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The three-body equations of Alt, Grassberger, and Sandhas have been solved for a system of three particles, viz. , a,
d, and ' Ca, to obtain the on-shell transition amplitudes of various rearrangement processes, using what is called the

bound state approximation. The input in this calculation, viz, , the two-body t matrices, representing the interaction

between the pairs of particles, is taken to be of a separable form conforming to the bound S states of the pairs. The
absolute values of the differential cross section of the ('Li,d) reaction on "Ca, leading to the ground state of the "Ti,
obtained from this calculation are compared with the experimental results of Fulbright et al. to assess how far the

three-body calculations have a bearing on a -transfer reactions,

NUCLEAR REACTIONS Bound state approximation, n-transfer reaction, three-
body calculation.

I. INTRODUCTION

Transfer reactions of the kinds+a=I3+b,
where the particle a is composite, consisting of
the outgoing particle b and transferred particle
z, may be analyzed in the framework of three-
body dynamics wherein the internal structures
of the clusters A. , b, and x are ignored. The
interactions between the pairs of particles enter
into the Alt, Grassberger, and Sandhas (AGS)"
form of Faddeev equations through the two-body
transition operators in three-body space, viz. ,
T~(z). The bound state approximation (BSA)
implies that in the spectral resolution of Tq(z)
only the contribution of the bound state of the
interacting pair is retained and that due to the
continuum states of the latter is ignored. ' As a .

result, the matrix representing the operator T~(z)
in the momentum representation becomes separ-
able, "3 resulting in considerable simplification
of an AGS equation when written in the angular
momentum representation. "' These equations
are solvable provided one takes proper care of
the singularities in the kernel. '

It may be pointed out that Greben and Levin'
have recently tested the BSA within the framework
of Mitra's three-body model' of nuclear stripping
reactions using a different version of three-body
equations. They observe that the agreement of the
BSA with the "exact" " calculations is good only
for incident energies close to the breakup thresh-
old, which is to be expected since the neglected
continuum terms in the BSA tend to become sig-
nificant at 'Li energy greater than the threshold
value, thus impairing the agreement of BSA. Now

it is known that a separable approximation called
the unitary pole approximation (UPA)' for the two-
body t matrix is valid even at positive energies, ' "
so one would anticipate that the validity of BSA
for transfer reactions may be extended to energies
higher than the breakup threshold if one uses, in
the separable (or bound state) approximation, a
propagator v'~~&(z -u~') conforming to the unitarity
requirement' rather than that having a form used
by Greben and Levin [viz. , Eq. (4), Sec. II]. This,
of course, is naturally taken care of in the Mitra'
model of stripping with separable pair potentials;
the use of BSA within the Mitra three -body model
merely amounts to using a propagator not con-
forming to the unitarity requirement. So one hopes
that, in general, constructing a BSA using a prop-
agator conforming to the unitarity criterion would
make the approximation more effective for three-
body calculations.

In the present paper we solve the AGS equations
for a system of three particles, viz. , n, d, and
"Ca, to obtain the on-shell transition amplitudes
pertaining to various rearrangement processes.
In Sec. II the method of reduction of AGS equations
is outlined and in Sec. III the relevant form factors
g~~ have been obtained using, a.s input, (i) the
separation energy of the pairs of particles in the
bound state and (ii) the S-wave phase shifts per-
taining to the interaction. A procedure similar
to that used by Bolsterli and Mackanzie" has been
followed. In Sec. IV we give details of the com-
putational methods used which are rather involved
because of the presence of two kinds of singulari-
ties in the kernel of Eq. (5), viz. , (i) the "pole"
of the propagator 7'&~ at E -ggz ———qz&, i.e. ,
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II. REDUCTION OF THREE-BODY, EQUATIONS

The three-body AGS equations are

V„.(z) = (1-6„.)(z -a, )

where

+ (1 —5)») Z'«(z)GO(z)U»~(z),
=1

the on-shell value Q» of the momentum u», and

(ii) logarithmic singularities in the region 0 & u»
& v E when 0 & q, & DE. To handle the former we
have used a method based on the work of Sasaka-
wa" and Kowalski, "and to deal with the latter
we have used Doleschall's method of special
quadratures. ' Finally, to see if the three-body
calculations have some bearing on the n-transfer
reactions, the calculated absolute values of the
cross sections of the ('i,i, d) reaction on "Ca lead-
ing to the ground state of Ti are compared with
those measured by Fulbright ep a/. ,

"for two dif-
ferent 'I i energies (Sec. V). A general agreement
is seen although the finer features of the angular
distribution are not reproduced by the present
calculation.

and

T»(z) = I »+ I'»G»(z) I »

G»(z) =(z -H«) '.

7,(z —u, ') = (z —u, '+ as») ', (4)

-&» being the bound state energy of the interact-
ing pair. This approximation, viz. , Eq. (3),
simplifies the problem from the computational
viewpoint for, in the angular momentum basis, "'
viz. , ~P(q) [(L)S))J)s ) jK)l) .JM) —= ~p,q, n', :JM)'
—= ~p, q&(L p&) p;:JM), the AGS equation (1), reduces
to the form'

In BSA we have (Sec. III)

&..., i
T(.) i.;",&

= 5(u» u',—)g,(r,)~»(z u, '—)g,(r,'), (3)

u» being the momentum of the 4th (noninteracting)
particle, and rk the relative momentum of the
other two (interacting) particles, the momenta.
being expressed in v & units. " The propagator
7'«(z —u»') in Eq. (3) is given by

(q q!p p& .'J') =X &(q q&p pj .' J)+ pg u» du«K&«(q&u«p&p« J)7'z~»(z '.u«)T&(u—«q!p»p& .'J'),

where the Born term is given by

( .

p p
~ J) —(1 6 ) &p q D:JM ~r«u«Q» ~ JM)r«dr»g» (r») (6)

where

"'{ -"& "(p, —., ) (p. -")P, (x)dg,
Pf &k k

(7)

and g~~(p, ) = v'4wg, (p;). The overlap
&p, q, o., :JM jr«u, a. «.:JM) may be evaluated by
graphical methods of spin algebras". and, in such
a simple case as "Ca, a, and the d system,
wherein K; =K&=K„=1, it simplifies to"

&P)q)&):J I r«u«&»: J&

PBfPlk

(M-m, )(M-I,)'
M being the sum of masses of the three particles.
From Eqs. (6) and (I) we have, for the Born term,

{K;/; j)5(,. («(1 —5,«)E„(q,u»p, p, :J) =
~f ™fkfk

"g, '(r, )g« "(p»)P~»(~)d~
(D, « -~)

lA fkq, +ukt

fk

I qf+A fkukl
+k Pk +jk

Bc»' = (I -A,»'),

&=gf ' Qkq

where

fk Pf
~fk =

2AfkgfQk

In the present case, P&
=—

I& and P»—= l», other
angular momentum quantum numbers being re-
dundant. Also the sums over LP& and L«S», which
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appear in Doleschall's equations' become redun-
dant in this case since T»(z) is one term separable
and the form factors gkJk are related to a single
bound state characterized by a definite (Lk, S»)

coupled to ~k. The amplitudes T,j obtained by
solving the coupled integral equation (5) may be
related to the physical transition amplitudes
&Qidi AM» I Uii I QidiZgMi) by the relation

(q,vv, M, iv„lg, v, v,I.,) . (. ', =') ("'"„')

x g Tii(Q, QiP, Pi '. 7) P ( s, dpi,. M, IKik, )(sid, X~M. i IKik,.)
K]l]KjljJ k m)kjmjN

x(K;k;l~m;
I
JM)(Kikilimi ~ZM)Y, (Q, )Y*, (Qi),j j

where Qi and Q are the on-shell values of the
momenta q, and q,'. , respectively, so that Qi'

=Q ' -z = E. Finally, the differential cross
section for the transition j- i may be expressed
in terms of the physical transition amplitudes by

'=(2~)', I&Q,dzM, Iv, , Iq,dzM, .& I„;.dQ 2y Q2 i i i i si i i s z avk

(1o)

III. TWO-BODY INPUT IN THE FRAMEWORK.
OF BSA

The spectral resolution of the two-body re-
solvent operator in three-body space is expressed

d'q» I sky k"&(sky 3"'I

q 2+Z(v)
v ak

&'qkd'Pkl q
'

q kl

Qk Pk

where
I
$»i"') is one of the bound states of the inter-

acting pair with energy —c~~', and qk is the mo-
mentum of the noninteracting particle, the sum-
mation being made over all the bound states of
the interacting pair. The second term Iifik) rep-
resents the continuum states of the interacting
pair. Now, in BSA only the pole-dominant terms
are to be retained, the contribution due to the
continuum states of the interacting pair being
neglected. Correspondingly, T»(z), the two-body
f matrix in three-body space, defined by Eq. (2),
is approximated as

I

tion such as (12) to approximate the operators
Tj and 7&, respectively, may be identified with
the actual two-body bound states involved in the
transfer reaction. For example, in the case of
the ( I i, d) reaction on "Ca leading to the ground
state of "Ti,

I Qi) may be identified as the ground
state of 'i, i as an (ci+d) system with [L = 0, S = 1]
J= 1, while Ip, ) as the ground state of "Ti is a
("Ca+o, ) system with [L=O, S=0]Z=O. In addi-
tion, the bound state pertaining to the third parti-
tion may be identified with the ground state of
"Sc as a ("Ca+ d) system with [L= 0, S= 1]J= 1.
Hence, dropping the summation as well as sub-
scripts in Eq. (12), one gets

&rki Yki@a(yki I kir»), ,-
&r» u»IT» z lrkuk) 5 (uk u»

Z —iik +H Z»
(3')

which, on comparison with the form of Eq. (3),
gives

=-(r»l(zsk+k. ) leak&= (»'+&2k)e-k(rk),

(13)

showing the connection between the form factors
g»(r») and the two-body bound state wave function

pk(rk), provided pk(r») or gk(rk) is normalized. If
g»(r») is not normalized then

Nk g»(r»)
4k k

(z +r2)t

where

d'qk Yk I qkpk ')(qkp»i" '
l Vk

(z -ifk +z ") (12) 8'k (r»)d r»
(z sk+ rk")'

To restrict the size of the computational problem
one may invoke a further approximation by
considering only one bound state for each pair
of particles. Thus for the initial and final parti-
tions j and i of the compound system, the single
bound states I/i) and I/i) that occur in an equa-

gk'(rk)d'rk
Tk(Z 2ik ) 2 2z-u (14)

Now, the additional requirement of "unitarity"'
keeps the form of Eq. (3) intact with the following
replacement for the propagator [Eq. (4)]:
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where

g»'(r»)d'rk
«»+r') '

Equations (3), (13'), and (14) may be regarded
as the basis for our BSA.

The determination of the form factor gk(rk) from
the bound state using Eq. (13') is not possible
since the two-body bound state wave function

Qk(rk) is not delineated except for its taiL We
use an alternative to construct the form factor
gk(rk) from the two-body binding (or separation)
energy and the S-wave phase shifts of elastic
scattering of the interacting pair. The separation
energies for the bound states of three pairs (in
their ground states) are accurately known. Also,
for the n-d system, the S -wave phase shift as a
function of energy is available. " For the other
two pairs of particles the S-wave phase shifts
have been estimated from the real parts of the
optical potentials"" using the %entzel-Kramers-
Brillouin-Jeffreys (WKBZ) method. " Instead of
trying arbitrary forms for the form factors with
flexible parameters and adjusting the latter to
fit the two-body data (binding energy and phase
shifts), we have followed a method" wherein the
form factor is calculated numerically using the
equation

(r ) r -3/k(r &+e )1/2 s nl/»5 (r )e (1/k)(P»0(y») (15)

where

/5o(P ')f/'/ff/'
5'5 rk= & k

1r P

The numerical values of g~ are then fitted to a
suitable analytic form, e.g. , a sum of Yamagauchi

type terms

A. , D sin(rka)
Zk( k) ~ (r 2+p2) r (r 2+p2)

(see Table I).

=Qk, and (ii) logarithmic singularities in the
region 0 &uk& JE when 0 & q, & PE." To deal with
the pole we follow a method based on the one out-
lined by Sasakawa" and Kowalski. " Thus instead
of Eq. (5), the following coupled integral equations
are solved:

I'I/(q;Q/IA:J) =Kl;(qlQ/ A: )

+ du&A;& q&u &l& .J
~I

x I', (u Q/lg/J) . (17)

Here, the new kernel A;& is obtained from the
kernel of Eq. (5) by subtracting out the pole term
at u»=Q», i.e. ,

A„(q,ukl, lk: J) = K~k(q. ukl, lk:J)rkk(E '-uk')

K/k(q, Q» I/lk: J)N»'(Q»» + 1)
(E -uk'+esk+io)(uk'+1)

(18)

The new kernel obviously vanishes at uk =Q, since

r k(E -u, + io)2 Ng,

u "q uy +6»+20

The kernel given by Eq. (18) still has logarith-
mic singularities which are taken care of by
Doleschall's method of special quadratures. ""
Accordingly, the range of the u& integration, as

I

also that of continuous parameter q„ is divided
into three intervals: (i) 0 to ME, (ii) ME to [(E
+ 2e sk)]' ', and (iii) [(E+2ea»)]' ' to ~. Within
these intervals 6, 3, and 6 mesh points, respec-
tively, are chosen, being essentially the Gauss-
Legendre points mapped on to the respective
intervals. In the first interval, the mesh points
are determined by mapping the Gauss-Legendre
points t onto this interval by the substitution

IV. COMPUTATIONAL DETAILS

The kernel K,„(q,u„p,pk: J)r~kk(E-uk'+io) of the

coupled integral equation (5) contains essentially
two kinds of singularities, viz. , (i) the pole of
the propagator 7'~~ at E-u~'=-E», i.e. , at u~

so as to prevent any one of the mesh points u&

from coming close to the value of A, v E, and
to eliminate the branch point behavior of the
quantities I', . In this calculation the values of
a and b are chosen to be 1.0 and 0.5, respectively.

TABLE I. Numerical values of the parameters of the form factors [Eq. (16)] in the case of the three pairs of
clusters.

Particle
pair

A(
(fm ~ )

A2
(fm-'~')

A3
(fm / )

p
2

(fm ')
p

2

(fm )
p

2

(fm 2)

D
(fm 'i'2)

p a2

(fm 2) (fm) (fm 2)

o!-d
4'Ca-d
4'Ca-e

1.45x 10 3

2.56x10 2

9.1 x10 3

2.26
18.73
8.0

-5.17
-6.2

7.0

7.7 xlo '
1.84 xl0 3

7.0 xl0 5

0.677
3.35
0.065

0.92
0.126
0.49

-0.066
59.8

—32.5

1.24 7.42 0.0943
1.99 1.67 0.9526
2.77 7.85 0.9109
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For the second and third intervals, the Gauss-
Legendre points g, which are 3 and 6 in number,
respectively, in the two cases, are mapped onto
the respective intervals by the transformations

l

u, = [(f+ I)»»+ E]'"

u, =, [(E+2»„)]"',2

thus requiring the on-shell point u„=Q& to be one
of the mesh points. '3 The logarithmic singularity
which occurs in the interval 0 & u~ & v E when 0
&

q&
& v E is taken care of by subtracting, from

the kernel A&k, the singular function

5&s &e(1 —5)a)[Ã)/, Z,) up—Q( (&,Jg) &(x))gp~(Pp)rg~(E -up'+ io),
fk 4k

and adding the same term subsequently. (This
is to be done only when both q, and uk lie between
0 and v E.) Here

( ), "&g(x)dx
-x

is the Legendre function of the second kind which

contains logarithmic singularity. The quantities

r, and Pk, which are to be finite functions of q&

and uk, must bo so chosen that, for g, =D„, r„
and Pk join smoothly with r& and pk, respectively.
The following choice has been made:

r = (E —q ')' ' and p, = (E —u, ')' '.
The subtracted part of the kernel thus becomes
free from logarithmic singularity and the integral
over u~ of such a function (multiplied by the un-
known function I'») may be expressed in terms
of ordinary quadratures. A special quadrature
must, however, be developed for expressing that
integral which includes the singular function

Q, (&,J. To express an integral of the form

where P„,=—P (z, ) and m = 2n —2 if /~ is odd, and

2n —1 if lk is even. '4 The matrix equation

/„= g P„p',
g=1

(21)

T), (Q )Q,./,./,. :&) = I'„.(Q )Q)/, /,. :8)

+Q I' a(Q)Qa/, /a'J)/a;
k=1

then yields the set of special weights O', . Such a
set of special weights may be computed for dif-
ferent sets of values of x& and lk.

Finally, the set of coupled equations (17) may
be converted into a set of linear algebraic equa-
tions by using appropriate quadratures in each
of three intervals of the uk integration, and these
may be solved for the amplitudes I'~(u&Q,./~/, ::d)
by matrix inversion. In terms of these amplitudes,
the on-energy shell solutions of Eq. (5) are given

by

Q, (D, ,)F(u, )du, ,lk ak

one transforms the yk points further, by the trans-
formation

Here l, =
l&

= lk and the matrix Ik. is given by

3

Ik~ ~k~ ~OP IP~ &

&=1

(23)

5 -4d, 2d -3
y =. d-- z+k 2 4 ) ' (20) where

to prevent the huddling of the quadrature points
near the end of the interval. In this calculation
d=0. 5. For a given set of values of q, (=E' 'x, )

and /~, the set of "special weights» [hi(x, /, )] is
determined by evaluating the integrals

1

&„(x„/ ) —= Q, [x,y (z)]& (z)«k gk

for different values of n ranging from 1 to 6,
analytically, and equating them to the represen-
tative sums, viz. ,

QkP —4kp + ZCfkp
&Zi V m&

(s), ), "us'dupt'u, (upQ ply/p .'d)
kP A

( 2+1)(Q 2 2)

d~f,
' = ——&p'Q~l'~p(Q~Q~/~/p. d).

2

Consequently, I»=Ik&~'+iI&~& ', where Ik~' and I» '

may be determined from Eq. (23) by inversion.
Finally, we have from Eq. (22)

Tu(Q)Q)/, /q
'.J) = T))"'(/)) +i T,'~~ '(/)), (24)
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where

1'4i ( 4) =~a(qÃj i ~: )
3

+g r„(q,q, f,&, :~)f&,"' (25)

Now

I &@idi~i IU)g I@gdg~g& I,.'
I (Q,d,Z)M, I Upi I Qgd, &,M,) I'

(2si + 1)(2Ji+1)

3
T(jm)($ ) g p (q q $ I ~ g)f(Im&

k=z
(26)

which, using Eqs. (9) and (24), yields on simpli-
fication

l&Qgd&, l&~g(~) lQ~d~&~& l.,:=(,'„') ( ', ') Z tr,",(i,)r" (& )+2'!g"(i,)~,","(i,)t
l]l)

(2l, + 1)(2l', +1)Pg, (cos8)Pi', (cos8)
16 '

where cos8 = q
&

~ q&. This equation, in conjunction
with Eq. (10), determines the differential cross
section of the transfer reaction j-i.

V. RESULTS

The absolute values of the differential cross
section of the ('Li, d) reaction on "Ca leading to

40C~( Lt d ) 44 T;

E(6LI) =ra V&V

eV

10

20
l

40 60
e,

I

80 100
0

I

20
I

40
i

60
I I

80 100

FIG. 1. Calculated differential cross section of the
( Li, d) reaction on Ca, leading to the ground state of
Ti, for E(6Li) =28 MeV. In this case the calculated

values were reduced by a factor of 2 for comparison
with experimental points which are due to Fulbright
et al.

8 c.m.

FIG. 2. Calculated differential cross section of the
( Li, d) reaction on Ca leading to the ground state of
Ti for E( Li) =32 MeV. The corresponding experi-

mental points are due to Fulbright et g/, . In this case
no scaling of calculated values was needed.
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the ground state of 44Ti are computed for two dif-
ferent incident energies, viz. , 28 and 32 MeV,
and are compared with the corresponding experi-
mental values due to Fulbright et al. ' (Figs. 1

and 2). It is rather encouraging to note that the
calculated values of the absolute cross section
show a general agreement with the experimental
values although the finer features of the angular
distribution of the outgoing particles are not re-
produced. One may note, for instance, that for
higher energy [E('Li) = 32 MeV) ] the experimental
cross section falls off, on the average, more
rapidly with 8 than in the case of lower energy
[E('Li) = 28 MeV] —which is also borne out by the
three-body calculations in BSA. The general
agreement of the absolute values of the cross
section in BSA is to be expected because in this
calculation the form factors of the separable t
are normalized, resulting in normalized bound

state wave functions of the two particle systems.
However, this calculation at the present stage
cannot reproduce the finer details of the angular
distribution for the following reasons: Our inputs
are rather crude (A. better method of construct-
ing the form factor of the separable interaction
of two clusters would be through the use of the
wave function of relative motion of the pair of
clusters in their bound state, obtained from the
two center model using the generator coordinate
method. Such calculations, however, are cur-
rently not available. ) Secondly, we have neglected

Coulomb effects in the three-body formalism
which, though secondary in a transfer reaction,
will not be insignificant. Lastly, even in the
framework of the three-body model, we have not
considered all the possible channels in that we
consider only one bound state in each pair, thus
ignoring the effect of the channels corresponding
to the excited states of the bound pairs. Never-
theless, it may be said that the three-body model
holds the promise of explaining the features of
reactions involving transfers of clusters of nu-
clei, if more accurate input is used.
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