this case. But in the spin & case the first subtrac-
tion is introduced in the deuteron channel and the
second subtraction is introduced in the channel
containing the spin singlet virtual nucleon-nu-
cleon state. Table II shows the result for scat-
tering length and phase shifts corresponding to
incident neutron energy E„~= 0, 2.45, and 3.27
MeV. We compare the zero energy result with
that obtained by Brady and Sloan' with the use of

TABLE II. The on-shell phase shifts for the spin doublet and spin quartet neutron-deuteron
scattering in the s-wave Amado model for different &. Entries for zero energy are scatter-
ing lengths in fermis.

Spin doublet
E~~b (MeV)

Spin quartet

Pade
Present

calc. 3.27
Present

ealc. 2,45 3.27

7.08

2.55

0
1
2
3

5
6 -0.68
7
8 —1.01
9

10 -1.04

5.522 57
-7.21378
-2.509 14
-1.096 34
—1.038 04
-1.037 73
-1.035 74
-1.035 44
-1.035 41
-1.035 40
-1.035 40

1.91694
2.967 34
2.91961
2.852 21
2.840 34
2.839 42
2.839 34
2.839 35
2.839 35
2.839 35
2.839 35

1.708 27
2.82006
2.841 45
2.786 28
2.767 86
2.766 49
2.766 79
2.766 SS
2.766 88
2.766 88
2.76688

6.642

6.321

6.317

6.317

6.283 40
6.321 99
6.317 83
6.31793
6.31792
6.31792
6.31792
6.31792
6.31792
6.31792
6.31792

1.997 24
2.003 50
2.002 93
2.002 90
2.002 90
2.002 90
2.00290
2.002 90
2.00290
2.002 90
2.002 90

1.878 47
1.889 16
1.887 55
1.887 38
1.887 36
1.887 36
1.887 36
1.887 36
1.887 36
1.887 36
1.887 36
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Pade approximants. We find that the rate of con-
vergence of the present method is significantly
faster than that obtained by the use of Pade ap-
proximants. The convergence is much faster than
that obtained by Whiting and Fuda" who use es-
sentially a half-shell version of the present meth-
od with one subtraction only and with an ad hoc
choice of y. The fully off-shell t matrix elements
also converges very rapidly. In Fig. 2 we show
some fully off-shell t matrix elements at E„„=O
MeV for the spin quartet state, calculated by the
use of formulas presented in Secs. I and II.

From Tables I and II, and Figs. 1 and 2, we see
that in both cases the convergence of the iterative
solution is very good. By increasing the number
of integration points we have verified that the re-
sults of Tables I and II are correct to the number
of places quoted, and the numerical error in the
converged result is less than 0.001/q for the Reid
'S, potential and is less than 0.0001% in the s-
wave Amado model (both spin quartet and spin
doublet cases). (All the calculations were car-
ried out in double precision in a Digital computer. )

The only numerical work in this method is the
evaluation of a small number of integrals whereas
other methods usually need calculation of deter-
minants or inverse of matrices. So there is less
chance of making a numerical error in this meth-
od. Hence the present method is expected to be
simpler and more accurate compared to methods
using calculations of determinants and inversion
of matriceg, "especially of large dimension, "
as needed in other methods including the method
of Pade approximants.

V. SUMMARY AND CONCLUSION

Here we show how to increase systematically
the convergence rate of a recently proposed meth-
od for iterative solution of scattering integral
equations. The method uses the solution of an
auxiliary equation whose kernel can successively
be made weaker compared to the kernel of the
original equation. We also show how to general-
ize the method to the case of multichannel scat-
tering equations. We show that the applicability
of the method is not limited to the case of Lipp-
mann-Schwinger type equations and it can be eas-
ily generalized to the case of general integral
equations of the Fredholm type. " Then we incor-
porate the ideas of the present method in a meth-
od for three-body equations by Fuda" and show
how we can solve three-body equations above the
three-body breakup threshold by the use of an iter-
ative solution of nonsingular auxiliary equations.
We illustrate the method numerically in the case
of nucleon-nucleon elastic scattering with Reid
soft-core 'S, potential" and in the case of neu-
tron-deuteron elastic scattering in the Amado
model. " We employ an iterative solution of the
auxiliary equation and show that it has a rapidly
convergent Neumann series solution. As the nu-
merical work involved in the present method is
only the evaluation of a small number of integrals
it is expected to yield results with high precision
with a relatively small amount of numerical work.
Usual methods for scattering integral equations""
use the calculation of inverse and of determinants
of matrices, sometimes of large dimensions.
This is especially true for methods such as degen-
erate kernel methods, method of moments, direct
solution by matrix inversions, and solution by the
use of Pade approximants. Usually there will be
loss of accuracy in such methods dealing with de-
terminants and inversion of large matrices. In
order to support our conjecture we note a comment
by Brady and Sloan' who find that even to repro-
duce the second column in Table II they needed
double precision, but the rate of convergence and
precision obtained by them is much inferior to
those of the present calculation as is clear from
a glance at Table II. We show in our numerical
calculation, in Table II, that the present method
gives results with much higher precision as com-
pared to the Pade technique using the same num-
ber of iterations and should be considered as an
alternative to the Pade technique for solving scat-
tering integral equations.

The present method has several advantages over
the commonly used Pade technique. Firstly,
there are serious questions on the uniformity of
convergence in the method of Pade approximants
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because of the appearance of spurious poles in
the denominator. ' No such problem arises in the
present method. Secondly, it is numerically
more tedious to construct the Pade approximants
using the iterative solution than to construct the
solution using the present method. Thirdly, we
have noted in the discussion after Eq. (4.4) that
for potentials which are almost separable the
present method is expected to converge faster
than the Pade technique. For example, for a one
term separable potential the present method con-
verges to the exact value without any iteration,
whereas the Pade technique gives the exact value
after two iterations. ' Finally, the rate of con-
vergence of the method of Pade approximants de-
pends in a complicated way on the structure of
the equations. Tjon and Nieland" have noted that,
for higher partial waves of the Lippmann-Schwin-
ger equation, the solutions using Pade approxi-
mants converges rather poorly, possibly because
of the threshold factors in these equations. The
kernel of the higher partial waves are weaker
compared to the s-wave kernel and the present
method has been demonstrated" to converge much
faster for higher partial waves. In this work we
demonstrated that even for the s wave the present
method converges faster than the method of Pade
approximants; hence for higher partial waves the
present method will converge evqn faster com-
pared to the method of Pade approximants.

The applicability of the present technique can
be easily extended to the case of three-body prob-
lems with two-body local interactions. This is
because we can make finite rank approximations
for such potentials and after a partial wave de-
composition the three-body equation reduces to
multichannel Lippmann- Schwinger- type equations
in one variable. Then we can introduce subtrac-
tions in some of these channels and solve the full
equation by iteration. From this experience we
conjecture that we shall need to introduce subtrac-
tion in only one or two channels of the equation,

and the auxiliary equation after a few such sub-
tractions will have a sufficiently weak kernel in
order to have a rapidly convergent iterative so-
lution. The present method could be easier and
simpler than the perturbation techniques of Alt,
Qrassberger, and Sandhas" and of Sloan, "who
solve part of the three-body equations by inver-
sion and treat the rest by iteration, whereas in
the present method we solve the full equation by
iteration.

The present method can be easily used in the
context of Karlsson-Zeiger equations" in order
to write a nonsingular representation of three-
body equations, which are interesting from a nu-
merical and formal point of view. Such represen-
tation may lead to schemes for making unitary ap-
proximations above the three-body breakup thres-
hold and to simple iterative methods for numer-
ical solutions. It is interesting to note that the
calculation of the present paper yields unitary
results for each order of iteration below the
three-body breakup threshold. The method, al-
though applicable above the three-body breakup
threshold with the use of contour deformation
technique, will not yield unitary results for each
order of iteration. We conclude that the present
method should be considered as an important al-
ternative for solving scattering integral equations
and will lead to various formal and numerical ap-
proximation schemes in the future, which use the
iterative solution of auxiliary equations.
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