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An impulse approximation with relativistic corrections is derived to incorporate the fact
that each constituent nucleon of the target nucleus is moving in an average local central
potential generated by the other nucleons. The constraint imposed by current conserva-
tion is, described. An application of the resultant impulse approximation to reanalyze
symmetry tests in the A =12 nuclei induces a few subtle changes but does not upset the
standard interpretation of these experimental results.

NUCLEAR REACTIONS Impulse approximation with relativistic
corrections, derived in the presence of a local central potential, con-
strained by current conservation; symmetry tests in the A =12 nuclei.

I. INTRODUCTION

A microscopic treatment of electroweak interac-
tions in nuclei often begins with the invocation of
the impulse approximation (IA), in which the in-
teraction of the probe particle (such as y, e, p, and
v) with the whole nucleus is approximated by a
simple sum of the "elementary" interactions with
the constituent nucleons. In addition to the one-
body operator given by the IA, meson-exchange
currents (MEC), which give rise primarily to two-

body operators, are needed to complete the theoret-
ical description but generally expected to be of less .

importance. In view of the extensive literature'
in developing this "standard" theoretical frame-
work, most of us tend to conclude that there
remains, if any, little room for further improve-
ments. However, a careful thinker can easily find
many reasons for dissatisfaction, viz. :

(1) The one-body IA operators have been derived
as if the constituent nucleons in the target nucleus
were "free." In reality, however, each constituent
nucleon moves in a potential generated by the oth-
er constituents (nucleons and mesons).

(2) Although conservation of the vector current
(CVC) and partial conservation of the axial current
(PCAC) hold at the nucleon level, these symmetry
principles are, in general, violated by the resultant
nuclear IA currents. To restore CVC and PCAC
to the IA, interactions among the constituent nu-

cleons and the MEC should be formulated on the
same footing. This is not practical in the shell-
model description of the nucleus.

(3) Relativistic corrections become increasingly
important in medium energy electron elastic and
inelastic scattering as well as in detailed investiga-
tions of weak interactions in nuclei. So far, only
relativistic corrections in elastic electron-deuteron
scattering have been investigated extensively. '

(4) The Foldy-Wouthuysen (FW) transformation
is 'generally used in the derivation of the nonrela-
tivistic expression of the IA and MEC operators.
It is well known that the rionrelativistic operators
obtained in this manner are unique only up to cer-
tain unitary transformations. In addition, this
method is not applicable in the presence of a local
central potential.

The main purpose of this paper is to derive 'a re-
lativistically corrected impulse approximation
(RCIA) in the presence of a local central potential.
Instead of the FW transformation, in which an
operator is considered separately from the initial
and final wave functions, the reduction procedure
described in a previous paper is used to generate a
unique nonrelativistic representation of a given ma-
trix element. A modification of the RCIA to in-
corporate current conservation is suggested along
the same line as in our studies of parity violation
in electron-deuteron scattering. The formulation
of the MEC in the presence of a central potential
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is beyond the scope of this paper.
At the moment, it is not yet possible to elucidate

all major consequences of the RCIA since the
Dirac phenomenology, ' in which the constituent
nucleon of a nucleus is described by a Dirac equa-
tion with potentials given by the meson fields gen-
erated by the other nucleons, awaits more quantita-
tive investigations. We reconsider the test of fun-

damental symmetries in the A =12 nuclei"' to il-

lustrate effects caused by the presence of a central
potential but leave any quantitative determination
of relativistic corrections in, e.g., electron scattering
for future publications. However, an interested
reader is urged to look into any reaction for which

the efkcts described in this paper are relevant.

II. FORMULATION

We define the matrix elements of the polar vector and axial vector currents Vi (x) and A)„(x) between any
two on-shell nucleon states of definite four-momenta p" and p' ',

2 O~q~q 2
i 2ltlN g A, 2&N(p'")

l
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where q),
—=(p"—p(f')i, 6'i —=(p"'+p(f')i, yi ——yx, yxy„+y„y)„——2t)i„, cri„=(yiy„y„y)()—/( 2i), and

m)v =(mz+m„)/2 mz m„. The subscripts V, M, S, A, p, and E stand for vector, magnetism, scalar, axial
vector, pseudoscalar, and electricity, respectively. We suppress all isospin indices which can easily be intro-
duced whenever necessary.

Using the polar vector current as an illustrative example, we write the matrix element of this current be-
tween two nuclear states N;(p") and Nf (p'f'), after carrying out the integration over the c.m. coordinate,

&Nf(p'f')
~

Vx(0) ~N~(p"))&=/ gd' " Cf(. . . ,r"), . . . ) y "" ie"(q; V„)e;(.. . , r"), . . . )

f g d&r( ) $(&) y r (

a=1 a=1
(a)4f(. . . ,r, . . . )

X g e 'q' iBq'(q, V„)4;( . . ,r", . . .}.
a=1

A

e 'q' i8~ q 7',
a=1

Here, 4; (4f ) is the initial (final) internal wave function defined in the reference frame moving with the en-
tire nucleus and r "' is the spatial coordinate of the ath nucleon expressed relative to the c.m. coordinate
R=g," &x"'/A with x" being the ath nucleon coordinate defined in the same reference frame as for the

W( V)operator e~. The nonrelativistic operator 8& can be obtained from the relativistic expression I ~ of Eq.
(la) by the reduction procedure which has been discussed in a previous paper and is to be employed in our
derivation of the RCIA.

To take into account relativistic corrections up to the order p2/mN, with p the magnitude of some
characteristic three-momentum, we need to specialize our derivation to a particular reference frame since
terms of order p /mN are known to be frame dependent. Following the existing literature, ' ' we choose to
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work with the Breit frame, in which the three-momenta of the initial and final nuclei are treated symmetri-
cally, i.e., p"=—p'~'= qr'2.

Let us now assume that, in the rest frame of the initial nucleus, a constituent nucleon is described by the
Dirac equation

, y& ieA—&(x') i U&—(x') +[V(x')+i y&V(x')]+mz P(x') =0 .
L

Here, g(x') is a normalized Dirac wave function of binding energy B and e is the electric charge of the given
nucleon. We consider only the four-vector, scalar, and pseudoscalar potentials U„(x'), V(x'), and V(x'),
which represent the average meson fields generated by the other nucleons. ' The electromagnetic potential

Az(x ) is included since the formulation of the IA in the presence of a strong electromagnetic field (internal
or external) might also be of some theoretical interest. In this paper, all the potentials are assumed to be
real, central (i.e., functions of r '=—x ' —R'), and local (i.e., independent of 5/Bx&). Therefore, we write in

the rest frame of the initial nucleus

1 I(."(—r ', R')
P(x')=,—, P(x')g .

H r', R' (4)

Here, R'=—g"
l
x'"/A, g is a two-component Pauli spinor normalized to unity, and the spatial wave func-

tion P(x ') is normalized such that f d x'P*(x ')P(x ') =1. The operators E and H are given by

E(r ', R')= l cr.
8m~

I

—U(r ') —eA(r ') G(r ')o'
I

7'„'
—U( r ') —eA( r ')

I
(sa)

H(r ', R')= F(r ')o"
2m~

P

V —U(r ') —eA(r ')
I

(5b)

F(r ')—:2mtt[2mtt B+V(r ') ——Uo(r ') —e4(r ')]

G(r ')—:[F(r ')]

(5c)

4&(r ')=— iA4(r ')—.

The normalization condition is satisfied, viz. ,

f d x'P (x ')P(x')=1+0(p /mn ) .

To obtain the nonrelativistic operator 6~, we
need to rewrite f(x ') as a function of the variables
x and s which are defined in the Breit frame,
p"=—p' '=q/2. We note that '

x'=x —(x.q)q/(SA mn )

qtl(2Amtv)—+O(p /mdiv ),
/

s '= s —(p)& q)X s/(4Am~')+O(p Im~ ) .

Equation (7) imp»es

I+,(pXq) s
4Am~

r '=r —(r q)q/(SA mzz),

R'=R —qt/(2Am~) .

In view of Ref. 7, the phase factor generated by '

5R= —qt/(2Am~) from the initial state as well as
that due to the final state contributes only to the 5
fllllc'tloll 5(E —E/' go ) (energy conservation).
Noting also that corrections to the operators E and
H are higher order in p/mz, we obtain
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1 —K(r, R)+S(r,R)
f(x ') = - „- y(x g

Pqtp—( x )g,

with

V„
~(r,R)= — —(q r) q.

8A mN i

(9a}

adj oint. )

We are now ready to apply the reduction pro-

cedure of Ref. 7 to obtain the nonrelativistic opera-

tor 8x(q, V„) from the relativistic 'expressions given

by Eq. (la) or (lb). This consists of two steps, viz. :

(1) one calculates the operator

Qx(q; V„)—:d' I'~(q, 8}P,
and (2) one then obtains the operator 8x(q, V „)
from Qx(q; V„}by the substitution rule

l+ 28AmN

V„
Xq '0 (9b)

(9c)

The adjoint operator p can easily be obtained
from Eqs. (9a) and (9b} by taking its Hermitian
conjugate. (Note, in particular, that V„/i is self-

The procedure applies identically to the reduction
of the four-component Dirac wave function in the
final state. This yields

~ + +
I q ~ xpt —iq. x8

V„~(V,+iq/(2A), g—:1 ——
A

(lob)

This substitution arises from the extraction of the

c.m. coordinate in the Breit frame. The resultant

RCIA for both the polar vector current V~(x) and

the axial vector current Ax(x) are recorded im-

mediately below. %'e note that these final results

are unique. Furthermore, evaluation of terms of
order p /mN given by our RCIA is meaningful

only in the Breit frame.
For the polar vector current Vx(x), we have

(,N/(p'/')
~

&(0)
~

&q(p") )
~ RciA

—gq —2U(r") —2eA(r ')+iqXo

j [VF(r ")]+io"X [VF(r "')] [
2mN

+f~(q'}
2mN

lqoqS(ss"+ — s6'M' fs(q ) s ( (++—(p &sss (1 q'')
4mN m~

(1 la)

(&/(p'/'}
[ Vw(0)

~
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~
~ ~~g e 's' ( f (q ( (+- +fss(q ), fs(q'(, ((+0(q'S—ms'(I ~') .
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Here h~, 5v, and 5M are defined by

/q ~ F(r) cr X 2g—.———gq —2U(r) —2eA(r} +iq ' —[ [VF(r)]+i o X[VF(r}][,
l

5~ ———(iq r)q /A +(2ig/A)o X—.q —G(r) q +2io"qX g——U(r) —eA(r)
l l

+t i [VG(r)] q+cr [VG(r)]—Xq [, (1 lc)
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r
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l

For the axial vector current A~(x), we have
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The conventional IA is reproduced if (i) terms of order p /mA are neglected from Eqs. (11) and (12); (ii) the
deviation of F(r) and of G(r) from unity is neglected; and (iii) the vector potentials U(r) and A(r) are
chosen to vanish identically. However, a minor difference from the conventional IA should be noted, viz. ,
the extraction of the c.m. coordinates gives rise to a correction factor /= 1 —I/A which appears in our
RCIA but not in the conventional IA.

For a conserved polar vector current Vx(x), such as the electromagnetic current or charged weak polar
vector current, the nuclear polar vector current generated by the conventional IA or by the RCIA is in gen-
eral at variance with current conservation (CC). Assuming that the time component of the polar vector
current is reliably given by the RCIA, we follow Ref. 8 to defined a new IA scheme:

{ I 4( ) jRCIA/CC= { I 4( } jRCIA ~ (13a)

e

f d3xe 'q "eo {V('x) jRcIAzcc= —f d xe 'q'"[~ { I'4(x) jRcIA] ~ (13b)

f d'xe ' "e'+'{@x)jRCIAycc

=f d x e ' ~ "e+' {V( x ) j RCIA

]/2
2m(2L+1) . L 1+ d x g ( i) — (V {V(x) jRcIA+[~, I V4(x) jRcIA]) 1+x«+1 [q~

'
dx

Xj,(
I q I

x}I'I,,—I(x).

Here, H is the Hamiltonian operator, ep=z '

=q/~ q ~, and e+ ——+(x'+iy )/~2 with x',y, z
three orthogonal unit vectors. To obtain Eq. (13b),
we use woe '" "=(i/'~ q ~

)Ve ' '"
and invoke

the continuity equation after integration by parts.
The derivation of Eq. (13c}has been given else-

where. ' We refer to the scheme defined by Eqs.
(13a)—(13c) as the "relativistically corrected im-

pulse approximation constrained by current conser-
vation" (RCIA/CC).

There is an important difference between the
RCIA/CC and the conserued IA of Ref. 7. In Ref.
7, an off-shell form factor proportional to qx/q is
introduced to restore CC to the IA. Further stud-
ies indicate that CC is restored at the expense of
analyticity. In the RCIA/CC, Eqs. (13b) and (13c)
are implemented simultaneously to ensure both CC
and analyticity. This result illustrates why the
RCIA/CC is more attractive than the conserved
IA proposed in Ref. 7.

For a partially conserved axial vector current,
such as charged weak axial vector current, similar
considerations are not so useful for two major
reasons, viz. , (1) it is difficult'to assess which com-
ponent of the axial vector current Ax(x) is deter-
mined more reliably by the RCIA, and (2) the
operator characterizing the divergence of the axial
vector current (e.g., the pion source current) is, in
general, more uncertain than the current itself.

(13c)

I

Therefore, we do not modify the RCIA for a par-
tially conserved axial current although the nuclear
axial vector current generated by the RCIA might
be at variance with PCAC.

To utilize the RCIA of Eqs. (11) and (12) or the
RCIA/CC of Eqs. (13) and (11) in investigations
of electroweak interactions in nuclei, one must
know how to obtain the input functions F(r ),
G ( r ), U( r ), and A( r },or equivalently, the poten-
tials U&( r ), A„(r ), and V( r ). According to the
interpretation that the potentials U&(r) and V(r)
represent the "average" meson fields generated by
the other constituent nucleons, one can; in princi-
ple, generate U&(r) and V(r) in a self-consistent
manner (e.g., via the self-consistent Hartree approx-
imation). ' By the same token, one may study ef-
fects caused by the electromagnetic potential A&(r )

in the case of heavy nuclei (large Z) or in the pres-
ence of a strong external electromagnetic field.

In general, one expects from Eq. (5c) that either
of VF(r}, and VG(r) is of orderp /mA. (This is,
of course, subject to explicit quantitative justifica-
tion. ) Accordingly, terms proportional to either of
VF(r), and VG(r) can be neglected from b, sr,
5V 5M 5+ k2 63 and b, E in Eqs. (1 lc) and
(12c). Other such terms which appear in Eqs.
(1 la}, (12a), and (12b) represent effects of order
p /m~ and so enter a reliable determination of re-
lativistic corrections.
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To date, electron scattering off light nuclei

may provide us with an opportunity to investigate
relativistic corrections in a quantitative fashion.
This task is a diAicult but important one, since we
need to locate the kinematic regime for which not
only the (nonrelativistic) expansion in powers of
p/mN remains valid but effects of order p /mz
become sizable. The diAiculty arises partly from
the subtraction of the contribution due to meson-
exchange currents (MEC), of which the formula-

tion at medium energies must be scrutinized as
well. Nevertheless, a careful formulation of both
relativistic corrections and the MEC at medium
energies has already become indispensible for
understanding experimental data on electron
scattering off light nuclei. Since it is not the scope
of this paper to discuss the MEC, we conclude this
section only by appending two additional com-
ments on relativistic corrections, viz. :

(1) It is particularly important to obtain reliably

U„(r ), A
& ( r ), and V( r ) via a self-consistent ap-

proach, since a detailed knowledge of F( r ), U( r ),
and A(r ) is required in a quantitative treatment of
relativistic corrections.

(2) One must apply the RCIA/CC rather than

the RCIA to analyses of electromagnetic interac-
tions in nuclei. We refer the reader to Ref. 8 for
an illustrative example of how current conservation
can be implemented explicitly in practical calcula-
tions.

III. TEST OF FUNDAMENTAL SYMMETRIES
IN THE A =12 NUCLEI —REVISITED

So far, we have observed that inclusion of a stat-
ic local central potential induces several subtle
changes to the conventional IA. The application of
the RCIA or the RCIA/CC to electromagnetic
processes in nuclei is expected to yield predictions
different slightly from the conventional IA results,
since terms of order p/m& are already modified by
the presence of a central potential. In our opinion,
effects caused by the presence of a central potential
are at least as important as corrections due to
meson-exchange currents (MEC). Quantitative
treatment of these modifications, including terms
of order p /mz, in electron scattering off light nu-
clei is in progress and will only be reported in fu-

ture publications. In what follows, we reanalyze
experimental tests of fundamental symmetries in
the A =12 nuclei"' in order to assess importance
of the modifications to terms of order p/m&.

Following the results obtained by Noble, ' we as-
sume U(r)=0, A„(r)=0, F(r)=F(

~

r
~

), and
Uo(r =0)—V(r =0)=750 MeV. (To be more
careful, one should generate these average central
potentials in a self-consistent manner. ) In addition,
we assume no second-class currents, fs(q ) =0 and

fE(q ) =0. (These two form factors have been in-

cluded in our RCIA only for the sake of generali-
ty. ) We define, for the ' B(g.s.) ~' C(g.s.) transi-
tion,

&
"C(p'f')

I
V~(0)

l

"B(p"4» =&2~~.,„4.2
' 2~FM(q'»

qp'"'" "2m~ 2m
(14a)

& "C(p'f') ~~~(0)
~

"B(p",g)) =~2 4F~(q')+q~, Fp(q') F&(—q')
m 2M 2m~

(14b)

Using a method similar to that described by Delorme, ' we derive the RCIA predictions on these nuclear
form factors, viz. ,

fv(q )0 [~/mx]F +fv(q ) — '[ ]F ~—[&]F +fM(q ) — .'[~]o — —[u]o

(15a)

2F~(q') =f~(q') [~lo' — [~]o'
3 2

(15b)

(15c)

f

2

2F.(q') =f.(q') [ [~]"+~~[~]"j+f.(q') (3/2)'"[~]"
3 2 p

~&FF(q')=f~(q') I [o]F' +~2[o]F"J+f~(q') (3/2)'"[~lo'+f~(q'g' [0..&/m ]"
(15dl
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where 5—:M(' B)—M(' C)= 13.881 MeV. For a tensor operator of rank j, i.e.,
1/2

4r
&= I &Jm ! &Jm =—

2J +1

we define, for the ¹

—+Xf transition,

ll&IIYJ «), (16a)

A

(Nf(p'f';JfMf) g r+'jI. (
1 q 1

r")YIM(r ")F(r")d'J~ N;(p",J;M;))

=—g (LM;Jm 1J,M+m)(J;M;;J, M+m 1JfMf )(4n) i~i[&]p . (16b)
J

The nuclear matrix element [d']o is defined simi-

lar to Eq. (16b) except that F(r") is set to unity.
Equations (15a)—(15d) can be contrasted with the
conventional IA results reported in previous publi-
cations.

As an estimate, we take'

[d']P /[8']o ——1.13, d'=o, V, o"V . (17)

The small uncertainty in this enhancement factor is
not likely to be of any numerical significance. We
obtain, for 0(q &m&,

FM(q ) =3.90x —0.03, (18a)
F~(q')

FE(q ) q'8 2m~&=1.04 1+ i + 2
5

F„(qi) m~ m

+ 1.04(y —1) 1+—
z +1 q5 q5

3m~ m

x =0.975, y =3.61, 5= —0.282 .

Equations (18) and (19) yield

Fg (0)

FE(0)

FA(0)

Fp(0.74m~ )", = —1.02.
Fg(0.74m' )

If effects caused by the central potentials are
neglected from Eqs. (15a)—(15d), we obtain, in-
stead of Eq. (20),

=3 68
Fg (0)

FE(0)

Fq(0)

(19)

(20)

(21)

Fp(q )

F~(q')

(18b)

2

1+ q, +1.135, (18c)
1+q /m~ m~

Fp(0 74m' ).= —0.91 .
Fg(0.74m' )

Experimentally, the asymmetry measurements in
12g~12C e

—z and N~ C e+& yield
with

~6 mÃ [V™N]ox —1:—— lim , (18d)
I q 1

[&lo'

2v 3mN [o V/mdiv]o
y —1

—= lim oi, (18e)
I q I

[o]o'

5= lim
3 mw [o']o

(18f)
IVI-o 2

1 q 1' [&]o

Here the factor q 8/m~ in Eq. (18b) signifies the
difference between the q dependence of
(m~/1 q 1

)[o"V/m~]o and that of [cr]o Averag-.
ing the results obtained by Morita et al. ' for the
three configurations of the Cohen-Kurath model, '

we have

FM(0) =4.07+0.44,

FE(0) =3.67+0.44,

(22a)

(22b)

On the other hand, the observed P and y decay
rates'9 of ' B and its isospin analog ' C' yield, via
an application of CVC,"

while the measured value of average polarization in

p ' C~v„' 8 leads to'

Fp(0. 74m „)= —1.03+0.14 .
Fg(0.74m' )
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FM(0) =3.86+0.12 .
cvc

(22c)

The RCIA predictions, Eq. (20), agree surpris-

ingly well with the experimental results, Eqs.
(22a) —(22c). Such agreement substantiates the
standard theoretical picture, namely, the absence of
second-class axial currents, CVC, and PCAC, pro-
vided that the MEC contributions to the various
covariant form factors are negligible for 0 & q' &

m& . The conclusion that the standard picture has
been verified experimentally can also be reached by
a model-independent analysis. "' ' Thus, unless
corrections to the impulse approximation schemes
are important, one may conclude that the existing
data already favor the RCIA over the conventional
IA.

A sizable MEC contribution to the time corn-
ponent of the axial current has been suggested so
that F~(0)/Fz (0) may differ considerably from its
IA value, Eqs. (20) or (21). However, a recent cal-
culation ' indicates that, if Cohen-Kurath wave
functions are used, the core polarization effect leads
to a modification of FE(0)/Fz (0) which is about
the same size as the MEC contribution but opposite
in sign. On the other hand, there has not been any
systematic calculation of the MEC contributions to
Eq(q ), FM(q ), and FI(q ) for small q . A sizable
MEC corrections to Fz(0) or to F~(0) is unlikely
in the Cohen-Kurath model' since the observed P
and y decay rates of ' 8 and its isospin analog
' C' are reproduced well by the IA. (Here the core
polarization eA'ect does not contribute. ') Thus, it
is generally believed that corrections to the impulse

approximation schemes are negligible in the
Cohen-Kurath model. Nevertheless, it seems

premature to rule out the possibility of resolving

the discrepancy between the conventional IA pre-
dictions, Eq. (21), and the experimental results,

Eqs. (22a) —(22c), by including the MEC effects.
In any event, it is fair to conclude that the applica-
tion of the RCIA to reanalyze symmetry tests in

the 3 =12 nuclei does not upset the standard inter-

pretation of these experimental results. Further-
more, the possibility to discriminate between the
RCIA and the conventional IA shall be greatly
enhanced both (1) if the MEC and core polariza-
tion effects in the Cohen-Kurath model can be
determined reliably, and (2) if the experimental er-

rors appearing in Eqs. (22a) —(22c) can be reduced

by, e.g., a factor of 2.

IV. CONCLUDING REMARKS

We have derived an impulse approximation with

relativistic corrections, which incorporates explicit-

ly the fact that each constituent nucleon of the tar-

get nucleus is moving in an average local central

potential generated by the other nucleons. An ap-

plication of the resultant impulse approximation to
reanalyze symmetry tests in the 3 =12 nuclei in-

duces a few subtle changes but does not upset the
standard interpretation"' ' of these experimental
results. However, implications of this impulse ap-
proximation in other problems such as electron
scattering off nuclei remain to be unraveled.
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