Beta-ray branching in the decay of ²⁰F

D. E. Alburger and E. K. Warburton Brookhaven National Laboratory, Upton, New York 11973 (Received 24 February 1981)

Measurements on the γ -ray spectrum from 11-sec ²⁰F resulted in an energy of 3332.51(19) keV for the cascade γ ray from the ²⁰Ne 4.97-MeV state and a β -branching intensity to this level of $0.90(4) \times 10^{-4}$ per decay. The corresponding log $f_0 t$ value is 7.16(2), and the excitation energy of the ²⁰Ne state is 4966.51(20) keV.

RADIOACTIVITY ²⁰F; measured E_{γ} , I_{γ} ; Ge(Li) detector; deduced E_{χ} , β branching, and $\log f_0 t$ value.

As part of a program of more precisely defining the properties of nuclei in the $A \sim 20$ region, for comparison with theoretical nuclear structure calculations, we have reinvestigated the β decay of ²⁰F. This activity is known¹ to decay with a half-life of 11.00(2) sec almost 100%by an allowed $2+-2+\beta$ transition to the ²⁰Ne firstexcited state whose excitation energy has now been determined² to be 1633.674(15) keV. A very weak additional β -ray branch was found some years ago at Brookhaven³ and was measured with improved accuracy a few years later by Gallmann et al.⁴ That branch was a non-unique first-forbidden β decay leading to the known $J^{\pi} = 2^{-1}$ state of ²⁰Ne at 4.97 MeV with a branching intensity of 1.7(3) $\times 10^{-4}$ per decay. An energy value of 3334.3(7) keV was measured for the cascade γ ray. The corresponding ²⁰Ne excitation energy has been $quoted^{1}$ as 4967.9(7) keV.

In the present work the ²⁰F activity was produced in the ${}^{19}F(d, p) {}^{20}F$ reaction using deuterons of 2.0 MeV from the BNL 3.5-MV Van de Graaff. A target consisting of 2 mg/cm^2 of CaF₂ evaporated onto a thin Ni backing was clamped in a "rabbit" for transport to a remote Ge(Li) detector. With an irradiating beam current of ~ 25 nA the total initial counting rate in the detector was $\sim 10000/$ sec. Sources were counted for 11 sec and returned for a new irradiation of 8-sec duration. In order to determine both the energy and relative intensity of the 3333-keV γ ray of ²⁰F, a weak source of ⁵⁶Co was placed adjacent to the rabbit line. The ⁵⁶Co line at 1771.351(16) keV, along with the various lines from 3201.962(16) to 3451.152(17) keV, provided excellent references for both energy⁵ and intensity⁶ determinations.

Figure 1 shows a portion of a spectrum obtained in a 29-h accumulation of $^{20}F + ^{56}Co$ radiations. Random summing of the 1633.602-keV γ rays produced a peak at 3267 keV, but the shape

of this line was not suitable for energy analysis. An efficiency function, based on a least-squares fit of the intensities of the ⁵⁶Co γ rays, was used to derive the ratio of $3333/1634 \gamma$ -ray intensities for ²⁰F. Since the 3333-keV transition is a cascade¹ to the 1634-keV level, a correction had to be made for coincidence summing in the Ge(Li) detector, an effect which removes counts from the 3333(0) peak. This correction was established by measuring the β rays from the sample (above 2-MeV β energy), using a plastic scintillator, both in singles and in coincidence with the complete γ -ray spectrum. The ratio of these yields gave a total absolute efficiency of the Ge(Li) detector for γ rays of 1634 keV of 1.48(10)% in the geometry used. When this correction was included, along with the 99.4(2)% branching¹ of the 4.97-MeV state via the 3333-keV γ ray, the fractional β branching of ²⁰F to the 4.97-MeV state

FIG. 1. Gamma-ray spectrum of 20 F plus a 56 Co reference source in the region of the 20 F γ ray of 3333 keV. γ -ray energies are in keV. A digital offset of 3328 channels was used and the energy dispersion was 0.476 keV/channel.

296

FIG. 2. Decay scheme of 20 F. New information from the present work includes the β -branching intensity to the 4.97-MeV level of 20 Ne and the excitation energy of that state.

was found to be $0.90(4) \times 10^{-4}$ per decay. A possible correction for the removal of counts from the 1634-keV peak due to γ -bremsstrahlung coincidence summing was shown to be negligible.

The energy of the ²⁰F γ ray, based on the data of Fig. 1 averaged with the results of another run of 23 h at a different gain setting, was E_{γ} = 3332.54(19) keV. These analyses used the peakfitting program SAMPO⁷ and a least-squares polynomial fit to the energies of the ⁵⁶Co γ -ray peaks. By including the recoil correction and adding the excitation energy of the 20 Ne first-excited state, the excitation energy of the higher 20 Ne state is 4966,51(20) keV.

Figure 2 shows the decay scheme of 20 F including the branching and excitation energy cited above. Additional details on 20 F decay, such as upper limits on β -ray branches to other 20 Ne states, are given in Ref. 1.

For calculating the $\log f_0 t$ value of the weak branch the β -decay energy was obtained from the Q_{β} of 7025.9(8) keV for ²⁰F quoted in the literature¹ together with the above value for the ²⁰Ne excitation energy. A value of f_0 =118.2(2) was obtained for the branch to the 4.97-MeV level. Combining this with the partial half-life based on the ²⁰F half-life of 11.00(2) sec and the β branching of 0.90(4)×10⁻⁴ a log $f_0 t$ value of 7.16(2) would be obtained if the transition were allowed.⁸ A theoretical calculation of this non-unique first-forbidden rate is included in a comprehensive treatment of all known first-forbidden β decays in A < 37nuclei.⁹

The present values for the energy and relative intensity of the 3333-keV γ ray of ²⁰F are both more accurate than previous determinations by a factor of ~4. In both instances the differences of approximately two standard deviations of the older values⁴ suggest that the previous assigned errors may have been too small.

This research was supported by the U. S. Department of Energy under Contract No. DE-AC02-76CH00016.

- ¹F. Ajzenberg-Selove, Nucl. Phys. <u>A300</u>, 1 (1978).
- ²E. K. Warburton and D. E. Alburger, Phys. Rev. C <u>23</u>, 1234 (1981).
- ³D. E. Alburger and K. W. Jones, Phys. Rev. <u>149</u>, 743 (1966).
- ⁴A. Gallmann, F. Jundt, E. Aslanides, and D. E. Alburger, Phys. Rev. 179, 921 (1969).
- ⁵R. C. Greenwood, R. G. Helmer, and R. J. Gehrke, Nucl. Instrum. Methods <u>159</u>, 465 (1979).
- ⁶R. A. Meyer, Lawrence Livermore Laboratory, Report No. M-100, 1978.
- ⁷J. T. Routti and S. G. Prussin, Nucl. Instrum. Methods 72, 125 (1969).
- ⁸We follow the convention of quoting $\log f_0 t$ values for non-unique first-forbidden β decays even though this procedure has no theoretical justification.
- ⁹D. J. Millener and E. K. Warburton (unpublished).