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We have studied the pion-nucleon interaction in the P~~ channel considering its impor-
tant role in the absorption and production of the pion by nuclei. Specifically, we em-

phasize that the total P~~ t matrix (or amplitude) can be naturally decomposed into two

parts: the direct (and dressed) pole part and the nonpole part. It is then easy to observe
that individually these two parts can be large but tend nearly to cancel each other and

produce small and negative phase shift values from threshold to T~,b-170 MeV and that
at higher energies the nonpole term dominates giving positive phase shift values. We then

try to find the parametrization of this partial wave t matrix within the framework of the
Blankenbecler-Sugar reduction. As a by-product we have obtained the mNN vertex func-

tion (with one nucleon off mass shell) and the dressed nucleon propagator.

NUCLEAR REACTIONS m.N P~~ channel, pole and nonpole decom-

position of P~~ t matrix, phase shift up to 300 MeV.

I. INTRODUCTION

It is well-known that among several lowest mN
1

partial waves the P~ ~ (J=I = —, ) channel has a

very unique behavior. Firstly, as far as the phase
shift [5(Pt& )] behavior goes, it is small and nega-
tive (repulsive) at low energies. Then it changes
sign at T" -170 MeV and rises rapidly to pass
5(P~ ~ ) =90' at T""-530 MeV: the Roper reso-
nance. Secondly, it becomes inelastic rather quick-
ly: in fact the inelasticity becomes noticeable al-
ready at T" -350 MeV. Consequently, the
above-mentioned Roper resonance is highly inelas-
tic as opposed to the well-known P33(b, ) resonance
which is almost elastic. Thirdly, it has a pole
below the elastic threshold at W =m ( W—:&S, the
trN c.m. energy and m the nucleon mass) called
the nucleon pole. This is of course due to the fact
that the pion and nucleon couple to the (positive
energy) nucleon through this partial wave.

In order to explain these above-mentioned
features, various theoretical attempts have been
made in the "sixties" exploiting, e.g., single- or
multi-channel N/D methods within the context of
partial wave dispersion relations (Ref. l and refer-
ences cited therein). The principal finding then

was that the sirigle-channel theories could explain
the qualitative feature of this partial wave only
when one introduced a priori the nucleon pole.
Stated differently, one could dynamically generate

'the nucleon pole and at the same time reproduce
the observed phase shift, provided that one intro-
duced at least one inelastic channel. For a more
recent dynamical approach the reader is referred to
Wei and Banerjee.

During the past several years interest in this par-
tial wave has gradually been revived in connection
with- the pion-nucleus interactions. Let us briefly
review its history in the following. For a calcula-
tion of m-nucleus amplitudes or optical potentials
within the conventional multiple scattering formal-
ism, one needs to use some off-shell-extended mN

partial wave amplitudes. As a first step simple
rank-one separable interactions were considered for
this purpose. The separable interactions are con-
structed for each partial wave to reproduce ob-
served phase shifts. As for the P» channel the
above-mentioned separable models have difficulties
in describing the sign change in the phase shift as
well as in reproducing the nucleon pole. However,
this drawback was not considered to be serious
since the dominant contributions to the m-nucleus
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processes up to T""-200MeV were believed to
come from mN S waves and the P33 channel, while
the Pii phase shift stays rather small there. For
this reason the P» channel was even disregarded
altogether in most m-nucleus calculations although
it was felt that the effect of m-absorption through
the Pii channel could be sizable at low energies.

Later several experimental results were disclosed
all-indicating that even around the Pqi(b, ) reso-
nance region the genuine m-absorption cross sec-
tions are fairly large: typically as much as one-
third of the total m.-nucleus cross sections.
Theoretical explanation was then given in the
isobar-doorway models, where one finds a large 6
spreading width due to the coupling to the m-

absorption channel. At any rate it seems almost
established that in nuclei the pion couples to the
nucleon through the P» channel more strongly
than could be inferred from its (on-shell) low ener-

gy phase shift. This then suggests that for use in
m-nucleus problems, one should find a proper
description of the input P» amplitude at least

around and below the mN elastic threshold.
The simplest P» model that may meet the above

requirement is the direct nucleon pole term or its
unitarized version. In particular, the latter could

give a qualitative account of the phase shift for
T" & 30 MeV with a suitable choice of the ~EN
vertex cutoff. Thus one might think that for the
low to medium energy m-nucleus processes this

type of model should be sufficient, and is tempted
to leave out the remaining contribution to the P»
channel [referred to as the nonpole part (=NP—Pi i),
hereafter]. In fact almost all the calculations
which indude the efFect of the Pii channel (in con-

nection with the ir absorption) employed this view-

point.
Now, is the remaining nonpole P» contribution

(NP —P» ) really unimportant compared with the
direct pole part? In a recent perturbative calcula-

tion of NN~NN~, VerWest has found that the
nucleon pole Pi i contribution has become undesir-

ably large and had to be suppressed by an artificial
long range cutoff. This might indicate that the ef-

fect of NP —Pii may be important. To see this
more clearly, let us make a slightly detailed obser-

vation of the P» amplitude.
Let f~ be the direct nucleon pole term for Pii

obtained from, e.g., PS PS(y5) theory. Th—en we

write (f'"P below is defined such that in the elastic
region, f'"~=si 5,n„~e' exp)

Ref'" =f +&efgg,

which defines the nonpole background fzg in
terms of the experimental Pi i amplitude f'"~. As
may be easily understood from Fig. 1, Ref~/ is of
nearly the same magnitude as f up to T""-200
MeV, but with the opposite sign. At higher ener-
gies

~
Ref//

~
&

~ f ~

always holds'. Furthermore,
an important feature is, that while Ref'"i' is small

up to T""-200MeV, neither
~

Ref&/
~

nor [ f
are small in the corresponding energy range even
compared with, e.g., the dominant P33 amplitude
[by putting a cutoff at each rrNN vertex one could
make

~ f ~

smaller, which also makes
~

Ref~/~
smaller. However, the cutoff cannot be made arbi-
trarily strong in order to be consistent with, e.g.,
the peripheral one-pion exchange (OPE) contribu-
tion to the NN interaction or with the generation
of the b resonance, thus

~ f ~

cannot be dimin-
ished, e.g., by an order of magnitude at the ener-
gies under consideration]. Therefore, except at
very low energies, neither f nor its unitarized ver-
sion (with or without the vertex cutoff) may be
considered as good a representation of f'"".
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FIG. l. The real part of various amplitudes for the
mN P11 channel as defined in Eq. (1.1). The experimen-
tal amplitude is taken from Ref. 26 and is normalized
such that in the n.N elastic region it is expressed asi'f'"~=sin 5ep", where 5p is the real Pii phase shift.
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From our observation above, we shall assume the
following decomposition for the total P» ampli-
tude,

(1.2)

where fp is associated, in a certain way, with the
direct nucleon pole term and fNz is the WP —P~~
background (could be different from fNg), which
will be given a more concrete meaning later. One
might think that since both

( fp ~

and
~ fjyp

could be large, where
~ f„, ~

stays small (up to
T" -200 MeV), this decomposition is unnatural.
However, as we shall see 1ater, this in fact will turn
out to be a very natural representation off„,. In-
cidentally, from the point of view of efFective

Lagrangian theories of nNinter. actions, ' f~t may
be thought to obtain main contributions from the
t-channel 0 and p meson exchanges, while fp is of
course due to the nucleon pole. Thus the decom-
position (1.2) is a natural one also in this respect.

Before going into a detailed study, it seems use-

ful to refer to several recent works on the P» in-

teraction tailored for use in m-nucleus physics.
Schwarz et al. " considered a modified rank-one
separable interaction that admits the sign change in
the phase shift. This interaction, however, is ob-
served to have some undesirable off-shell
behavior. ' A rank-two separable interaction was
adopted in Ref. 13 to fit 5(P» ) and to reproduce
the nucleon pole position but the details are not ex-
plained. Since there turns out to be a close relation
between the two-potential type of approach (includ-

ing rank-two separable interactions) and our
present approach [although the former is not neces-
sarily motivated by decomposition (1.2)], we shall
discuss it in the Appendix. Yet another type of
model is proposed by Ernst and Johnson, ' which
is an amalgam of a Chew-Low type of theory and
the rank-one separable interaction that eventually
becomes close to a two-potential model. It repro-
duces the observed phase shift rather well up to
very high energies but has cutofF vertices whose
range is unreasonably. long as well as too small a
value for the mX coupling constant. Lastly, @e
mention a K-matrix parametrization of the P-wave
mlV amplitude in terms of direct and crossed N, 6,
and N~ (1470) poles. '

The following section presents a study in the
structure of the P» amplitude which eventually
gives an unambiguous and concrete form for the
decomposition (1.2} with the help of unitarity
(discontinuity}-analyticity considerations. Here one
also finds the structure of the mNN vertex function

and the dressed nucleon propagator. The latter
half of the following section is devoted to finding

the expression for the P» amplitude (as well as the
md% vertex and the nucleon propagator) including
the spin-isospin structure within the context of the
Blankenbecler-Sugar reduction. In Sec. III an ac-
tual parametrization of the amplitude is performed

by using experimental information up to T ' & 300
MeV assuming that NP —P&& is of rank-one separ-
able. In our present parametrization we have left
out the inclusion of inelasticity. As mentioned at
the beginning of this section, the inelasticity in the
mN P» channel becomes non-negligible at T~
-350 MeV. However, since we are considering
applications in m-nucleus interactions below this
energy, the present result will be sufficient.

A. Structure of the P~~ amplitude

tp(S) =h (S}d~(S)h(S}, (2 1)

Pl
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FIG. 2. (a) Usual (bare) direct nucleon pole contribu-
tion and (b) the same contribution when the md% vertex
and the nucleon propagator are dressed with radiative
corrections.

We shall begin with giving a more concrete
meaning to the decomposition implied in Eq. (1.2}.
Following Ref. 16 let us consider the t matrix for
the direct nucleon pole term [Fig. 2(a)] and assume
all possible radiative corrections to the mNN ver-

tices as well as to the nucleon propagator (external
particle legs are taken as on mass shell), thus we

obtain the "dressed" direct nucleon pole term [Fig.
2(b)]. To simplify our discussion we assume that
all the particles involved are of scalar-isoscalar na-

ture and that the coupling is in S wave (although
we shall retain expressions like the P» amplitude,

NN P» vertex. , etc.). Let the dressed nNN vertex
and the nucleon propagator be h (S) and d~(S),
respectively, where, as in Fig. 2(b), S =Q, Q =p
+q =p'+q'. We stress that both functions depend
only on S when momenta p and q (p' and q') are
on the mass shell (recall that we are assuming S-
wave vertices and scalar particles). Then clearly
the dressed pole term reads
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and the total P&& t matrix may be written as

t«, (S)=tp(S)+tNp(S) . (2 2)

tNP = tNP + ltNPd~dN tNp
(2) ~ (2) (2.3a)

Equation (2.2) is the concrete realization of decom-
position (1.2) (in terms of t matrices). As may be
clear from the above discussion, this decomposition
is unambiguous and physically well defined. Next
we would like to find some useful information with
respect to the structure of tNP(S), etc. Using some
general arguments it was shown some time ago'
that not only t«, (S) but also NP —P~~ part: tNP(S)
do satisfy unitarity relations (not merely the elastic
two-body unitarity). The reader is referred to a
proof found in Ref. 16. Here we shall take a some-
what difFerent path starting from the Taylor
method of decomposing amplitudes in terms of ir-
reducibilities. '

The method has been discussed by one of us' in
the study of the coupled +XX—NN problems,
where in fact the equations for tNP(S}, h (S), etc. ,
have been given. Therefore, we shall just briefly

explain the result here. Implying the S dependence
one may symbolically write

h =u+iud d~t~~,

dN =d~ +d~ x

X =X + lQd~d~A

(2.3b)

(2.3c)

(2.3d)

These equations were first derived by Mizutani, '

Mizutani and koltun (using nonrelativistic Hamil-

tonian), and later by Afnan and Blankleider. ' In
the above expression (i) tNP', the two-particle
irreducible mN t matrix (may be regarded as a po-
tential), (ii) dN(d ); the dressed (or complete) nu-

cleon (pion) propagator, (iii) u; the two-particle ir-
reducible mNN vertex, (iv) dN ', bare nucleon propa-
gator, and (v) X' '(i =1,2); i-particle irreducible nu-

cleon self-energy operator. As for the two-particle
irreducible operators t~p u, and X' ', they are
characterized by the S-cut structure in which the
closest branch point is further than the one for the
mN elastic unitarity: Sb(re:el) =(m +p), where

m and p are the masses of the nucleon and the
pion, respectively. Incidentally, we note that our
present amplitudes (or operators) are related to the
corresponding ones in Ref. 18 by

d = id (R—ef. 18),

(tNp, h, X"')=i X (corresponding quantities in Ref. 18) .

Next we study the discontinuity structure across the mN elastic unitarity cut (higher discontinuity structure
is not considered here). Thus with

M(S)=—A(S+) —A(S ), S-+:S+i@ (—S m-ay imply S+ in the following)

we obtain from Eqs. (2.3)

htNP(S}= itNp(S )p(S)tNp(—S+),

hh (S)= ih (S )p(S)tNp(—S+),

(2.4a)

(2.4b)

d p~d pw 4p(S)= I 5 (Q pN p)——
(2m. )

X [ 2n5'+'(PN — m)][—2m—5'+'(p —p )]
hdN(S) = idN(S )h —(S )p(S)h(S+)dN(S+)

+[1+dN(S )X'"(S )]rt(S)

X [1+X'"(S+)d„(S+)], (2.4c)

1 q—(in the mN c.m. system),
(2m) 4 S

(2.5b)

l}X"'(S}= ih (S )p(S)h (S—+), (2.4d)

where the one- and two-particle phase space factors
are

[S—(m+@,) ][S—(m —p, ) ) ~+~ 2 2

4S

ri(S) =— 2n (5(S—m —), . (2.5a) —=8(p, }5(p'—a') .
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The proper renormalization of the nucleon self-

energy requires

X"'(m') =0,
lim d)v(S)X")(S)=0,

S-+m ~

(2.6a)

(2.6b)

and this corresponds to a twice subtracted form for
d)v(S}.

Taking this into account and noting that t~p(S),
etc , ar.e real analytic in S, Eqs. (2.4) become, for
S & (m +2(u )

Imtivp(S) = —Y~p(S)
I
tNp(S)

I

'

Imh (S)= —
z h (S )p(S)tNp(S),

Imd)v(S) = n5—(S—m ) ——,p(S}

x Ih(s) I'Id~(s}I',

ImX"'(S) = ——,p(S)
I

h (S)
I

(2.4'a)

(2.4'b)

(2.4'c)

(2.4'd)

With the condition in Eq. (2.6) the last two equa-
tions above are readily solved in terms of h (S)

X(l)(S) (S 2)2 1 I" p(S'}
I

h (S')
I

'dS'
@(S)

271' (m +@) (S'—S+}(S' m }
(2.7a)

dN(S) '=S —m +X"'(S), (2.7b)

where 4(S) is an arbitrate (within our present
study) real analytic function with possible
(i) Castillejo-Dalitz-Dyson (CDD) poles below the
elastic threshold and (ii) the lowest branch cut
starting at S =(m +2@) which takes care of the
multiparticle discontinuity contributions to d)v(S).
Note that the nucleon wave function renormaliza-
tion constant is given here as

Zp
' ——lim d)v(S}(S—m ),S~ co

where

(2.8)

fÃp(S) — t)vp(S)
1

32 S
(2.9)

0&Z2 &1 .

As for Eq. (2.4 a) it is just the elastic unitarity rela-
tion. As mentioned earlier, it is possible to show
that t~p(S) does also satisfy inelastic unitarity.
Thus defining the scattering amplitude

I

contained in h (S) goes through NI' —P)). It may
be worth emphasizing that the final state interac-
tion at the rrNN vertex h (S}is not through t„,(S).
In fact using Eqs. (2.1), (2.2), and (2.3b) one finds

h = 0 —ltlCkmdNttot

—lQl~d~ hQ~ h (2.11)

tp(S)=
I
h(S)

I
d)v(S), (2.12)

it is easy to show with Eqs. (2.7), that tp(S) does
satisfy elastic two-body unitarity for S & (m +2p, },
which means that the associated amplitude can be
characterized by the real phase 5p(S) through

which has been obtained by Nutt and Shakin as a
nonlinear equation for the completely oA'-mass-

shell md% vertex h with u taken as the mNX cou-
pling constant 6 (they included spin-isospin struc-
ture).

Defining

f)vp(S) = . I. 1Np(S}e —1]
1 2i 5'(S)

2lg
(2.9')

Of course rlNp(S)=1 for S&(m+2)M) . On the
other hand Eq. (2.4'b) tells us that for S
& (m +2(M)

h(S) ~e (2.10)

in the nN c.m. system, one could associate fNp(S}
with its 'phase shift" 5)vp(S) and "inelasticity"
ri)vp(S) through

fp(S) =—,tp(S)
32m' S

1 2i8p($)
e ' —1

2l(l

and the amplitude for the dressed nucleon pole
term reads

fp(S}=—
~ tp(S)
1

32m. S
2i5)iP(s)f (S)

(2.12')

(2.13)

which implies the final state interaction of m and N in the ~N elastic region. This suggests that the to-
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tal amplitude f„,(S)[=fp(S)+fzt (S)] or t«, (S)
may be associated with some kind of two-potential
scattering mechanism at least in the elastic region.
This problem will be discussed in the Appendix
where the reader will eventually find that it is in

fact the case.
With Eqs. (2.9'), (2.12), and (2.13) it is trivial to

show that

5„,(S)=5t (S)+5M (S), [S& (I +2@) ], (2.14)

where 5„,(S) is the total (and observed) phase shift
associated with f„,(S). Since tt may be regarded
as the unitarized nucleon pole term, it appears that
our previous argument started from Eq. (1.1) can
be translated into the one based upon Eq. (2.14).
Actually, 5&($) can be shown to be always negative
provided that d~($) has no zero below the AN

elastic threshold. ' The fact that 5,«(S) stays small

up to T~ -200 MeV indicates that in this energy
region 5Ni (S)-—5p($). However, we do not yet
know the magnitude of 5' (S) or Si ($) up to now.
To obtain these quantities and thus t„,(S), tt ($},
etc., several procedures have been used: (i) Within
the elastic approximation tie�(S) is obtained from
N/D calculation and the resulting 5Nt (S) is used
in the form factor dispersion relation with Eq.
(2.4'b) to find h(S) [a constraint; h(m )=G, is im-

posed] and then dN(S) from Eqs. (2.7), (ii) an ex-

tended coupled-channel Lee model is utilized to
find the relevant quantities, and (iii) the form fac-
tor dispersion relation i.s used to calculate the so-
called incomplete n.NN vertex K(S) from 5«,(S)
and rt«, ($) (experimental) first, and E(S}is then
used to calculate d~(S), and the combination of
E(S) and d~(S) leads to h (S) and finally to
t~i (S). Since our present aim is to obtain the
irN Pj i channel amplitude [and so the mNN vertex
h (S)] for practical use in the ir-nucleus physics, we
shall adopt a more simple-minded way: To
parametrize tNt (S), assuming that it is rank-one
separable and together with a simple parametriza-
tion of u [Eq. (2.3b)] we obtain h (S), dz(S), and
thus t„,(S). Then the parameters are adjusted to
reproduce the experimental quantities [5„,(S), G,
and the scattering volume] by the X procedure. In
the next subsection we shall study the spin-isospin
complications, combined with the Blankenbecler-
Sugar reduction.

in particular

p= —q=k~

and i, f, j: nucleon spin state; a, i), v: nucleon

isospin state; a, b: pion isospin state.
(ii) Nucleon spinors are normalized as

u;(p )uj(p )=2m5i,

gu;(p )u;(p )=p'+m (p'=y~ )t,

(2.15a)

(2.15b)

where the positive sign (negative sign) corresponds
to the summation i over positive (negative) energy
states. Equation (2.15) is satisfied with (e.g., for
positive en;.rgy states):

u;(p )=QE~+m 0'p
Ep+m

(2.16)

with E~=(p +m )' and g;, the spin state
(j,+g, =5;, ).

(iii) Nucleon isospin states are designated as

G, i-(i ~) .

our formalism manageable for practical use. One
might thank that the following rather detailed
derivation is not needed. However, in order to
clearly see, for example, the nature of the +X' ver-

tex (if it is pseudovector or pseudoscalar} we con-

sider that the following argument should be useful.

Yet, uninterested readers could skip this subsection

up to Eq. (2.28). First, let us define various quan-
tities used in what will follow.

Figure 3 shows the kinematical situation we are
considering.

(i) Specifically, we write, in the mN c.m. system

B. Th,e P~~ amplitude in the
Blankenbecler-Sugar (Bb-S) reduction

Here in this subsection our main purpose is to
introduce spin-isospin degrees and also to make

(a) (b)

FIG. 3. Kinematics for (a) T~p(+I' —~lJ) amphtude
and (b) the mNN vertex with the nucleon (with momen-

tum Q off-mass shell). See Sec. II B.
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X„(X'„X„=n,+X~=1) . T~p(k', S,k), (2.17)

Now the XP t matrix in the nucleon spin-isospin
space is written as

whose matrix element for on-mass-shell nucleons
reads (in nN c.m. )

(2.18)T~p( f~k ~S~ i k) =X~ uf ( k ')T~p(k' S k)ui( k )X~,

where f—:(f,ri) and i = (i—,v), respectively. As for the vrNN vertex [Fig. 3(b)] it consists of four independent
scalar functions'of three independent kinematical invariants in the case where all the particles are oA'-mass

shell: p +m . In most applications in ir-nucleus problems where a Blankenbecler-Sugar (Bb-S) type of
reduction (to be discussed later) is adopted, the nucleon with momentum p may be put on-mass-shell (how-
ever, the nucleon with momentum Q may not be close to its mass-shell after absorbing the pion momentum
q). Then we have two independent scalar functions of two kinematical invariants which we choose to be
S(=—Q } and k . Thus we may write the nNN v.ertex function as (see Ref. 25)

1,(S,k }u;(p )X„=G I (S,k ) 2' +r (S,k') r, },u, (p )X. ,
2Pl

(2.19)

where 6 is the mX renormalized strong coupling constant, so that when all the particles are put on the mass
shell (nucleon with momentum Q to be positive energy on-shell state)

(2.19')

It may be worth mentioning here that Eq. (2.19') can be rewritten as

must be satisfied. In Eq. (2.19}function I (S,k ) is accompanied by the projection operator for negative en-

ergy nucleon states. In forming the nucleon pole term, I" therefore contributes to the so-called Z graph in

the mN S~~ partial wave. Since our interest is in the P~~ wave and in order to be consistent with a Bb-S
reduction, we may set I"=0. In fact, this appears to be a very good approximation (see Ref. 23). So we
now have

I,(S,k )u;(p )X„=GI (S,k ) r, y u;(p )X„.
2@i

l, (S,k');(p )X,= r(s,k'),gy;(p )X2' (2.19")

(2.20)

so that the resultant mNN coupling is of pseudoscalar-pseudovector (PS-PV) nature. Note that before mak-
ing the above-mentioned approximation Eq. (2.19) presents a irNN coupling which is a combination of PS-
PS and PS-PV whose ratio is a function of invariant scalars.

Now we want to find the expression corresponding to Eq. (2.3b). Clearly I,(S,k )u;(p )X„corresponds to
k (S), and we thus need the two-particle irreducible vertex which corresponds to u (S). We introduce this as

I,' '(S,k,p )u;(p )X„=GI' '(S,k,p ) r, y u;(p )X„,2'
where for reasons to be clear soon we write the explicit dependence on p . With I ' ' introduced above the
expression for I (S,k ) is

I (S,k }r,u;(p )=1' '(S,k,m )r, u;(p )

+i g I I' '(S,k',p' )r, T (k', S,k)u;(p )
b (21r) Q™[(Q/2 —k') —p ]

(2.21)

with p'=Q/2+k', where the common factors have
been eliminated from both sides of the equation.
We note that up to this stage the dependence of
I' ' on p must be written out since Eq. (2.21) still

contains I' ' whose two nucleons are still off'-

mass-shell in general.
Three more steps are to be taken before finding a

handier expression for the vertex r(S,k }.
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(1) Using a familiar decomposition into isosym-
metric and antisymmetric part:

g rbTNP (TNP + TNP )ra
b

TNP =TNP 5ab + 2 [rb & ra ]TNP (2.22)
~(I= 1/2)
~NP +a ~ (2.23)

we can perform a summation over b in Eq. (2.21}
and find

~(I= 1/2) ~

where TNP is the t-matrix operator in the nu-

cleon space projecting out the mX I= —, states.
With this ra can be factored out from Eq. (2.21).

(2} The Bb-S reduction is applied to the propagators in Eq. (2.21). This preserves the mN elastic unitarity
structure while disregarding the negative energy intermediate states and amounts to making the amplitude
on-mass-shell but oA'energy shell. This is done by the replacement

1 1 -& —& —& (Ek' cok')
l2m—i g us(k ')us(k ') G(S, k ')5[ko—

Ir" m[(—Q&2 —k')' —u'] s
(2.24)

where

(Ek+~k }
G(S,k')=

2Ek'Nk [S+ (Ek +co—k ) ]

w]th ~k, =(k '2+i]2)]~2, Ek =(k '2+m2)]~2. Thus with (1) and (2) Eq. (2.21) now reads

I'(S,k2)u;(p )= I ] '(S,k, m )u;(p )

d k'
+ g I I' '(Sk' m )us(k')

(2]r)'

(Ek'+~k') I =]/2X TNP (5,k', S,i, k) .
2Ek o]k [S+ (Ek +o]k )']—

(2.24')

(2.25)

In the above equation

TNP
' (S,k', S,i,k)=us(k')TNP ' (k', S,k)u;(p ),

(recall that p =k) and kI] is put on its relative energy shell

Ek' k'
ko ——

2

(2.25')

To be consistent with the above relative energy
shell procedure by' the Bb-S reduction, one also
takes ko to be on its relative energy shell. That is,
one makes the following identification

I(S,k )=I(S,k ),
I "'(S,k', m') =r"](S,k 2)

(suppressing the m dependence),

(2.26a)

(2.26b)

TNP
' (5,k', S,i,k)=TNP ' (5, k'&S&i, k ) .

(2.26c)

So Eq. (2.25) reduces to the one involving essential-
ly 3-(spatial) vectors. In an arbitrary reference

I

frame k, etc., may be regarded as the relativisti-
cally invariant scalar products of magic vectors.

(3) One makes the on shell approximati-on to the
nucleon with momentum Q. This means that

Qf (Q ) ui'(Q ) (in AN c m Q=O), . (2. .27)2'
for a positive energy state f.

Of course (2.27) becomes an equality for on-shell

Q. In the case of off-shell Q, the contribution lost
due to the approximation (2.27) may be effectively
contained in I'(S, k ) in the course of its deter-
mination using experimental information.

Now taking into account the arguments above
and using the expansions
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T„p' '(f, k'St.,k}= g & &fly'~JM&&i(k')Txz(t)' (Ik'I s Ik I) Ii"(k) & 2tlp
~

JM&
JI

pp, 'M

' 1/2

(2.28a)

X+„uI(Q=O ) r, y,u;(k )X„=
(
Ek+m

we finally find

~

k
~

& —,i If i'
~

——,f & I ( '(k)' & —,»u
~

—,rt &, (2.28b)

r(s, k ') =r"'(s, k ')+(,) -, &E +m "dk'k' r"'(S,k')«k, +~k)~ivf(i==I)"(Ik'I S I" I
}

(2m)' v'Ek+m 2Ei, ~k [S+ (Ei, +—Nk }']
g.29)

r

p
4m

r(sk )=1 forS=m, k =—p 1—

Defining

with the normalization condition. at the nucleon pole

h(s k2) 24~m

Ek+m

1/2

Gkr(s, k ), (2.30a)
I

1/2

R(S,k )= GkI' '(S, k )
Ek+m

we find the equation corresponding to Eq. (2.3b)

h(S, k )=R(S,k )+
k'2dk' (Ek+cok)R(S, k' )TNP(1=1) (

I
k'I S

I

k
I
}

(2m) 2Ek cok [S (Ek +cok )—]

(2.30b)

(2.29')

and the corresponding expressions for the nucleon self-energy, nucleon propagator, tz(tp }, etc. , are just the
same as in subsection II A. For example,

X"'(S)=(S—m ) I P ' ds'+4(s)
2~ (m+p) (S' S+)(S'—m )

dN(S) '=S —m +X")(S),

(2.7'a}

(2.7'b)

whereas the spinor nucleon propagator reads (g+m)d)(, (S),(s =Q ). Also the angular momentum decom-
posed on-shell t matrices are written as (recall subsection II A),

t~p'""'(S) =T = ='
(

i
k i,s,

i
k

i ),

tg,"'""'(S)=h(S,k )h(S, k }d~(S),

in the mX c.m. , where

[S—(m+p) ][S—(m —
(

)2]

4S

(2.31a}

(2.3 lb)

is the n(or N) c.m. o. n-shell momentum. A simi-
lar relation holds between k ' and S' in Eq. (2.7').
The definition of amplitudes and various phases
are also the same as in Sec. II A.

III. DETERMINATION OF THE AMPI ITUDE
IN THE SEPARABLE APPROXIMATION

In order to eventually find a convenient
parametrization of the P&& amplitude, we shall

adopt the follow simplifying assumptions;
(i) NP —P» t matrix is assumed as rank-one separ-
able which may actually be a good approximation
due to the Roper resonance. That is,

=g (
I q I

}r~p(S)g (
I p I },



2642 MIZUTANI, FAYARD, LAMOT, AND NAHABETIAN 24

where
1 1

rNp(S)
(2~)

dk k (Eg, +cok )g ( i
k

i
)

X
2Ekcok[S (Ek—+tok) ]+ 2

with A, =+1 according to whether this NP interac-
tion is repulsive or attractive. Here we take
A, =—1 based upon the observation in Sec. I.
(ii) We suppress the explicit S dependence of
I' '(S, k ) since the possible S variable singularity
starts at (m +2p), and may be considered as
smooth function of S. (iii) We assume a monopole
form for g and I' ':

g( fk/)=

1.&'&(S, k ')= k'+

(3.2a)

(3.2b)

A more complicated functional form may be taken,
but at the present state of sophistication the above
choice seems to be enough (an exponential type of
form factors were also considered with the result of
comparable fit to data. So we only mention the
monopole results here). (iv) We take 4(S)=0 in
Eq. (2.7'), namely, (i) no CDD poles are assumed,
and (ii} no explicit account of the inelasticity will
be made. This should be all right for applications
for T~" &300 MeV.

With the parametrizations (i) and (iii) mentioned
above we are left with four parameters a, P, y, and
5 to be determined from the fit to experiments.
The experimental data (scattering volume and
phase shift in the n.N P» channel) are taken from
the recent analysis by Koch and Pietarinen.
Then we have performed a 7 fit constrained by
the condition I (S,k ) =1 at the nucleon pole
[S=m, k =—p (1—p /4m )]. It may be
worthwhile to remark in passing that we have also
tried a fit with the P» data by Rowe et al.
(which has a very small scattering volume) to find
that a reasonable result was obtained only when
the n.NN coupling constant f tv' G l4n(p, l2m——).

was set =0.06 or smaller for which the standard
value is considered to be =0.080. Thus we did not
use this set of data. %e note that a similar tenden-
cy has been observed by Schwarz et al." (see also
Ref. 15}.

%e shall present a couple of typical results in
the following which we call models A and B,
respectively. The corresponding parameters: a, P,
y, and 5 are found in Table- I together with the nu-
cleon wave function renormalization constant Z2.
Table II shows the pole and nonpole contributions
to the scattering volume.

Also the corresponding 5«„5~, and 5~p
(5„,=5&+5') are shown in Fig. 4 (recall the de-
finition of the phases in Sec. II A}. Both 2 and 8
show that while 5„,stays small up to T""-200
MeV the magnitudes of 5z and 5~p are by no
means small, which is what we have speculated in
Sec. I in terms of Ref'"r, etc. Thus we have
demonstrated explicitly that in order to describe
the P» channel adequately in the intermediate en-

ergy region one must go beyond the simple (unitar-
ized) nucleon pole model. A difference exists, how-

ever, between the two models. Model A better fits
the scattering volume (ai ) and the lower energy
part of 5„„while the situation is just the opposite
with model B. This difference is caused solely by
the fact that in model A a very strict constraint is
imposed on the value a&& in the g fit. Knowing
that the experimental determination of very low en-

ergy mÃ phase shifts is less accurate than at higher
energies, we prefer model B, where the constraint
on a» is looser.

A very interesting feature is that while the
model dependence of 5,~, is rather small (as it must
be from the fitting procedure), models A and B
have produced considerably different 5& and 5~p.
In particular, 5N+ in model B shows a resonance
behavior at T~ -250 MeV (MS —1280 MeV).
This is then reflected in the behavior of Z(S);
Z(S)=d~(S) '. (S—m ) ', where Z2
=lims „Z(S),and the mNN vertex with one nu-

cleon off mass shell: I (S,k ), where k is the on-
shell mX c.m. momentum

TABLE I. Values of the parameters for fits A and B and the corresponding nucleon wave
function renormalization constant.

a (fm ') P (fm ') y (fm ') 5 (fm ) Z2 Qii (p )

A

B
116.25
196.60

2.5794
3.9245

4.5265
5.6207

7.6221
6.4390

0.7740
0.6341

—0.0821
—0.108
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TABLE II. Values of scattering volume a~~ and its
decomposition into the pole and nonpole contributions
(in unit of p ). The experimental scattering volume is
a ii"———0.082 p

60 1100
I

(0)
(deg )

VS (MeV)

1200 1300

pole nonpole

—0.22S
—0.307

0.143
0.199

v S =&k'+m'+V'k'+„2

2 [S—(~ +p, ) ][S—(m p—)],k
4S

total

—0.082
—0.108

40

20

~NPrr
~~~~A~~

rvr
//' r

prI 0

/
pr

p ~ tot

0~~

(See Fig. 5.) Namely, both ~Z(S)
~

and

~

I"(S,k )
~

become considerably greater than unity
(the value at the normalization point: S =m ) and
peak at around MS =1170MeV (T' —110 MeV),
while ReI (S,k ) passes zero at the resonance ener-

gy for the NP —P~~ amplitude and becomes nega-
tive [Fig. 5(b)]. On the other hand, model A re-
sults in smooth 5&p and consequently smoother

~

Z(S)
~

and
~

I (S,k ) ~; they stay near unity over
a wide range in S [Fig. 5(a)].

The resonance behavior in 6~z is not so unusual.
In fact Ida determined ttvp in a N/D calculation
to find that it resonates at ~S —1230 MeV
(T""-180MeV). Also in an extended Lee model
it has been found that by fitting 5«,(P» ), tie has
a resonance at even lower energy (MS -1 115
MeV). One could even find a pole below the
elastic threshold using a form factor dispersion re-
lation combined with the P~~ experimental infor-
mation. %e stress that evidently no such reso-
nance (or pole) has been observed in the physical
~N P~~ partial wave. Thus one may guess that the
possible NP —Pii resonance (or pole) mentioned
above is eventually canceled by tz so that no rem-
nant of the NP resonance exists in t„,. This is in
fact the case as proved in Ref. 16 (see also Refs. 23
and 27). There is an observation which states that
this NP resonance may be the Roper resonance
lowered in energy as the repulsive direct nucleon
pole contribution is absent in t~p.

-20

)00 )&00

(b)

80

60

40

20

I/

,//i/
ip

0~~

100

//

]]

!~
I/i

100

200
T (MeV)

WS (Mev)

1200

lf

(/
it/

I

200
T (MeV}

300

1300

300

IU. DISCUSSION AND CONCLUSION

In the present paper we have studied the n.N P~~
amplitude based upon the observation that the total

FIG. 4. Phase shift 5t„and its pole (5&) and nonpole

(5') components in (a) model A and (1) model 8,
respectively. Experimental points are from Koch and
Pietarinen (Ref. 26).
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13001000 ~+)" 1100 12QQ
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FIG. 5. Real and imaginary parts of the vertex I
and the absolute value of I as we11 as the renormaliza-
tion measure Z of the nucleon propagator for (a) model
A and (h) model B, respectively. The solid line:

~

I ~,
dashed line: Rel, dot-dashed line: ImI, and dotted
line: fZ f.

amplitude consists of the (repulsive) nucleon pole
term and the (attractive) remainder: NP —P~~.
Then we have shown that this decomposition is
physically sound and can be made unambiguously.
Based upon this observation we have determined
the parametrization of the P» wave amplitude
with an application in m-nucleus physics in mind

We have obtained a couple of typical parametri-
zations (called model A and model B, respectively).
Considering the quality of the experimental data at
low energies, we think model B to be preferable.
An interesting feature is that in model 8 the t ma-
trix for the nonpole part (NP —P» ) exhibits a res-
onance behavior at T ' -250 MeV, which is then
reflected in the strong energy dependence of the
nucleon propagator and the mÃN vertex function
(with one nucleon off-shell). Considering some

other previous studies, this behavior does not seem
unrealistic. To see in more detail if this XP —P»
resonance actually exists or not and, if so, to know
the precise position of the resonance, requires a
dynamical calculation as we have only used some
analyticity structure of the amplitude to 7 fit the
experimental data. Some simple model calcula-
tions in favor of such resonance are in fact avail-
able 22~23

As discussed somewhat in detail in Ref. 28, one

may be able to observe the resonance in XP —P»
in m-nucleus interactions if it ever exists, although
it is not an observable in the physical mX scatter-
ing: Since tz and t~p appear separately in m-nucleus

interactions, this possibility does exist. We em-

phasize in this connection that it is essential to
know tz and tzp separately, but not t„, alone if one
aims at applying one's mX P» model amplitude in
m =nucleus physics.

From what we have discussed above, it should
be interesting to apply the present models A and B
in the calculation of elastic md scattering, md~NX,
and %%~XX to see which model seems more
realistic or to see if the NP —P» resonance does
exist or not. We are currently working on this as-

pect, and a preliminary result on the elastic md

case has been reported with the P~i model close to
model A of the present work. Of course our
present model is still very simple and various im-

provements are due in order to be more definitive.
Presumably the most important improvement to be
made in the next step may be to incorporate the ef-

fect of inelasticity, which might play an important
role for or against the possible XP —P» resonance.

Lastly, in applying the present P~& amplitude (or
nNN vertex function) to n.-nucleus problems,
where the pion is rather highly off mass shell, we

suggest that one should take the on-shell t~p h,
etc., [on-shell h means h (S,k ), where v S

+m ++k +p ] and multiply some cut-
off function simulating the off-shellness of the
pion, as found in Ref. 20. The cutoff mass should

be & l GeV/c in order to be consistent with the

peripheral XN phase shifts if one adopts a mono-

pole type of cutoff function.
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APPENDIX

As may be guessed from our observation in Sec.
II A, the t-matrix separation found in Eqs. (2.1}
and (2.2) is closely associated with the well-known
two-potential scattering formula. Here we shall ex-
plicitly show the relation (see also an appendix in
Ref. 30).

Let us begin with specifying the potentials. We
assume for brevity the S-wave mN interaction
without spin-isospin degrees of freedom (which,
however, we call the Pi] channel just like in Sec.
II A). The potentials are written as

r (S)=[A, '(S)—X(S)] (A4a)

with

X($)=gG (S)g, (A4b)

h (S,q) =g(1+GpT, ) (A5)

may be regarded as the m.NN vertex function and
thus one can write

Tz h(S——,p)dz(S)h (S,q),
where in the totally on-shell situation h is just the
function of S.

Making the following identifications

t~p= Vi, d(2) (p)

may be identified as the dressed nucleon propaga-
tor d~($). Then clearly X(S) is to be considered as
the nucleon self-energy X"'(S).

Now

Vi = Vi(p, S,q),

Vq =A,(S)g (p)g (q),

(Ala)

(Alb)

Np =T1& ldNdm=Gp
(&)

0:—g, tp =—T2,

Ttot Ti+T2 ~

Ti = V& + Vi GpTi

(A2a)

(A2b)

where A,($) '=S —mo with mo the bare nucleon
mass. Thus Vz is considered to be the (bare) direct
pole term with g (p) the vertex function (sup-
posed to be two-particle irreducible, i.e., no m.N
elastic cut in S). Writing the free m.N propagator
as Gp, one easily establishes the relation using the
two-potential formula

one easily finds that Eqs. (A2}—(A6) do reproduce
exactly Eqs. (2.3) with X' '—=0, and Eqs. (2.1) and
(2.2).

Thus, it appears that one could work on the Pi ~

amplitude up to the end within the context of the
two-potential scattering formula. However, the re-
normalization procedure becomes opaque; the pro-
cedure corresponding to the once subtraction is
rather easy as it is essentially the elimination of the
bare mass by requiring

with

Ti =(1+Ti Go)Tg(1+ GOTi ),
T2 ——V2+ V2GT2,

G =Gp+GpViG =Gp+GpT&Gp .

Noting (Alb) and (A2d), one finds

'r2=g (p}'r~g (q),

where

(A2c)

(A2d)

(A2e)

(A3)

dh(m')-'=m' —mo' —X"'(m') =0,
but the twice subtraction which further requires
the vanishing of lim, d~(S)X' "(S) [Eq. (2.6b)]
is not trivial and the resultant physical picture is
not clear. To go through this point the most
transparent way is to exploit the discontinuity rela-
tions as we have used. Also, within the two-
potential formula it is very difficult to see the m.NN
vertex structure (either PS or PV) as discussed in
Sec. II B.
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