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%e present a method for parametrizing the 2 &2 S matrix for coupled-channel nucleon-nucleon elastic scattering
above the pion-production threshold, namely, we introduce two dummy nucleon-Roper-resonance channels and

unitarize the consequent 4 &&4 Smatrix. The elastic nonunitary 2)& 2 nucleon-nucleon Smatrix is then recovered as a
submatrix of the 4&(4 matrix. %'e parametrize the unitary 4)&4 S matrix by generalizing the prescription of Stapp,
Ypsilantis, and Metropolis for 2X2 matrices. The six phases parametrizing the 2 && 2 submatrix are well behaved as

the interaction vanishes, and automatically satisfy a unitarity condition which we derive, viz. , det (1 —S~, S„,) )0,
where S„is the 2 X 2 submatrix. Of the six phases, three represent the absorption and parametrize a real, symmetric

2)& 2 matrix N, analogous to the absorption parameter g in the uncoupled case. A method is given for recovering the

phase parameters from the S relatrix or other parametrizations.

i NUCLEAR REACTIONS Scattering theory. Parametrized coupled-channel
nucleon-nucleon elastic scattering above the pion-production threshold.

I. INTRODUCTION

In this paper we present a method for parame-
trizing the scattering of two like Dirac (spin-~)
particles when inelasticity is also present. We-
will only apply the method to nucleon-nucleon (NN)
scattering above the pion production threshold,

NN- NN (la)

(lb)

but we believe that, as far as the elastic-scatter-
ing sector [Eq. (la)] is concerned, the method is
perfectly general and can be applied to any of two
like Dirac particles.

Our parametrization stems from the obser-
vation that the factor q used to parametrize ine-
lasticity in uncoupled NN states,

S=e"' qe"', - (2)

( cos2ee"' i sin2ee" 5'6'&

(i sin2ee" " cos2ee"'

The upper-left matrix element, cos2eexp2i5, para-
metrizes the elastic-scattering sector, and cos2e
—=q is automatically required to have absolute val-
ue ~1 [Eq. (2)], as is required to conserve prob-
ability.

It is in parametrizing nonunitary elastic scatter-
ing in the coupled NN angular momentum states

occurs in a natural way if one hypothesizes a se-
cond baryon-baryon channel (call it N-Hoper') and
then parametrizes the coupled NN-NR channels ac-
cording to the Stapp-Ypsilantis-Metropolis (SYM)
prescription'

(e.g. , 'S, —'D, ) where complications arise. Mac-
Gregor, Amdt, and Wright' and Hoshizaki have
devised models which they use in their, phase-
shift analyses. In this paper we present our own

prescription which we obtain by generalizing Eq.
(3) to accommodate the coupled angular momentum
states as well as the coupled NN-NR channels.
There results a 4 x 4 unitary 8 matrix which in the
NN-NN sector appears as the SYM form modified
by a 2x 2 matrix N;

e& ~~&6 & Ne&s (4a)

where

0)
( 0 n, )

0' is the first Pauli spin matrix, and N is a sym-
metric 2 x 2 matrix specified by three parameters
and subject to certain constraints, including
det(1 —N') ~ 0. The effect of absorption on elas-
tic scattering is all contained in N, which is a
generalization of r~', also the total reaction (ine-
lastic) cross section depends only on ¹ Thus the
roles of inelastic and elastic scattering are neatly
s eparated .

II. PARAMETRIZING THE SCATTERING MATRIX

Although we could have implemented the method
outlined in the Introduction simply by writing down
a 4&&4 S matrix for coupled-channel, coupled an-
gular momentum states, and then parametrizing
this matrix, we found it more instructive to write
down a model Lagrangian for coupled nucleon,
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Roper, and scalar meson fields, and to determine
the S matrix through straightforward calculation.
We were thus able to work with a Hermitian Ham-
iltonian so unitarity of the S matrix was assured.
The Lagrangian was chosen to obey the usual in-
variance conditions for strong interactions (in-
variance under space-reflection, time-reversal,
Lorentz transformation, and isospin-space rota-
tion). We obtained momentum-space expressions
for the S and M matrices for coupled NN and NR
channels. We then expanded the M matrix into
partial-wave matrix elements and imposed the un-

itarity condition. There resulted, for each value
of total angular momentum j, a unitary 8X8 S
matrix consisting of two 2~2 b1ocks along the di-
agonal for the singlet and triplet-uncoupled states,
and a 4&4 block on the diagonal for triplet-coupled
states. Each block was independently unitary.
This result was entirely as expected and certainly
not dependent on our particular choice of Lagran-
gian; however the specific calculation had the ad-
vantage of definiteness and provided formulas
linking the partial-wave parameters to the scat-
tering observab1. es.

We ordered the matrix elements of the 4&&4 ma-
trix S into blocks of 2X2 matrices as fo1lows:

~S Si (»)
(s„s»j

where a(b) is the NN(NR) channel index. Each
2 &2 matrix was in turn ordered as in the following
example:

(&a, g 1 lslt, f 1&—, &a,j —l—lslt, i+1&

&&a,j+1lslb, j —1&, &a,j+ 1 lslb, j+1&
(5b)

where j+1 refers to the orbital angular momen-
tum. The total angular momentum index j and the
spin index s(=1) are suppressed in this notation.

To find the optimal parametrization for S, we
first studied the SYM parametrization' for 2~2
matrices. The latter may be expressed as in Eq.
(4);

i6 2iea f6
2x2

The 2&&2 S matrix thus has the general. form

S2x2 =66

where

. 3

6 = " e'g~r~

the X'; are the three symmetric 2 &2 matrices
(1,o', o') and the 8,. are (linear combinations of)
the phase parameters. (T denotes transpose. )

Besides being manifestly symmetric [Eq. (6)] as

required by time-reversal invariance, the SYM
S matrix has the nice property that its phase pa-
rameters are proportional to the interaction Ham-
iltonian as the latter vanishes;

limS=(1+ f5)(1 + 2eo')(1+f5),
v

lim(S —1)/2f =
I

(6
V 0 Ie

(Va)

initially taking the most general representation of

6p

The jL",. are 16 Hermitian matrices which span the
4&4 matrix space and the 9, are 16 real constants.
By definition [Eq. (8)] S is unitary and symmetric,
and as in the 2&&2 case, the 0, are proportional to
the interaction Hamiltonian as the latter vanishes.
We chose as our set of 16 Hermitian matrices the
unit matrix, Dirac's o,. and p,. matrices, ' and

products of the 0,. and p,. matrices. Thus

where

cr,. =I ' I, j=1,2, 3,(o,. oi
(0 aj
(0 1

'=( )

01
Io. =

O -1i
All the above are 4~4 matrices written in 2X2
block form. The a,. and p, matrices commute;

0'
pk pkv ~ j)A'= 1~2~3.

Thus, the I',. have the property that

2 i =1,2, . . . 16

whence, for real ~, ,

e"& "~ = cos 8; + iI; sine, .

(This proportionality is not a property of the other
2&2 parametrization, that of Blatt and Bieden-
harn. ')

In selecting a parametrization for the 4 ~ 4 ma-
trix we therefore chose to generalize the SYM
2 && 2 prescription.

We set

(8a)
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Of these 16 matrices, 10 are symmetric and 6
antisymmetric. We put the exponentials of the six
antisymmetric matrices on the right end of the
product 6 IEq. (8b)] and when &er is evaluated,
they cancel. Thus Eq. (8) reduces to

with 8„8„and 8, replaced by I, y, and Q, re-
spectively, for writing convenience. The explicit
form of U is

U„=U&
——cos2I' cos2y cos2$

where

g 6T
s s

10

(9a)

(9b)
and

—o' sin2I' sin2&(&

—o~ sin2I' sin2y cos2&f&

U„=U„=i(sin21' cos2y cos2&

(12)

with the F» the 10 symmetric Hermitian matrices.
(We could, of course, have used just the 10 sym-
metric matrices at the outset. ) The symmetric
matrices are 1, O„p„o,p„o„and o,p„plus
p„a,p„o,p„and o2p2. The first six are block
diagonal (do not bring about NN- NR transitions)
and their exponentials can be ordered so as to re-
cover the SYM form in the NN- NN (and NR —NR)
sectors; we so order, setting

6
»8» r» j& E (1Oa)

where

+ o' cos2I' sin2 P

+ v' cos2I' sin2y cos2 Q) .

ei 6ej Sty U e'» 6v 0 6
aa aa

where, from Eq. (12),

(13a)

cos2(I'+ y) cos2$ -sin2I' sin2$
aa

-sin21" sin2$ cos2(l" —y) cos2$

(13b)

Thus, defining

The S matrix for the sector of interest, ~„, may
now be determined. Since exp'& expiE is block
diagonal,

and
(eo' 0

(o ~o',„,

(10b)

(1Oc)

( 11 12'

k~„s„i
we have

8» ——e2'
~l (cos2e cos2I' cos2y —sin2l' sin2y) cos2$

—i sin2e sin2I' sin2&/&],

S» = 8' ~' ~ [i sin2e cos2I' cos2y cos2$
, 5&, 6', 6z, e, and e' are linear combinations

of the six 8».
The remaining 4 matrices are antiblock diago-

na1, and bring about NN- NR transitions. These
are sketched in Fig. 1 for the case j =1. Thus
g&', expi8, 1'& provides 4 parameters to specify
inelasticity. Yet the 2&&2 N'N- XN sector admits
only 6 parameters (3 elastic, 3 inelastic) as it is
nonunitary but symmetric. Therefore we drop one
factor to eliminate redundancy. ' We choose to
omit expi8, 0v,p~ (this has the effect of making
(a, &, ~S~b, 'D, ) =(a, 'D, ~S~b, '8,)). The remaining
exponentials are ordered

7Ple 8 SPle 9 1 1

21 12

—cos2e sin2I' sin2 $],
(14)

a,~Sl—

05D 0 5D

&„=e2''~t (cos2e cos21' cos2y + sin2I' sin2y) cos2 Q

—. i sin2e sin2I sin2$] .

j& »EU »E (lla)

more-or-less arbitrarily. Any permutation ap-
pears to be equally acceptable.

Thus our final parametrization of S is

bPSl

b, ~Dl

»apl j&g3pl e2» 4 elplej ~3pl jP pl (11b)

where & and E are defined in Eq. (10) and where FIG. 1. Transitions between $~ and Dj states for3 3

coupled NN (a) and N-Roper (b) scattering. (Time-
reversed transitions omitted for clarity. )
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An alternate set of absorption parameters will sometimes be used: these are

o.=~+~
Pg=~ —

w

Note that S, reduces to the SYM representation when p, p~, and P vanish.

(is)

III. COMPARISON WITH OTHER PARAMETRIZATIONS

MacGregor, Amdt, and Wright (MAW) parametrize the coupled inelastic S matrix as follows;

( cosp cos2e exp2is, i sin2q expi(5 + 5, + Q) l

(i sin2e expi(5 + S, + p), cosp, cos2e exp2is,

Hoshizaki sets

(r ' —r x,o')'~' exp2is, i(x ~,P ~'o expi(5 + S, + &f&))
aa

(i(~ ~,)'"oexpi(S +S, + y), (r, ' —r ~,o')'~'exp2iS,

In fitting a certain nearly-unitary "experimental"
8 matrix with these and our own parametrizations,
we discovered an important difference between the
prescriptions; the experimental S matrix was

that this was because a certain unitarity condition
was being violated. The condition is easily de-
rived; to wit,

SS =]. „
0.95

aa
0.05 exp2s6

0.05 exp2s6 12

0.9S
so

where 6„was varied from 0 to 180'. The phase
parameters obtained in the three cases are plotted
in Fig. 2. (We used the method given in the Ap-
pendix to determine our own phase parameters. ')
One will note that the SYM and Hoshizaki para-
meter p varies from 0' to 360', even though the
absolute magnitude of 8» is very small. This
means thatpn applying this parametrization to NN
scattering data analysis, it will be hard to search
this P to minimize X'. Our own Q remains small,
probably because our 0,. are proportional to the
interaction Hamiltonian in the limit as H~' van-
ishes.

We discovered another feature of our parametri-
zation while attempting to convert sets of MAW
parameters to our own. Certain sets of MAW
parameters could not be converted. We found

Thus

det(1 —S„St,) =det(S, ~S~,) =detS, ~ detSt, .

But

detSt, = (detS„)*

whence the unitarity condition'

det(1 —S St ) = ~detS, ~~'~ 0.
With our parametrization, Eq. (19) reduces to

det(1 —N') ~ 0 .

(i9)

This condition is automatically satisfied for any
choice of 1", y, and Q.

For the MAW parametrization, Eq. (19) indi-
cates that

(cos2e)'(sinp )'(sinp, )' ~ (cos'e sin2e)'[(cosp )'+ (cosp, )' —2 cosp cosp, cos2&]. (2i)

Equation (21) is not satisfied by an arbitrary
choice of c, p, p„and Q. In particular" it is
not satisfied when p 40, /=0, and p, =0 (unless
sin4s =0). Thus with the MAW parametrization,
it is not possible to represent a case of inelastici-
ty in just the lower of two coupled channels,

simply by setting P and p+ to zero.
The formula for the total reaction cross section

O„due to the coupled states brings out another
feature of the three parametrizations. In general,

o =(v/4q')Z, (2q+ i)tr(1-S~. ,S. ,),
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360o-

240o

0.95, I0.05e 2is
Soo .0 2I812

(a) where now ~„ is indexed by the total angular mo-
mentum j; q is the momentum of either nucleon
in the center-of-mass system. For our param-
etriz ation,

o„=(II/4q')ZJ(2j+1)tr(1 —N,.'),
where N is also indexed. For Hoshizaki's para-
meters

120

60'-

Pa
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 6 However for MAW,

& =(II/4q')Z, (2j+1)(cos2e)'(sin'p +sin'p, ) .

Thus in this last case, an "elastic-scattering"
parameter appears in the formula for the absorp-
tion cross section.

O ~Isa~ ~ ~ ~ ~ e "~0

0o

360'

240o

I

60'
I

I 20' I80'

IV. CONCLUSION

We have presented a parametrization of the 2&&2

S matrix (S„)for probability-nonconserving elas-
tic nucleon-nucleon scattering, in which the (six)
parameters (i) are well behaved for small excur-
sions of S„about the unit matrix, and (ii) auto-
matically obey a unitarity condition that we derive,
namely det(1 —S, S~ ) ~ 0. Neither of these fea, —

tures is a property of the other two parametriza-
tions employed in the literature, those due to'

Hoshizaki and to MacGregor, Amdt, and Wright.
In our scheme, inelasticity is measured by a

real, symmetric 2 &&2 matrix (N) imbedded in the
standard Stapp- Ypsilantis-Metropolis form;

$6 $60 N 46ty j6
aa

120'

60'

QO

PO
I

60
I

I20' I 80'

FIG. 2. (a) Plot of our phases p, p, and e which param-
etrize (Ref. 8) the $ matrix shown in the inset [Eq. (18)
in text); 6 f2 varies from 0 to 180'. For this S matrix,
p&= p, and 6&=6; 6 varies more-or-less sinusoidally
with 26~2, but is never more than a line-width from
zero. (b) Plot of MAW phases Q, p, and & parametriz-
ing this same S matrix; just ft) varies with 6~2. p, = p
and 6,=6 =0. With regard to the Hoshizaki parameters,
only Q varies with 6~2 and is identical to the MA%' Q;
x,=r =0.9513, p=0.053, and 5,=5 =0.

Three real phases parametrize N and are nicely
decoupled from the three ordinary phases. The
partial-wave reaction cross section is proportion-
al to tr(1 —N').

An important application of our parametrization
would be large-scale analysis of nucleon-nucleon
scattering data. We anticipate no difficulty in
computing S-matrix elements from our phase
parameters [Eq. (14)] rather than from those of
Hoshizaki [Eq. (17)] or MacGregor, Amdt, and
Wright [Eq. (16)], even though our equations are
somewhat longer, because most machine time is
devoted to computing the M matrix at all the ex-
perimental scattering angles that go with each
choice of S matrix. In fact, phase-shift analysis
using our parameters should proceed faster be-
cause our P does not execute large excursions
when S„ is varied slightly, as noted above.

The only drawback to our scheme appears to be
iri obtaining our phase parameters from a given 8
matrix. The formulas are complicated and there
is a double solution (p, Q, pII) for N. We shall
discuss this further in a later publication.
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defining

11 22 12 (A4b)

R11 sin2 8 =R» sin2 8~ (A6)

Equation (A6) can be put in the form

We get

tan2(8, + 8~) = -R»'(sin25)/(R»R» +R»' cos2i)) .

(A5)

The quantity (8, —8~) may next be determined using
the fact that the two triangles illustrated in Fig.
3 have the same height;

APPENDIX: EXTRACTING PHASE
PARAMETERS FROM S~~

tan(8 —8,) = [(R„R„)((R-„+R„)]
xtan(8 + 88) . (A7)

While it is trivial to compute S„from our param-
eters using Eq. (14), it is not so straightforward
to extract our parameters from S„. We have
found the following method.

Assume that we are given S„numerically in the
format

We now determine 8 and 8z individually and then
write down 5 and 5~ from Eq. (A2).

=5,1+ 6

6~
——522+ 8@ .

(R» exp2i5» iR» exp2i5»)

(iR» exp2i6» R» exp2i5» J
(AI)

The remaining "elastic" parameter, c, may be

e e ~

2512= 5 + 6g —8,
and

&22 = &a —6e

(A2)

Comparing Eqs. (A1) and (A2) with Eq. (14) then
reveals the three triangular relationships illu-
strated in Fig. 3. Two more equations may be
obtained by taking the determinant of 8„;from
Eq. (Al)

detS„=e"" '~'~a a e-"" '~'
L 11 22

+Re�'],

while from Eqs. (13) and (14)

detS„= 8""~'~'[(cos2y cos2&f&)' —(sin21")'] .

Dividing out exp2i(5 + 6~) and equating the real
and imaginary parts of the remainder yields

detN-=&= (cos2y cos2 $)' —(sin2I')' (A3a)

Then, taking guidance from Eq. (14), we introduce
the new parameters 9, 6), and 88;

COS 26 COS21 COS2y COS2@ SIN2I'SIN 2y COS 2f

Q)

FO

V)

PO

Q)
z'
PO

0)

FO

(h

fO

R„R,z sin2(8 + 88) +R» sin28 = 0 . (A3b)

We now solve Eq. (A3b) for (8 + 88) by noting
from Eq. (A2) that

(A4a)

SIN 2& COS2I' COS2y COS2y

FIG. 3. Relationship between Rqg, R22, R12, 6}~, &g,
8, and e, I", y, and p. In part (a), ~ (p) corresponds
to the minus (plus) sign.
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found by taking the ratio

2R»(cos8)/(R» cos28 +R» cos288),

which from Fig. 3 is seen to

(AB)

= tan2e .

Next we solve for the parameters I', y, and Q
of the absorption matrix U„—= N. First we deter-
mine the experimental values of ¹ From Eq.
(12),

cos2I" cos2y —sin21 sin2y cos2

-sin21" sin2 P

l—sin2I' sin2$

(cos2I' cos2y + sin2I' sin2y) cos2 P~
(A9)

Thus

N» +N» —2 cos2I' cos2y cos2$

which, from Fig. 3(a)

=(R» cos28~ +R» cos28 )/cos2e .

(A10a)

(A10b) .

One sees that I may assume four values, two
through the choice of plus or minus root in -Eq.

(A13), and a further doubling since 4I' may fall in
either the upper or lower half of the unit circle.

We next solve for Q. From Eq. (A12a) one has

Similarly sin2$ = —N»/sin2I'. (A15}

N22 —N„=2 sin21 sin2y cos2$

which, from Fig. 3(a)

=R» cos20, -A» cos2~

(Al la)

(Al lb)

We will require, with no loss in generality, that
2$ fall in the right half of the unit circle.

Finally we determine z. Dividing Eq. (Alla) by
Eq. (A10a) yields

and N» may now be determ in ed

N» is readily evaluated from Eq. (A9) since
tan2y = (N» —N»)/(N»+ N») tan2I'. (A16)

N» ——-s in2I' s in2 Q

which, from Fig. 3(b)

=R» (sin 8)/cos2e .

(A12a)

(A12b)

I, Q, and y are now determined, except for the
ambiguity as to whether 2y falls in the right or
left half of the unit circle. We resolve this by in-
voking Eq. (A10a);

Thus the matrix elements of X are determined.
We now may solve for I', y, and Q. We begin

with I'. Squaring Eq. (A10a) gives

(trN)' = (2 cos2I' cos2y cos2$)',

while from Eq. (A3a)

(cos2y cos2PP = & + (sin2I')' .
Thus

(trN)' = (2 cos2I')'[& + (sin2I")'] .

This can be put in the form

(1+cos4I')' —2(&+ 1)(1+cos4I')+ (TrN)'= 0.
The solution is

cos4I'=detN+ [det(l —N')] '~',

where we have used the identity

(&+ 1)' —(TrN)'= det(l —N') .

TrN= 2 cos21" cos2$ cos2y.

cos21" cos2$ is always positive, so for TrN& 0
(TrN& 0), 2y must fall in the right (left) half of
the unit circle.

That there are four sets of absorption param-
eters [(1,P, y) or equivalently, (p„, P, ps)], which
parametrize a given matrix N should come as no
surprise since there are four sets which param-
eterize Nwhen N»=0, namely

(p~ =+ —,
' arc. cosN», $ = 0, ps= a —,

' arc cosN») .

(Al7)

Even when N» is unequal to zero, there remains
one simple relation between pairs of solutions; if
(p„, P, p ~) is a solution, so is (—p„, —P, -p z).
However, in the other pairing of solutions, corre-
sponding to taking plus and minus roots in Eq.
(A13), there is no simple relation in general.
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The Roper resonance is a baryon resonance with the
quantum numbers of the nucleon but a mass of -1450
MeV and a width of —200 MeV.
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