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An energy independent optical potential for nucleon-nucleus scattering is formally

derived. A simple relation between energy dependent and energy independent potentials is

established showing that the latter has the same thresholds as the former. A generalized

dispersion relation for energy independent potentials is found and compared to the conven-

tional dispersion relation of the generalized energy dependent optical potentials.

REACTION THEORY General formulation of the energy indepen-

dent optical potential.

I. INTRODUCTION

In a recent paper' we formulated a new micro-
scopic theory of the optical potential for elastic
nucleon-nucleus scattering which, in contrast to the
Green's function formalism and also Feshbach's
formalism leads to a formally energy-independent
optical potential. This energy-independent potential
is complex and nonlocal, and can be written in an
exact diagrammatic perturbation expansion based on
the Rayleigh-Schrodinger (folded diagram) type of
perturbation theory. Because of the energy-
independent nature of the potential, however, it is
not easily seen to what extent this potential incor-
porates the well known general properties of the en-

ergy dependent potentials such as threshold effects
and dispersion relation. In this paper we therefore

investigate the specific properties of the energy in-

dependent potential in more detail, in particular we

study its threshold effects and also derive a general-

ized dispersion relation for it. To keep the equa-

tions as simple as possible and to concentrate only

on the essential physical aspects we avoid all the

complications in this paper which arise when one

describes scattering processes in a second quantized

form. ' ' ' For this reason we work in the r or k

representation with the projectile nucleon assumed

to be distinguishable from the nucleons in the target.
As usual the target nucleus is described by an an-

tisymmetric wave function. The more general, fully

antisymmetric formulation of the (3 + 1)-body

problem (A = number of nucleons in the target)
can be easily recovered from our formulation by us-

ing the methods described in Refs. 1,2,4,5).
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In Sec. II of this paper we derive the energy in-

dependent optical potential starting from the full

{A + I)-body problem. In Sec . III we discuss the

threshold effects of the potential and formulate. also

a type of dispersion relation which we compare with

the well known results of the energy dependent
theories. Section IV contains the conclusions.

II. DERIVATION OF THE ENERGY
INDEPENDENT OPTICAL POTENTIAL

%e consider a nucleus consisting of 3 nucleons
and study the scattering of a nucleon by the nu-

cleus. The total Hamiltonian of the system can be
written as

H=T, +Hg+ V

where H& is the Hamiltonian of the target system,

T, is the kinetic energy operator of the incident nu-

cleon, and V represents the sum of interactions
between the projectile nucleon and the nucleons in

the target. The scattering problem we must study is

represented by the wave equation

The function
~

4'„'+'t(E) ) is the exact antisymmetric

3 + 1 body wave function and obeys the standard

asymptotic boundary conditions [superscript (+ )

indicates an incident plane wave in the elastic chan-

nel and radially outgoing waves in reaction chan-

nels]. We set our energy scale so that the target in

its ground state
~
+z ) is at zero energy. Then, the

energy E in Eq. (2) is identical with the asymptotic

kinetic energy of the incoming nucleon. In the case

of elastic scattering, we are only interested in that

part of
~
+q++'~(E) ) where A nucleons form the true

ground state
~
%q ) of the A-body system and

where one nucleon is in a scattering state. There-

fore we project out from
~

4„'+'l(E) ) this particular

part and define a model-space problem by

(T, + V, ,)P ~

Vg++')(E) ) = EP
~

4g+')(E) )

where the projection operator P is defined by

(4)

Note that
~
k,%z) in Eq. (4) is an eigenstate of

Following Feshbach we also introduce the projec-
tion operator g which projects onto that part of

~

4„'+', ) not included in P
~

4„'++'&). Thus we have

the relations

P+g =I,
QP =PQ =0,

(6a)

(6b)

where X is the identity operator. %e emphasize that
P and g are not energy dependent.

In order to derive the energy independent poten-
tial we introduce, in addition to the projection
operators P and g, the Moiler wave operator 0
which is defined by the equation

I'4+i& = IIP I'4~i&

The Moiler wave opera~or Q has the property that
it reproduces the full many body wave function
when acting on a projected wave function of the J'
subspace of the total Hilbert space. In Feshbach's
theory of the optical potential, the Moiler wave

operator Qz+' is energy dependent, i.e.,

One can, however, also construct an energy in-

dependent wave operator. For example, the well-

known Rayleigh-Schrodinger perturbation theory
uses one. In the same spirit we shall now construct
an energy independent Moiler wave operator A for
the optical model potential.

Following Lee and Suzuk1, we may w11te the
operator 0 in the form

Q=P+ga)P
where the second term on the right hand side (rhs)
of Eq. (9), g cd, is an operator which transforms
the P-space wave function P

~

4„'++', ) into the Q-

the operator T, + Hz. This eigenstate, however, is

not antisymmetrized with respect to the projectile
and target nucleon coordinates. [One can, of
course, introduce antisymmetrized wave functions
8

~
k,q'q ) in Eq. (4) with 8 being the antisymmetr-

ization operator but we avoid this complication
here since the points of our discussion are indepen-

dent from this formal consideration. ] Now the

essential problem to be solved consists in the deriva-

tion of the optical potential operator V,p„since
knowing V,~, we obtain readily from Eq. (3) a one

body Schrodinger equation for the optical-model
wave function
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The last equality sign in Eq. (10a) is obtained by re-

placing EP
~

qlq +'i(E) ) in the first line of Eq. (10a)
with Eq. (2), i.e., EP

~

~pz+'i(E) ) =
P(HQ)p

~

iPq++I (E)). It is this step which elim-

inates the energy dependence from our equations
and which leads to an energy independent, but non-

linear operator equation for the Moiler wave opera-
tor 0

HAP = QPHQP (lob)

A similar equation has been derived by Bloch for
the case of a degenerate P space.

By acting with the projection operators P and Q
on Eqs. (10) from the left we obtain the following
two equations [hereafter, we use

~

iIiE ) = P
~

iII„+i(E}) for brevity]

(PH QP)
i

kg+') = E
i
4g+')

QIIPHQ = QHQ

(1 la)

(1 lb)

Equations (1 la) and (1 lb) are fully equivalent to
the (3 + 1)-Schrodinger equation of Eq. (2). The
fir'st equation, (1 la), states the model state problem
while Eq. (11b) is a defining equation for the effec-
tive interaction to be used in solving Eq. (1 la). It is
obvious that Eq. (11b) is nonlinear in 0, and that it
is independent of the energy E. Using Eq. (9) in

Eqs. (11) and using the fact that P( T, + H„)Q = 0
we may rewrite Eqs. (11) in the form

[PTOP + PVp + PV(Qtop)P]
~

q)~~+')

space wave function Q ~

qlz+'1 ). To obtain an equa-

tion for II, or Qcop, we insert the rhs of Eq. (7) into

Eq. (2) with the result

Hflp
~

'P„'+')(E)) = EQP
~

qlg+'i(E))

= QPH QP
~

%g++I (E})

(10a)

model space problem. Therefore Eqs. (11) and (12)
are equally applicable for bound and unbound prob-
lems. In the case of a bound state problem, one
uses a P space corresponding to bound states in

solving for Qcop from Eq. (12b). In scattering prob-

lems, we use instead a P space composed of wave

functions with appropriate scattering boundary con-
ditions.

The above Eqs. (12a), (12b), and (13) can be
solved explicitly and formally to give an energy in-

dependent optical potential. When Q cop operates
on an eigenstate of Eq. (12a), we obtain

(Q~P) ~e,"') = „, QVP ~a,"') .E'+ ' —QHQ

(14j

Here, E'+ ' = E + i 0+ ensures that
~

ili~+ ') obeys
the right boundary conditions. It is important to
notice that the whole set of solutions

~ 4++ ') with

variable E forms a complete basis of the P space.
This fact allows us to write the operator Qcop in its

spectral representation

Qcop = dE, V
l
+z )(@E+

E '+' —QHQ

where (ilia+
~

is the biorthogonal vector to
~

iIi~+')
normalized such that ( 4@+ '

~

4@+ ' ) = 5(E —E).
At this point it is appropriate to emphasize the
difference between Eq. (15) and Eq. (12b). Equation
(15) is only valid, if and only if the wave functions

~
ilia+') are proper eigenstates of Eq. (12a) while

Eq. (12b) is always valid. Equation (15) actually
completes the proof that the operators Quip and
0 = P + Quip exist as has been stated above. It
also explicitly shows the energy independence of
both operators. Insertion of the rhs of Eq. (15) into

Eq. (13) gives us the energy independent optical po-
tential

'U, ~,
= PVP + PVQ cop (13)

%e want to emphasize that until now we have not
used any boundary conditions for defining our

QVP + QHQ(Qcop)

= Qtop[PT, P + PVP + PV(Qcop)P] . (12b)

Equation (12b) can be solved for Qcop which when
inserted into Eq. (12a) leads to the energy indepen-
dent optical model equation. The energy indepen-
dent optical potential is then given by

V ppt PPP

dE PV, y @/+' egg+'E'+' —QHQ

Let us emphasize again that gap ~
iIi~+') as a

whole is indeed energy dependent, yet Qcop itself is
energy independent as shown by Eq. (15). In fact,
for any given P operator, Eq. (12b) can be used to
solve for Q cop and &,~, of Eq. (13). Then Eq. (12a)
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wiB be used to solve the P-space problem. Different
I' space operator gives different effective interaction

or optical potential. Yet the solution obtained from

(12b} is energy independent. One naturally chooses

an appropriate I' space operator for a specific prob-
lem. For example, (a) for the low-lying states of a
nucleus, one uses a shell-model P space, and (b) for
the scattering of one nucleon off a nucleus, one can
choose a I' space composed of the wave functions of
the one body mean field. The I' space operator of
Eqs. (15) and (16) corresponds to the choice (b)

above. Here I' is composed of the eigenfunctions of
(12a), and it is with this particular choice that gcoP
and &,z, can be expressed in the simple form of
Eqs. (15) and (16). Some general properties of &,p,

will be discussed in Sec. III based on these equa-

tions.

III. THRESHOLD EFFECTS AND DISPERSION
RELATION

To discuss the general properties of U,pt we intro-
duce a complete system of eigenfunctions of the g
space Hamiltonian QHQ. In general the spectrum
of QHQ consists of a discrete part and a continuum.
%e denote the states of the discrete part of the spec-
trum by

~ q; }with eigenvalues e;:
QHQ iq;) = e; iq;) (17)

The continuum states are denoted by
~
E,a) with

QHQ i@,a) = c lc,a) (18)

where a labels the degenerate states corresponding
to the eigenenelgy E. %e now may insert the com-
plete spectrum of QHg from Eqs. (17) and (18) into

Eq. (16) and obtain

V.„=PVP+gg, ' '
~e, )(e, .

~
+ f dE' g,„', '

~C,'+')(4,'+'~PV q;)(q; V ~, PV q;)(q; V
( )

E~ —Eg
—&s

PV
~

c)a( ae~ V
~0 E E

+ f dE' fd f d ' ' ~e,'+. ')(e,". '~ .

(19)

Here, the sums over p and I represent the sums

over the the bound state wave functions of the I'
space and of the Q space, respectively.

Several observations are now in order, which are

also partly found for the energy-dependent optical

potentials:
(1) The numerators in expansion (19) are positive

definite, i.e., for an arbitrary wave function
~
g) we

have

sorption in the sense that incident flux goes to ener-

getically open inelastic channels is the fourth term
on the rhs of Eq. (19). The imaginary part of V,~,
is given by the energy conserving contribution to
this term

Im&,p,
—— Irf f—dE daPV ~E,a)

X (a,E'
(

V
~
e,'+'}(e,'+'

~

.

(2) The first three terms in expansion (19) contri-

bute only to the real part of the optical potential.
This is evident for the second and third term in Eq.
(19), because the denominators do not vanish. The
dcIlollllllator lll tllc fll'st tcITl1 valllsllcs lf tllc 'slllglc

particle state"
I E„) is degenerate with a Q-space

state
~
c;). This might happen for the so called in-

truder state, which then has to be treated carefully.

The problem of intruder states in bound state calcu-
lations has been extensively studied in Ref. 6.

(3) The only term which contributes to real ab-

(a EI+'~ lm~. pI ~
c,'+'}

Irfda(—@E+'i V lE,a)

«E
~

V
~

~&+I}

= —~fda](e,'+'~ V~E,a) ~2 &O . (22}

Furthermore, we find that the expectation value of
Im'Uop, taken with the optical model wave function

~
4E+') is negative definite
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where PE ——
I

4~+'&&4E+' I. From Eq. (23), it is

clear that the scattering process of a nucleon with

incident energy E is governed effectively by the
same optical potential in the energy dependent and

energy independent version of the optical model
theory. The energy independent potential is just
constructed in such a way that this condition holds.
Therefore the energy independent potential includes
the same threshold effects as the energy dependent
potentials do.

Finally we formulate a type of dispersion relation
From Eq. (19) we find the real part of the optical
potential as

This property we would have, of'course, expected

since U has to be an absorptive potential.

(4) Projecting Eq. (19) from left and right onto

the elastic channel wave function
I
4s+' we obtain

the well known energy dependent optical potential

PF. v la &&a
I
vPz

't),
p,(E) = PFVPE+ g

I'E V e,a e,o. VI'E
+ dE dQ

0

(23)

PV la&&a I
V l@z"&&@E"

I fd&PV IE~&&e ~
I

V I@a"&&+a"
I

ReU.)) =PVP + dE g ' ' + a dE de
I

with 6'meaning Cauchy principal value. The imaginary part Imp, , has already been given in Eq (21). By
comparison of Eqs. (21) and (24) it, is evident tllat 1m& 0) involves a single integration over the energy E while

the last term of Re't),„, in Eq. (24) involves a double integration over energies E and e. Therefore a "simple"

replacement of the kernel of the principal value integral by Im, p, is not possible as it is in the energy depen

dent optical potentials. However, one can add a zero term to Eq. (24)

PVP+ZdE la e I I E z I +~ d~f d~
PPv & V q {+) @(+)

0 Iji P

«Pvt: l~~&&& ~l —I~E &&~E l]v 1@a+'&&~'~"'I
+(P dE de

0

It can be noticed that the subtractive term in the

numerator of the last term of Eq. (25) integrated

over E is just the imaginary part of Eq. (21). This

term actually does not contribute to the principal
value double integral because it is a "zero term",
but it has the nice feature that it makes the numera-

tor vanish for e = E so that the kernel in the dou-

ble integral is smoothed and therefore well behaved.

It is interesting to multiply Eq. (25) from left and

right with the projection operator
PE ——

I
@E+'&

& 4&z+
I

since then we recover the

dispersion relation for the energy dependent poten-
tials

P, v la, &&q, I
vP,

Re(Ps 'U,p,PE) = PE VPF. + g
l

Im[U, ~,(e) ]—6 d E'

E —e

where we have dropped the zero term in the princi-

pal value integral. Because of the fact that Eq. (25)
implicitly contains the dispersion relation in Eq. (26)
we may view Eq. (25) as a generalized relation for
the energy independent optical potential.

IV. CONCLUSIONS

A derivation of the energy independent optical
model potential for nucleon nucleus scattering has

been made using the methods of Ref. 6. The pro-
jectile nucleon has been treated as distinguishable

from the nucleons in the target. This assumption is
made in order to keep the formulations as trans-
parent as possible although a fully antisymmetric
treatment can also be introduced in a straightfor-
ward way. An energy independent potential is
derived whose structure shows the relation between

energy dependent and energy independent potentials
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very clearly. %e find that both types of potentials
possess the same thresholds. In addition, we obtain
a generalized dispersion relation for the energy in-

dependent potential. This dispersion relation
reduces to the conventional dispersion relation for
energy dependent potentials when projected onto the
elastic channel described by

~

4E+ ). A further re-
markable feature of our theory is that the potential
obtained can be used in nuclear structure and nu-

clear reaction calculations. Finally we want to
mention the following point. The present formula-
tion of the energy independent optical potential pro-
vides an alternative view to the diagrammatic theory

of , p, which we proposed earlier. ' Both are very

useful to understand the general properties of g,pt,

and microscopic calculations can also be performed
in both frameworks.
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