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The simple treatment of Coulomb distortion in intermediate energy hadron-nucleus

scattering developed in the analytic approximation of.Amado, Dedonder, and Lenz is im-

plemented. In three examples we compare the impact of the Coulomb distortion calculat-
ed with their analytic formula with that calculated by the standard numerical method.
These calculations are compared with the data for 800 MeV p- "Pb and 291 MeV m-+-

Pb elastic. scattering. We find that the analytic approximation accurately reproduces
the effect of the Coulomb distortion as calculated numerically while illuminating the
essentially simple physics involved.

NUCLEAR REACTIONS Analytic approximation for Coulomb dis-

tortion in intermediate energy hadron-nucleus scattering. Example cal-
culations for 800 MeV p- Pb and 291 MeV m—+- Pb elastic scattering.

It is well known that in scattering charged parti-
cles from large nuclei at intermediate energies one
cannot ignore the Coulomb contribution. It is
equally well known that the infinite range of the
Coulomb interaction introduces technical problems
in the numerical evaluation of such contributions. '

In fact, the nuclear Coulomb field is screened by
atomic electrons, but it is clearly impractical, as
well as unnecessary, to integrate out to atomic
scales in steps small compared to nuclear scales.
The usual prescription for circumventing this
problem is to add and subtract a point Coulomb
contribution. ' The point Coulomb scattering am-
plitude is known analytically, and the difference be-
tween the nuclear (Coulomb) and point potential
phase shifts are short ranged. The divergent phase
factors out and the answer lies in the delicate can-
cellation between the point and short-range nuclear
Coulomb scattering amplitudes. The numerical
difficulty is surmounted, but an essentially simple
process is obscured. The point of this paper is to
show how the Coulomb scattering effects can be
quantitatively understood from a simple analytic
viewpoint.

In a recent paper by Amado, Dedonder, and
Lenz (hereafter referred to as ADL) as asymptotic
analytic approximation to the eikonal scattering in-

tegral was developed using the method of station-
ary phase. In addition to the leading asymptotic

corrections, an approximate treatment of the
Coulomb contribution is also presented. In ADL,
comparison of their analytic expression is made
only to the numerically evaluated eikonal integral;
they do not show the effect of their Coulomb
correction nor compare with data. We find
correcting this omission worthy of comment be-
cause the results are remarkable considering the
simplicity of their treatment. Although this
method, based on asymptotic approximations, fails
for low momentum transfer q, it succeeds quite
well in the large q region, where numerical
methods experience the most difficulty. In this pa-
per we wish to emphasize the insights and simpli-
city offered by the analytic methods, and, therefore
we sacrifice some quantitative accuracy in absolute
scale in order to avoid details unrelated to treating
the Coulomb distortion. Specifically, throughout
this paper we use a simple Fermi distribution for
the nuclear density and find minor scale discrepan-
cies with the data that could otherwise be corrected
by using a more complicated functional form.
Similarly, for the relatively low energy pion exam-
ple we should include the higher order (non-
Coulomb) asymptotic corrections to the ADL for-
mula to achieve proper scaling Vis a Uis the exact
calculations. We exclude these higher order
corrections to emphasize the impact of the
Coulomb distortion alone. We find that the impact
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of the Coulomb distortion treated by the analytic
method of ADL successfully duplicates that of the
exact result and, given the simplicity of the analyt-
ic treatment, overs considerable insight into the
mechanism involved.

We begin with a review of the standard and
ADL approaches to including Coulomb distortion.
We then will present and discuss our results for
8OO Me& p- spb and &91 MeV m+- pb elastic
scattering.

We wish to describe the elastic scattering of a
charged hadron from a nucleus (A, Z) at intermedi-
ate energies. The eikonal description is known to
account accurately for a wide body of data from
such processes; so, for completeness, we begin with
a brief review of the standard approach in the
eikonal formalism. The eikonal scattering ampli-
tude is written

P (q) = ik f db bJo(qb)(1 —e'z'b ),
0

where k is the incident momentum and g is the
eikonal phase which for charged projectiles is the
sum of hadronic and Coulombic contributions.

I
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XN iy f—— dz p(b, z),
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Xc= — f dz V, (b,z), (3)

where we have assumed a short range first order
optical description for the hadronic contribution
with y= —,or(1 ir—) with oT the total hadron-

nucleon cross section, r the real to imaginary ratio
of the fundamental forward amplitude, and p(r) the
nuclear density normalized to A nucleons.

The Coulomb potential for a spherical nucleus is
given by

V„(r)=—f ds s p(s)
4mZ

" r

+ f ds sp(s) . (4)

In the applications which follow, p will be given by
a Fermi distribution p =pa[1+e'" ' ~j '. One
can see in (3) and (4) that the Coulomb phase will

be logarithmically divergent. As mentioned earlier
the usual remedy is to add and subtract a point
Coulomb contribution, which gives for the eikonal
treatment considered here

—2iqln2kR i 9 i 2lci(qn/ k2)—2+iq&( )vdb b(kb)2ivJ ( b)(1 e' N+' c)
2 +

0
(5)

where ri =Ze /U, q)(2)) =argI P1+iri)], R is a large screening distance which influences only the unobserved
overall phase, and

X,(b) =2ri dr rp(r) r ln
4m r —b +r
A b

The first term is the point Coulomb contribution
while the second is the point-Coulomb-distorted
nuclear contribution. The resulting Coulomb
phase X, is short ranged, and the divergent phase
factors out entirely.

One can evaluate (5) numerically and find that
as the momentum transfer increases both terms of
(5) will be dominated by the 1/q2 point-Coulomb
behavior, but in combination these terms largely
cancel, leaving the desired result. The numerical
cancellation is delicate, but the technical problem
of calculation is solved. Yet how are we to under-
stand this process which is revealed only in the
near cancellation of two complex numbers?

As an alternative and complimentary approach,
one can evaluate the scattering amplitude approxi-

Qr2 b2

I

mately, but analytically as in ADL. Thereby one
can gain insight into the physics by examining the
function's analytic behavior. The ADL asymptotic
approximation has been shown to preserve all the
essential properties of the full eikonal amplitude.
For asymptotic momentum transfers (compared
with the inverse radius) the extremely rapid oscilla-
tions of the Bessel function permit an accurate ap-
plication of the stationary phase approximation.
The stationary phase point b, is determined solely
by the hadronic eikonal phase (2); the Coulomb
phase is slowly varying due to the long range of
the Coulomb potential. By approximating the
eikonal integral in this manner, the very property
that encumbers numerical evaluations of the
Coulomb piece renders the solution simple here—
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p, =Re[iX,(bo)]

=—2g arctan (8)

With this phase inserted in the analytic amplitude
the resulting analytic approximation with Coulomb
distortion is given by [ADL Eq. (46)]

—I 8(q) —p&
—p+e '], (9)

where 2 (q) is a slowly varying function of q which

sets the scale of the scattering

1/3 2/3
& (q)= 4, exp[ —1.46@pa&2m.pc

3q

+ —,(qca )'~ cos—], (10)

p» ———,(qc)'~ sin —Ima ~3,

where a=2nPypo is a complex dimensionless ha-

dronic strength parameter and

8(q)=qcI1+O[(qc) ~ ]]. It is clear from the
form of (9) that the familiar diffractive character of
intermediate energy scattering is given by the in-

terference of the two phases. Physically this
separation is equivalent to the elementary diffrac-
tion slit example, whereby the slit is conceptually
divided into two symmetric interfering parts. In
the absence of Coulomb the influence of p& is to
make the two interfering amplitudes difFer in mag-
nitude so the destructive interference will not be

we need only evaluate the Coulomb phase at the
stationary point. In ADL the Coulomb phase is
actually evaluated at the singular point of the den-

sity, bo ——c+inP, .which they show largely deter-
mines the stationary point for asymptotic q. If we
let R be some large screening length, the Coulomb
eikonal phase evaluated at bo to leading order in

P/c is given by

N, (bo) =2ig ln(2R /bo)+0[(Plc) ] .

The leading term is just that expected by consider-
ing the nuclear charge to be point1ike. Since the
Coulomb phase need only be evaluated at bo and
nearly all the nuclear charge is within this radius,
the nuclear charge appears as if purely pointlike.
The only nuclear structure dependence is carried in

bo ——c+inP The i.maginary part of (7) which con-
tains the logarithmically divergent phase simply
factors out. The real part, which we call p„influ-
ences the cross section and is given by

complete, and the amplitude would have exact
zeroes corresponding to infinitely deep cross sec-
tion minima. The eA'ect of p~ is to fill these mini-

ma in addition to shifting the overall scale. Since
the Coulomb contribution p, enters like pI„it fol-

lows that its impact will be primarily to influence
the minimum filling and shift the scale as well.

Whether p, makes the minimum deeper or shal-

lower depends on its relative sign with respect to
the hadronic minimum filling contribution p~. For
large nuclei Arg(bo)-n glc can be quite small and
the sign of p», Eq. (11), is determined by Im() ) =

1——,O.Tr. For 800 MeV protons scattering from

Pb r is very small ( —0.18), so p, » p» and the
Cou'lomb term alone dominates the minimum fill-

ing. For the 291 MeV m
—+- Pb applications

~

r
~

1, p» —p„and the two can interfere. Thus
the Coulomb term will deepen the minima of one
while further filling the minima of the other.

We first examine 800 MeV p- Pb elastic
scattering. In Fig. 1 the cross sections (with and

without Coulomb distortion) given by the numeri-

cally evaluated full eikonal amplitude, Eq. (5), are
shown along with the cross sections (with and
without Coulomb distortion) given by the ADL an-

alytic amplitude, Eq. (9). The data are also
presented. The Pb density parameters used are
c =6.6 fm and P=0.63 fm. The nucleon-nucleon
strength parameter used is y=2. 1 (1+i.18) fm . -

We see from Fig. 1 that beyond the second max-
imum the ADL analytic amplitude with or without
Coulomb distortion accurately reproduces the cor-
responding exact results (since the ADL amplitude
is an asymptotic approximation, comparisons for
smaller momentum transfers are not meaningful).
Both the scale change and minimum filling of the
exact result, when Coulomb is included, are dupli-
cated by the ADL formula. Beyond the second
maximum the shapes of both theoretical curves
with Coulomb agree well with the data. The small
scale differences between the- data and theoretical
curves can be eliminated by using a different func-

tional form for the density.
Next we consider 291 MeV m+—- Pb elastic

scattering. In Fig. 2 we compare the exact eikonal
calculation with and without Coulomb to the ADL
analytic result with and without Coulomb and the
data. The nuclear parameters are unchanged. The
pion nucleon strengths, however, are

y + ——2.26(1+i.84) fm' and y =2.65(1.+i 10).
fm . Unlike the earlier proton example the pion-
nucleon strengths have a significant imaginary
component. Since it is precisely this component
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FIG. 1. Theoretical calculations of 800 MeV p- O'Pb

elastic scattering cross section are compared with the
data (Ref. 5). The solid curve uses the exact eikonal
amplitude but without Coulomb distortion [Eq. (5) with

g =0]. The dashed curve uses the analytic approxima-
tion of ADL also without Coulomb [Eq. (40) of Ref. 4].
The dotted curve uses the exact eikonal calculation with

Coulomb distortion included [Eq. (5)], and the dash-

dotted curve uses the analytic approximation of ADL
with Coulomb distortion included [Eq. (9) or Eq. (46) of
Ref. 4]. The arrows indicate the impact of including the
Coulomb distortion. The needed parameters are given
in the text.

which determines the hadronic minimum filling
contribution, the impact of including the Coulomb
distortion will have dramatically different effects
for m+ vs m. . In the case of 291 MeV m - Pb
elastic scattering shown in Fig. 2, the Coulomb
distortion largely cancels the hadronic minimum
filling term. Thus the minima are deeper when
Coulomb efFects are included as indicated by the
exact calculations in Fig. 2. Although the scale of
the ADL and exact calculations differ, the impact
of including Coulomb is properly reproduced by
the ADL analytic amplitude. In the m+- Pb case
the Coulomb term reverses sign, while the hadronic
term [Im(y)] does not; thus the hadronic and
Coulomb terms combine constructively. Again the
ADL approximation reproduces the effect of

FIG. 2. Theoretical calculations of 291 MeV m —+-

Pb elastic scattering cross sections are compared with
each other and the data (Ref 6). The key is the same as
in Fig. 1.

Coulomb distortion with reasonable accuracy. The
scale discrepancies between the analytic and exact
results can be largely corrected by including the
higher order terms in the asymptotic expansion.
These corrections, however, have no bearing on the
main result of this paper —the impact of the
Coulomb distortion is accurately duplicated by the
simple analytic term of ADL. The success of this
simple treatment stems from the very property that
makes the numerical approach difficult —namely,
the long range of the Coulomb force. This proper-
ty causes the Coulomb distorting phase to vary
slowly permitting one to approximate it well by its
value at the singular point bo. Finally, for large
nuclei (P/c « l) only the pointlike part of the
Coulomb phase matters, with the nuclear structure
entering only in the location of the singularity.
This picture offers considerable insight into the
physics of Coulomb distortion in hadron-nucleus
scattering due to its simplicity and accuracy.
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