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Self-consistent field theories have had extensive application in the study of nonrelativis-
tic systems. In the past decade there has been some interest in the use of relativistic self-
corisistent-field techniques for the study of strongly interacting systems such as finite nu-

clei and infinite nuclear matter. In nonrelativistic theories the standard analysis involves
the determination of a new representation for the Hamiltonian in which the residual in-

teraction admixes no one-particle, one-hole states into the self-consistent ground-state
wave function. In lowest-order perturbation theory the next admixtures are of the two-
particle, two-hole type. We demonstrate that the relativistic theory can be formulated in
a similar fashion. In the relativistic theory the new representation is determined such
that the residual interaction does not admix particle-hole states however, here "hole"
refers to all occupied states including the negatiue energy states. Again the corrections to
the theory involve the introduction of two-particle two-hole states, where "hole" is under-
stood in the more general sense. In the relativistic theory the specification of the new
representation requires the solution of a Dirac-Hartree, Dirac-Hartree-Pock, or Dirac-
Brueckner-Hartree-Fock equation, the choice depending upon the nature of the physical
system. Once the new representation is found, our techniques allow us to exhibit a useful
form for the Hamiltonian of the relativistic system in which the residual interaction be-
tween the relativistic quasiparticles is given explicitly. The theory given here is readily
extended to the study of finite systems where it provides the basis for a relativistic shell
model of nuclear structure.

NUCLEAR STRUCTURE Derivation of relativistic Hartree-Fock
and Brueckner-Hartree Fock theories; interaction between relativistic

quasiparticles; dynamics of saturation in a relativistic model.

I. INTRODUCTION

In the past decade there has been much interest
in studying relativistic models of nuclear struc-
ture. ' In these models one can relate the self-

consistent field in a nucleus, or in nuclear matter,
to specific aspects of the meson field which medi-
ates the nucleon-nucleon interaction. (One may at-
tempt to limit consideration to the o. and co fields
as in the Walecka model, or consider the full set
of mesons which play a role in the one-boson-
exchange model of nuclear forces )The r.elativis-
tic models of nuclear structure are able to provide
a satisfactory description of many nuclear proper-
ties, however, often this is accomplished via the in-
troduction of phenomenological parameters. Since

these parameters are small in number, two in the
case of the Walecka model of nuclear matter, there
is a true simplicity in the specification of these
models. These models may be used to calculate
the binding energy, spin-orbit splittings"' and
electromagnetic form factors of finite nuclei. In
addition, if one admits several further parameters
into the theory one can provide a good description
of nucleon-nucleus scattering at intermediate ener-

gies. ' ' Various other applications are possible,
for example one can study nuclear collective
motion, the equation of state at high density,
anomalous forms of nuclear matter, modification of
electromagnetic, and weak interactions in a rela-
tivistic medium, etc.

In recent works we have shown how one may in-
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elude the effects of short-range correlations in a re-
lativistic theory of nuclear matter. This new

theory has the significant advantage of being able
to explain the saturation and binding energy of nu-

clear matter without the introduction of
phenomenological parameters. In our work we
used a Green's function technique to obtain an ex-
pression for the energy of the relativistic system.
In this paper we wish to analyze the relativistic
many-body problem using more standard tech-
niques involving the reorganization of the Hamil-
tonian. The use of these techniques allows us to
write the Hamiltonian as a relativistic Hartree-
Fock (or Brueckner Hartree-Fock) Hamiltonian
plus a residual interaction. Further, we are able to
unify the nonrelativistic self-consistent-field
theories with the (self-consistent) relativistic field
theories since essentially the same techniques may
be used to introduce both formalisms. Indeed, the
relativistic theory is readily seen to reduce to the
nonrelativistic theory if the admixture of negative-
energy states into the wave function may be
neglected. The somewhat surprising fact is that
these admixtures are very important in explaining
nuclear properties. (For example, they play an
essential role in explaining the saturation and bind-

ing energy of nuclear matter. 2
)

Our paper is organized as follows: In Sec. II we
introduce a unitary transformation in the space of
the negative and positive energy free-particle
spinors and a corresponding transformation of the
operators of the free field. These transformations
leave the Dirac field, 4(x,0) invariant. We also in-
troduce a modified vacuum state. We specify the
contractions of the new field operators with respect
to the new vacuum state and study the Hamiltoni-
an of the Dirac field in Sec. III. In Sec. IV we re-

quire that the unitary transformation be chosen so
that we may write the Hamiltonian as a diagonal
form [the relativistic Hartree-Fock (HF} Hamil-
tonian] plus a residual interaction. This requires
that the new spinors satisfy a relativistic self-

consistent-field equation. The residual interaction
is such that no one-particle, one-hole states are ad-
mixed into the wave function when this interaction
is treated in perturbation theory. (When speaking
of the relativistic theory, "hole states" include all
those states below the Fermi level, that is, states of
positive and negative energy. } We note that inspec-
tion of the residual interaction immediately pro-
vides the form of the interaction between relativis-
tic quasiparticles. The extension of this analysis to
the study of finite systems and the construction of

a relativistic shell model of nuclear structure is
straightforward. Finally, in Sec. V we discuss the
o plus co model of nuclear structure in order to
provide insight into the saturation mechanism in a
relativistic theory.

II. TRANSFORMATION OF THE
HAMILTONIAN

For simplicity we begin with a Hamiltonian
. describing a nucleon field interacting with a scalar
meson field. (The generalization to include other
fields describing, for example, the interaction with
the m, p, and co mesons introduces no new com-
plexity. ) We have

H=HD;„, +H +H;„, ,

where

(2.1)

H;„&=g:4' x 4 x x:.
It was shown in some detail in a previous work,

that if we make the static approximation for the

meson field, we have H~ 2 Hjgf and may write,

(2.3)

1

HDjrac + 2 Hint ~

(static approximation) . (2.4)

We will use this approximation throughout this
work, and therefore, the Hamiltonian of Eq. (2.4)
will be the starting point of our analysis.

It is useful to expand the field %(x ) =%(x,t =0)
in terms of free-field creation and destruction
operators,

1/2

[ u(p, s)b (p,s)e'"'" '

+u(p, s)d (p, s)e ' '"],

(2.5)

where we have used the notation of Bjorken and
Drell. Here V is the quantization volume. The
vacuum state for the noninteracting fields is de-

fined to have the property,

d(p, s)
~

vac) =b(p, s)
~

vac) =0. (2.6)

Ho;„,——J dx%(x)(y. p+m)%(x):,

a.=-,' J d x:[II'(x)+
~

Vy
~

'+Z'y'(x)]:, (2.2)
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%(x)= g
p, VE(p)

+w(p, s)d ( —p, —s)]e'7'"

It is now useful to rewrite Eq. (2.5) as
1/2

[u (p, s)b (p, s)

= (cos8
p
—y p sin8-)u ( p, s), '

h(p, s)=e ~ w(p, s),
i8 (imp)

= (cos8~ —y p sin8-) w ( p,s),
or equivalently,

(2.16)

(2.17)

(2.18)

(2.7) F(p,s) =e .' U(p, s) . (2.19)

m

VE(p)

1/2

U( p, s) 4&( p, s)e' ~ ' ",

(2.8)

We remark that as w(pp)=y5you(p, s), we also
"ave h {P s) =1' 'Y f(p, s) We also note that, while
u "(p,s'}u (p, s) = &„E(p)/m and u(p, s')u(p, s) =
5„,we have

where we have put w(p, s)—:U( —p, —s). In Eq.
(2.8) we have introduced a scalar product between
the arrays:

f (p,s')f (p,s) =h (p, s'}h (p,s) =5 E(p)/m,
(2.20)

and

U( p, s)—:
w p, s

(2.9)
f(p, s)f(p, s)= 1 —2sin 8-—2 cos8-sin8-II I

m P P

(2.21)
and

b(p, s)4(p, s) =— (2.10)

(2.23)

h(p, s)h(p, s)=f(P,s)VYYYf(p, s), (2.22)

= —f(p, s)f(p, s) .
W'e can distinguish between the two members of
the arrays by an additional index, for example, we
can put Ui(p, s)=u(p, s) and U2(p, s)=w(p, s), etc.
We will also make use of the relation

1/2

"=X
p, VE(p)

It will also be useful to note the relations:

f(p, s)= a(p)u(p, s)

+p(p) g (s'
I
o"p

I
s )w (p, s'}

and

(2.24)

X U(p, s)e (2.11)
h(p, s)= a(p)w(p, s)

—P(p) g (s'
I

cr.p I
s }u (p,s'), (2.25)

The use of this notation facilitates the introduc-
tion of a unitary transformation of the spinors and
operators that leaves the field %(x) invariant. In
analogy to Eqs. (2.9) and (2.10), we introduce the
arrays:

where a(p):—cos8-„and P(p)—:sin8-. These rela-
P

tions are particularly simple for states of definite

helicity. For example, if p is taken along the
quantization axis we have

f(p,s)F(p,s)—:

B(p,s)8(p,s) —=

and we require that

U(p, s).4(p, s)=F(p, s) 8(p, s) .

(2.12)

(2.13)

(2.14)

and

f(p,s)= a(p)u(p, s)

+P(p)( —1)' ' 'w(p, s),

h(p, s)= a(p)w(p, s)

—p(p)( —1)' 'u(p, s) .

(2.26}

(2.27)

To this end we define

is t ( iPP )

t (2.15)

Nowt we may use the relations

[m/E(p)]f (p, s)u (P,s) =a(P)5„,
(2.28)
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[m/&(p)]f (p,s)to(p s') =&(P)(s
I
tr.p I

s'),
(2.29)

[m/E(p)]ht(p, s)u(p, s') = —P(p)(s
I

o p Is'),
(2.30)

Ho;„, ——g:8~(P,s & )8~ ( P,s2):
pSI $2XA

XEt,(p, s&)(y p+m)Fi (p,s2),

(3.1)

[m/E(p)]ht(p, s)to(p, s') =&ss'a(P) ~

(2.31)

f (p, s)h (p,s') =At(p, s)f(p,s') =0, (2.32)

to show that Eq. (2.14} implies

B(p,s)= a(p)b(p, s)

+P(p) g (s
I
o"p Is'}dt( —p, —s'),

(2.33)

D ( —p, —s)=a(p)d ( —p, —s)

—P(p) g (s
I
o"p

I
s'}b(p,s') .

(2.34)

Again, these relations are particularly simple for
states of definite helicity.

We remark that the new operators 8~(pp) satis-

fy the same commutation relations as the 4~(pp}:

I8 (p,s),8 (p', s)] =5 5 -:,5„, (2.35)

and

[8~(p, s),8~ (p', s')
J =0, (2.36)

I8~(P,s),8~(P',s')
I =0 . (2.37)

Finally we introduce a new vacuum state,
I
vac},

which depends on 0 . This state has the property:

where the normal product is defined with respect
to the vacuum state

I
vac). This is the same

prescription as that used by Walecka and, in part,
this normal ordering prescription serves to define a
model problem. Other procedures may be con-
sidered more satisfactory. For example, Chin has
given a treatment of the relativistic Hartree prob-
lem using a renormalizable field theory. In that
theory various mass counter terms are added to the
Lagrangian and these terms give rise to density
depende'nt eFects when one calculates the energy of
a many-body system. However, the calculations
with the renormalized Hartree theory give results
that are not much different from the model used in
this work, which is based on the normal-ordering
prescription given above.

Clearly, it would be desirable to have a funda-
mental theory which would avoid the necessity of
somewhat arbitrary calculational prescriptions.
However, in formulating a model to describe in-
teracting nucleons and mesons one is not dealing
with fundamental fields. The model of Chin
represents an attempt to achieve a degree of
mathematical consistency in a relativistic Hartree
theory, but in that work one is still using local
fields to describe composite objects such as nu-
cleons and mesons.

With these reservations in mind we return to the
evaluation of matrix elements of HD;„,. Recalling
Eq. (2.38), we note that the only nonvanishing con-
traction with respect to the ground state of baryon
number N is

B~(p,s)B~(p', s'}=&& IB~(p s)Bv(p s'} I&&
D(p, s}

I
vac}=B(p,s)

I
vac}=0 . (2.38)

We may consider either an infinite system or a
finite system, however for simplicity we will con-
sider nuclear matter in this work. The transforma-
tions discussed above are those appropriate to the
study of nuclear matter.

III. THE DIRAC HAMILTONIAN

In this section we consider the form of the Dirac
Hamiltonian in the new basis. We have

=4.i@,i@k~—
I p I @-&;-;- .

(3.2)

Here we introduce an index k~, which is related to
the density as p=2k~ /(3n ) In writing Eq.. (3.2)
we have assumed that our system does not exhibit
pairing in the ground state and that the new quasi-
particles can be put into one-to-one correspondance
with the quasiparticles of the noninteracting sys-
tem.
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%e have,

'(+
I HDirac I

& & = gf(P, s)(y" P+m)f ( P,s)
P,S

dp= X —, -f (p, s)(ri' p+y'm)f(p, s)
(2~)' Z(p)

(3.4)

=g I,E(P)[1—2P'(p)j.
(2ir)3

(3.5)

» these equations we are suppressing explicit reference to isospin, for simplicity of notation. [We note that
Eq. (3.5) has been given previously and was obtained using a Green's function tecllniqile. 26 s]

For future reference we now write out Eq. (3.1) in detail:

H;„,= g [B (p,s)f(p, s)(y. p+m)f(p, s')B(p, s')
PSS

D( —p,——s)h(p, s)( y p+m)h (p,s')D( —p, —s')

+B (p,s)f(p, s)(y p+m)h(p, s')D( —p, —s')

+D ( —p, —s)h(p, s)(y p+m)f(p, s')B(p, s'}j . (3.6)

Our program now involves the study of the interaction Harniltonian with the aim of writing the total

Hamiltonian as a constant (ERHF ——(N
~

H
~
X)), a part diagonal in the quasiparticle operators, and a resi-

dual interaction, the latter in a normal-ordered form, where the ordering is with respect to the ground state,

IV. THE RELATIVISTIC HARTREE-POCK HAMILTONIAN

AND THE RESIDUAL INTERACTION

We consider Eq. (2.3) and introduce an expression for the field P(x) in terms of its source. We again

work in the static limit for the meson field. Thus we can write

Hiat = 2: y OA, ,(p lis 1 )'Sx (P2is2)82. ( P3is3)SA, ( P4is4):
P, A, ,S

& &Fi, , (pi»»F2, ,(p»s3)
l

1'I +x,(P2»2)Fx, (P4,s4)), (4.1}

where we have incorporated factors of I m/[VE(p)] I
' in the definition of the interaction P. Again we de-

&»c the normal ordering of the interaction with respect to the new vacuum
~

vac). The same comments

made after Eq. (3.1) pertain here. This normal ordering prescription is part of the definition of our modeI

problem.
Let us now think of the normal product in Eq. (4.1) written out in terms of various contractions which

arise when one defines a new normal product taken with respect to the ground state of baryon number X,

~

X). That is, we are introducing particle and hole states with respect to the Fermi level of the interacting

system. Thus
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:Sz.,( p i,s t )Sx,( pz, sz )Sz,,( ps, s3 )Sz.,( pq, s4):

Sx,( p i~s t )Si2( pzisz) Sz, ( p 3~s3 )Sz4( p&~s4)

+SzI(P ~,s ~ )Sz,,(Pz,sz)8x,'(P3,s3)8z.,(P4,s4)

+N[:S~ (pi, si)Sz. (Pz,sz):Sz. (p»s3)8z (P4 s4)]

+N [0~& (p»s, )ez, (pz, sz):Oz (pzs3)O~& (p4,s~):]

+ N [Oz (p»s& ):Oz (pz, sz~Oz (P3,s3):Sz(p4,s4)]

+N[:O~z (p~, s~)O~z (pz, sz)Ox (pz, sz)O'z (p4,s4):]

+N [:Sz.,(P t,st )Sz.,(Pz,sz)Sz3(P3, sz)8z.,(P4,s4):] .

Since the normal product of any operator product yields zero expectation value in the state
~

N ), we, can
calculate the energy from the fully contracted terms. We obtain

EaHF ——(N (H
~
N)

(4.2)

= g f, f(p s)(y p+~)f(p, s)
(2m) E(p)

(2m) (2~) E(p) E(q)
+-,' y f ", ', (f(p,s)f(q, s')

~

V(1—P,z)
~
f(p, s)f(q, s')), (4.3)

where we have now written the [m IE(p)] factors explicitly. (This result was obtained previously using a
Green's function technique. ) Of course, we have not as yet provided a prescription for determining
a(p) =cos8-. The prescription for the choice of the spinors f(p,s) and h (p, s) is obtained from the study of
the singly-contracted terms of Eq. (4.2). As usual it is useful to write these terms of H;„, together with

HD;„,. Let us define

scHi HDirac+ 2 int ~ (4.4)

where the superscript sc refers to the extraction of only the singly-contracted terms of H;„,.
We have

Hi = X:Sz(P s)Fx(P s)[r'P+~+~(P)]Fz. (P,s')Sz. (P s'):,
pss AA,

where

X(p)= g (p,f(p', s")
~

V(1 —P&z)
~ p,f(p', s"))

pS

or alternatively,

Fz(p, s)X(p)Fz (p,s')= g (Fz(p, s)F~(p', s")
~

V(1 P, )
~
Fz (p,s')F—~(p', s")) .

P

We now require that Fz (p, s) be a solution of the Dirac equation,

[r"p+~ +&(P)]Fz,(p s) =r'e'z(P)Fz. (p,s),

(4.5)

(4.6)

(4.7)

(4.8)

or

[F"P+~ +&(p)]f(p,s) =y'~(p)f(p,s),
[7'p+~ +&(p)]&(p,s)= —y e(p)h (p,s),

(4.9)

(4.10)

where we have put e&(p)=e(p) and ez(p)= —e(p) with e(p)&p.
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Thus we have

Hl = Q [«p)8 (p,s)8(p, s)+e(p)D (p,s)D(p, s)] .
P,S

Inspection of Eq. (3.6) clarifies these manipulations somewhat since we see that, for example,

h(ps, )[y p+iil +&(p)]f(p,s')=Il(p, s)y'e(p)f(p, s')

=e(p)h (p,s)f(p,s')=0.
Thus by combining the singly-contracted terms from H;„, with IID;„, we bring H~ into diagonal form.

%e now have

H = ERHF+ g [«p)%[8 (p,s)8(p, s)]+a(p)D (p,s)D(p, s)I
P~S

+ g +[ 8A, (Pl sl )x (P2 S2)0 (P3 s3) (P4 4) ]
P,S, A,

X (+2. (pl, s 1 )+2, ( p3 S3 )
~

I ( 1 —
&12 )

~ Fx, ( p2, S2 P'x, ( p4, S4) )

(4.11)

(4.12)

(4.13)

Note that we have written N[8 (p,s)8(p, s)] in the second term of Eq. (4.13) since the contracted term has
been removed to construct the first term, ER» ——(X

~

H
~

X).
As usual, it is useful to introduce creation and destruction operators defined with respect to the Fermi sur-

face:

C (p,s)=8 (p,s),
i p i &kF ',

C(p,s)=8 (p,s),
i p i (kF,

C(p, s)
i
X)=0, all p

so that

g «p )E [Bt(p, s)B ( p,s)]
P,S

= g [«p)C (p, s)C(p, s)8(
i p i

—kF) —«p)C (p,s)C(p, s)0(kF —
i p i )] .

P,S

(4.14)

(4.15)

(4.16)

We see that the symbol¹:in Eq. (4.13) can be considered as a prescription to move all C( p, s) and D (p, s)
to the right in any operator product. Using the notation M for this generalized normal product we have

H=ERHF+ Q [«p)C'(P»)«p»)0(
I p I

kF)—
P,S

—«p)C (p,s)C(p, s)0(kF
l p l

)+e(p)D (p,s)D(p s)]

+ —.~ g [Oz, (Pi»1)ox,(P2 s2)ox, (P3 3)(.")x (P4»4)]
P, A.,S

X (+x (Pl Sl )FP. (P3 3) I
~(1—~12) I Fi.,(P2»2)+11,,( P4»4) & (4.17)

If we discard the residual interaction for the moment we can define

HR»=ER»+ X [ «p)C'(p»)«p»)0(
I p I

kF)—
P,S

—«p)C (p,s)C(p, s)8(kF —
i p i ) +F(p)D (p,s)D(p, s)I . (4.18)
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Thus

HRHF I
N & ERHF I

N &

with

(4.19)

B'(p,s)
I
~ac& .

[ pi&kF
(4.20)

If the residual interaction is now included in per-
turbation theory, we see that the admixtures to the
wave function are of the two-particle, two-hole

type, where by "hole" we include the states excited
by D (p,s),as well as those excited by Ct(p, s).
This result is typical of self-consistent field theories
except it is now extended to include all states
below the Fermi level, including the negative-energy
states. Of course, in the infinite system, one-

particle, one-hole states of the usual type, that is
those created by two C 's, are excluded by con-

sideration of momentum conservation.
We have shown elsewhere that the inclusion

of negative-energy states makes a major change in
the saturation curve of nuclear matter and that a
theory with 0„=0is inadequate. Once one goes to
the new representation defined by the solution of
Eqs. (4.9) and (4.10) the corrections to the theory
involve the introduction of two-particle, two-hole
pairs. More precisely, we can classify the holes as
holes in the positive-energy sea, h, and holes in the
negative-energy sea, h. Therefore, we can note that
the corrections to the theory involve the admixture
of (2p, 2h), (2p, 2h), and (2p,h, h) states. The ma-
trix elements for the admixtures of such states are
significantly smaller than those that are included in
the passage to the new representation. Thus it is
not unreasonable to neglect the terms involving D
and D at this point. In this approximation one
has

H= ER»+ g [«p)C (p,s)C(p s)&(
~ p ~

—kF) —«p)C (p s)«P»)@kF —
I P I )I

P~S

+—X N[ (»~s1)B(p2~s2)B (p3~s3)B(p4~s4)l
P, A,,S

)& &f(p1,s1)f(p3,s3)
~

V(1 —&12)
~ f (p2, s2)f (p4, s4) &, (4.21)

which can be rewritten in a more conventional form,

H=ERHF+ gC (p,s)C(p, s)[«p)8(
I p I

kF) 'E(P)f—)(kF
I p I ))

P,S

g N[B (p»s, )B (p2,s2)B(p3p3)B(p4, s4)]
P,A, S

X &4'(P1~sl)(('(P2is2)
l

V(1—~12) I 4(P4»4)0(P3~s3) & i (4.22)

where we have introduced

P(p, s) =
1/2

(p») .
VE(p)

(4.23)

In a previous work we showed how to include short-range correlations in a theory of this type. We
do not repeat that analysis here except to note that the interaction V may be replaced by a reaction matrix,
6, which represents the scattering amplitude in the medium. Thus we may replace the two-body matrix ele-

ment in Eq. (4.22) by

& p1s»p2s2 I G[«P1)+«p2)l I P4s4, P3s3& —= &0(p1»1)4(P2»2) I
«1—&12) I 4(p4~s4)p(p3is3) &

(4.24)
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V. A VARIATIONAL PRINCIPLE AND THE
SATURATION MECHANISM

In this section we rederive the equations deter-
mining the wave functions, f(p,s), from a varia-
tional principle in a manner similar to that used in
nonrelativistic problems. The elimination of
dangerous diagrams (the diagonalization of H ~) is
equivalent to this technique. Further we discuss
the saturation mechanism in the relativistic theory
using a simple model. Here we are able to use the
insight obtained from quite complete numerical
calculations we have performed previously.
This discussion, although equivalent in many as-

pects to that of Walecka, is focused on the new
terms introduced into the expression for the energy
when negative-energy states are included in the

f(p,s). In this way we are able to isolate those
terms that have their origin in the passage from a
nonrelativistic to a relativistic description.

A. Variational principle

The wave functions f ( p, s) are to be normalized
as in Eq. (2.20):

f(p, s) V f ( p,s') =6,g .
E(p)

(5 1)

We may consider Eq. (5.1) as a constraint equa-
tion for each value of p and s. (We are again
suppressing reference to isospin. } We now modify
H by incorporating these constraints using
Lagrange multipliers, e(p). Thus we study

H'=H QJ —P e(p)f(p, s)y f(p, s):B (p, s)B(p,s):
(2') E( p )

The expectation value of H' in the new ground state
~

N & is

(5.2)

&N IH'I N&=ERHF g J 3
e(p)@4'—

I p 1)f(p,s)yf(p, s),
(2~)' E(p)

(5.3)

where ERHF is given by Eq. (4.3). Variation of Eq. (5.3) with respect to f(p, s) yields the equation of motion
for f(p,s) given in Eq. (4.9). We quote here one other result which is quite similar to that obtained in a
nonrelativistic calculation. When the eigenenergies and eigenfunctions, e(p), and f(p, s), have been deter-

mined, we may write

ERH. =-,' y J ', f(p,s)[P'p+m+)"~(P)lf(p s»
(2m) E(p)

where we have eliminated the potential terms using the equation of motion obeyed by f ( p,s).

(5.4)

B. Saturation in the cr and co model

The 0. and co model of Walecka is quite useful

in understanding the dynamics of saturation on a
qualitative basis. We are limited to qualitative
considerations since our calculations have shown

that (a) Short-range correlations play an essential

role in modifying the values used for the a-nucleon
and ~-nucleon coupling constants from their free-

space values to the values of the effective coupling
constants of the o-co model. (b) The pion-exchange
contribution to the nucleon self-energy is approxi-
mately + 30 MeV in a Hartree-Pock calculation.
If one includes correlations the (correlated} one-

pion-exchange contribution the nucleon self-energy

can vary from zero to —50 MeV depending upon
the strength of the n. Ntensor force. (c) If the-

self-energy operator for the nucleon is written as a

sum of scalar and vector parts, i.e., X(p)
=A (p)+y B(p), the values of A and B are not

directly related to o and ~ exchange. For exam-

ple, about 30% of the value of A can be ascribed to
effects of co exchange. (Note that A is about —400
MeV, while 0. exchange alone gives a value of
about —250 MeV for A. 2

)

Our numerical calculations show that the
parameter P(p) is well approximated by a linear
function of

~ p [ for
~ p ~

(kz. That is P(p)
="

I p I
~~ wit" "=04 ««F =1.36 fm

In the following we shall ignore the m and p
mesons and analyze the phenomenological 0. and co

model in a manner-different from that of Walecka
in order to focus more clearly on the physical
phenomena that are responsible for saturation.



24 RELATIVISTIC MANY-BODY THEORY 2713

(Indeed Walecka's treatment is exact but somewhat more complicatixl. ) Let us write EaHF, incorporating the
constraint a +P =1,

ER'HF= g f,E(p)[1—2P'(p)]
(2m. )'

2 d-
z g f 3 [1—2P (p) —2a(p)P(p)

I p I
/m] +— g f

(5.5)

Here we are working in the Hartree approximation. We see that the use of self-consistent wave functions

leaves the co vertex unaffected, but changes the o vertex considerably. Recall Eqs. (2.20) and (2.21),

f(p, s)y f(p,s) =u(p, s)y u ( p,s)=E(p)/m,

while

f(p,s)f (p,s) =u(p, s)u (p,s)[1—2P (p) —2a( p)P(p) I p I /m]

If we now use Eq. (5.5) we find that the binding energy per nucleon is given by (m —e '") with

f p dpE(p) 1 —2A,
kF3 o m

g 3 ~ 2 m
2 k

2 m k P E(p)

T 2 '2
2

1 —2[A, +A,+I—A, (p/m) ] ~ +—
happ.m 2m2' (5.6)

Upon expanding the integrands to order (p/m) and to order A, we find,

3 kF
E ' —m~—

5 2m

'2
1 g0 3 kF

(1—4A, ) ——

happ

1 ——
2m'

,

'2
2

kF l g~
A(k+1) +—,p, .

5 m 2m„
(5.7)

In this approximate treatment we see that there
is a significant decrease in the kinetic energy in the
relativistic theory accompanied by a reduced at-
traction which has its origin in the weakening of
the cr vertex.

In our Hartree analysis, which has only single
parameter A, , the variational principle is particular-
ly simple,

(5.8)

From Eq. (5.8) we find,

2
Po

m

2
go Po

2m~ m

1 E
2 1 —E

At this value of I, we have,

(5.9)
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2
cT,et) k 2 ]

2(1 E)—

1
2

pp 1—
Pl~

2
1 8 co+ 2PP ~

Pl~

kF

(5.10)

VI. DISCUSSION

In this work we have shown how one can start
with a relativistic model Hamiltonian hnd use

In Eq. (5.10) we have combined the kinetic-energy
modification with the potential-energy modication
in a single term. It is clear that the relativistic sys-

tem will saturate at a smaller density than the non-

relativistic system in a model of this type.
One could go on at this point to obtain the effec-

tive coupling constants which will reproduce the
generally accepted values for the binding energy
and density of nuclear matter, however, that ap-
proach has already been carried through by Walec-
ka and his collaborators.

standard techniques of many-body theory to derive

a relativistic Hartree-Fock (or Brueckner-Hartree-
Fock) theory of nuclear structure. In previous
works we have compared the saturation curves for
nuclear matter obtained from the nonrelativistic
and relativistic theories and have demonstrated the
necessity of using the relativistic formalism at den-

sities appropriate to the study of nuclear matter.
(The nonrelativistic and relativistic formalisms give
similar results only at low densities, say kF & 1.2
fm '.) The Hamiltonian presented in Eq. (4.22)
can be, easily generalized to provide a description of
finite nuclei. The study of the finite system intro-
duces no new concepts into this analysis, only the
technical problem of solving the Dirac equation
with the self-energy operator calculated from the
reaction matrix appropriate to the finite system. It
is also clear that the negative-energy parts of the
spinors P(p, s) of Eq. (4.23) introduce a density
dependence into the effective interaction of the
quasiparticles that is significantly stronger than
that which would be obtained if one chose to put
g O30
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