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A procedure for constructing a collective Hamiltonian for a given nuclea collective

motion is developed from the generator coordinate method. The procedure is based on the

construction of a collective subspace of the many-body Hilbert space, and this is achieved

by the diagonalization of the generator coordinate method overlap kernel. The Weyl

transformation makes the connection between nonlocal phase space Hamiltonian kernels,

obtained from the generator coordinate method, and operators in the collective space. The
Gaussian overlap approximation and monopole vibrations in light spherical nuclei are stu-

died in this formalism.

NUCLEAR STRUCTURE Generator coordinate method. Weyl

transformation. Collective Hamiltonians. Application to the monopole

giant resonance.

I. INTRODUCTION

If we consider the dynamical behavior of a sys-
tem which exhibits a collective motion to be basical-

ly described by some special degrees of freedom and
not by all of the single particle coordinates, we are
led, in practical cases, to a situation in which a cer-
tain amount of a priori knowledge must be used in

order to single out those semiclassical parameters
that are associated with the actual variables which
describe the motion. This process is at the founda-
tion of the generator coordinate method (GCM)
(Refs. 1 and 2); we must be able to describe the col-
lection motion by the useuf conveniently chosen
semiclassical parameters (or even one parameter).
The generator coordinate ansatz uses some set of
states, labeled by one parameter a (the extension to
more parameters being, in principle, straightfor-

ward), to construct the many body state

~%) = ff(a) ~a)da

f [(a ~H
~

a') —E(a
~

a')]f(a')da' = 0

(1.2)

This is the basic equation of this method. The
conditions under which this equation has acceptable
physical solutions, and also the relationship between
(1.2) and a Schrodinger equation projected in a col-
lective subspace of the full many-body Hilbert
space, have been discussed many times.

A new approach to the generator coordinate
method has been developed more recently, the
aim of which is to construct explicitly, in terms of
states

~
a), a collective subspace of the full many-

body Hilbert space; this subspac'e is identified as the
specific collective subspace in which the collective
motion is to be described. One is able to obtain the
projection operator associated to this particular sub-

space and consequently one can also explicitly re-
strict the many-body dynamics to this subspace.
One thus gets a Schrodinger equation for the collec-
tive motion

which is introduced in the Ritz variational principle
to get the Griffin-Wheeler equation for f(a)

24 2311

f [H(k, k') —E5(k —k') jg(k')dk' = 0 . (1.3)
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In this equation, k and k' refer to the diagonal
representation of a collective variable naturally asso-
ciated to the adopted semiclassical parameter of the
GCM scheme. One has to deal with a Hamiltonian
operator kernel which is, in general, nonlocal.

In this paper we will discuss a procedure to ob-

tain, from that nonlocal operator kernel, a collective
Hamiltonian operator defined in the collective sub-

space; such a collective Hamiltonian is written as a
function of a natural pair of conjugated collective
operators q and p and is obtained by the use of the

Weyl transformation. The crucial step in this

procedure is a quasilocal expansion of the nonlocal
Hamiltonian operator kernel and the inherent ques-
tion of the convergence of this series. In fact, we
will identify the first two terms of that series as col-
lective potential and kinetic energy, respectively.

In Sec. II A we will brieAy review the formalism

proposed in Refs. 4—6. The Weyl transformation
is reviewed in its main aspects in Sec. II B. The for-
mal procedure to get the collective Hamiltonians is

presented in Sec. III, and the whole procedure is
carried out in two cases, namely the Gaussian over-

lap approximation and monopole nuclear vibrations
in light spherical nuclei, in Sec. IV. Finally, con-
clusions are given in Sec. V.

II. BASIC CONCEPTS
A. The GCM and the co11ective subspace

As proposed in Refs. 4—6, the quantum GCM
ansatz (1.1) can be used to construct a well defined
quantum kinematics to describe the corresponding
nuclear collective motion we are interested in. The
starting point of this approach is the identification of
the GCM overlap kernel

N(a, a') —= &a
~

a')

as an operator kernel, bounded and self-adjoint, in
the space of the weight functions f(a). The pro-
cedure to construct the collective subspace consists
then in the diagonalization of this operator. The di-
agonalization can be carried out, in principle at
least, as guaranteed by the spectral theorem of func-
tional calculus; i.e., one looks for a unitary. transfor-
mation Uk(a } that takes the operator kernel
N (a,a') to a new representation in which it appears
as a multiplication operator

fd afd a'Uk (a}&a
~

a') Uk (a') = A(k)5(k —k')

(2.1)

In this equation we are implicitly assuming that

&a
~

a') has a continuous spectrum. This is by no
means necessary in general, and other cases can be
handled by means of appropriate technical changes
in the discussion to follow.

This allows us to formally write the set of states

~k) = f,~ 2 ~a)da
Uk(a)

(2.2)

as the base states in the collective subspace provided
A(k) +0. This set of states exhibits orthonormali-

ty and completness properties

&krak

) =gk —k ),
f dk ik)&k i

= 1,

(2.3a)

(2.3b)

where 1, is the unity operator in this collective sub-
space. Collective operators p and q can now be de-
fined as

P~k) =ok ~k), (2.4a)

q ~k) =i ~k) (2.4b)

It can easily be checked that [q,p ] =

ilail,

.
With the help of that set of base states we can

now write the many-body wave function generated
by ansatz (1.1} in the form

g(k} —= &k ~+& = f,~, &a ~+&da
Uk(a)

= A' (k)f Uk (a)f(a)d a

(2.5}

We can also obtain the formal expression for the
Hamiltonian restricted to this subspace, in terms of
the usual energy kernel of the GCM,

&kiack &= f f
Uk (a')

X &a~H ~a'),
&

dada'

(2 6)

Using the above results, the basic equation (1.2) is
reduced to the projected Schrodinger equation (1.3).
In what follows we will implement this procedure
in specific cases and also identify a collective Hamil-
tonian expressed in terms of the collective operators
q and p, introduced above. The basic tool for this
purpose is the Weyl transformation.
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B. Brief review of Weyl transformation

The Weyl transformation was introduced in 1927
(Ref. 7) with the purpose of obtaining a mapping of
operators, associated to physical quantities and act-
ing in a Hilbert space of state vectors, onto ordinary
phase space functions. It is related to the so-called
Wigner function, ' which consists, particularly, in

the mapping of the density operator on a certain
phase space function. Thus it allows for an alterna-
tive description of quantum mechanics by using

phase space functions instead of operators, and
Wigner functions instead of state vectors.

More recently, the properties of Weyl transforma-
tion have been studied in a series of paper. Here
we will closely follow Ref. 9.

In order to introduce the Weyl transformation we
need to assume the existence of a well defined quan-
tum kinematics; this is precisely what we have intro-
duced in Sec. II A through the definition of the col-
lective subspace equations (2.3). Consequently, we
are able to apply the procedure exposed in Ref. 9 to
this collective subspace.

Momentum md coordinate operators satisfy the
usual commutation relations (one dimension)

4"Pl = lq,q1= o, leal = i&1,

and have eigenvectors and eigenvalues

q lx& =q lx&

where p = haik. Furthermore, these eigenvectors
satisfy the relations

fdplp&&p I

= I, fd» I»&&x
I

= l.
(2 7)

(p lp') = 5(p —p'), (x lx') = 5(x —x')

j
A = —f dq dp a„(q,p)b, (q,p)

h

, where

a (q,p) = fdu p + —A p ——e'~"/"
2 2

(2 9)

is the Weyl transform of the operator 3, and

1 i 0/Sb, (q,p}= — do q + —
q ——e'~ /"

2 2

(2.10)

is a Hermitian operator. This operator can be put
in a more convenient form

A(q p) = h ' f dcrdu exp(i[(q —q)u

+ (p —p )o]/Ii)

(2.11)

Obviously we could have, alternatively,
I

a~(q,p) = fder q ——A q + —e'~ /",
2 2

e

b, (q,p} = f du p —— p + —e'e"/"
2 2

It is possible, in principle, to recover the operator
A from its Weyl transform and the corresponding
expression for A(q,p). In fact, it is easy to show
that

A = f dp dp5(q —q)5(p —p)ap(q, p), (2.12)

where

(x
I p ) h

—i /2e iPx /s

From the identity

A = f dx 'dx "dp 'dp "
I
x ") (x "

I p
")

x &p
-

IA Ip )(p I» &&x
I ,

with the help of the coordinate transformation

x"=q+ —,x'=q —.—2' 2

=P+
2

~ P =P —
2

we obtain

(2.8) eaa
ap(q,p) —= exp — a (q,p)

2l Bp c)q

This shows how to extract operator A from its
Weyl transfoim a~(q,p), i.e., we firstly calculate
ap(q,p) and then substitute the variables q and p by
the operator q and p, respectively, the coordinate
operators always appearing on the left of the
momentum operators. This procedure is particular-

ly convenient if we have to deal with binomials in p
and q.

In this way, if we have operators having Acyl
transforms of the form

a (q p) = f(q)p",
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then

n
A(p, q) = g

I=O
",f(q)p" '

2i

we can rewrite

(x ~n ~x') =
(q

——n q+ —= n(q, ~)
2 2

(3.1)
or using the commutation relations for the q —p
operators,

n yg

~(p q) = —„g &
7 'f(q)p" '

2 I 0

This result can also be written as

n
o.(q p»)~ „X—

I p'f(q)p" '

I=O

where ~ stands for Weyl correspondence; we could
have, alternatively,

f(q)p"~ —„ I I- If(q)PI p I- pj

n anticommutators,

(2.13)

and the Weyl transform of this operator is given by

h„(q,p) = f do q ——H q + — e'p ~"
2 2

which gives exactly the same result as that obtained

from (k ~H
~

k').
In order to obtain a series expressing the collec-

tive Hamiltonian in terms of the collective operators

q and p, it is necessary to assume that the kernel as-

sociated to a microscopic Hamiltonian operator ad-
mits the quasilocal expansion

q ——H q + — = g H"(()q)5 "(()o)
n=0

(3.2)

where 5(")((r) is the nth derivative of Dirac distribu-

tion and

III. COLLECTIVE HAMILTONIANS

In the space of collective states
~

k ) satisfying

properties (2.3a) and (2.3b), the kernel of an opera-
tor H is given by (k

~

H
~

k'). We could already

apply the Weyl transformation to this kernel, but in

order to make clear the connection between the col-
lective coordinate and the generator coordinate, as
will be seen later, we will make a double Fourier
transformation to consider alternatively the kernel

(x
~
H

~

x'). If we now make the coordinate
transformation

X +X
q =

2
0=X —X

1 n

H'"'(q) = — Jdo' H(q, o')(o')"

The validity of that assumption, and the conver-
gence of the resulting series, as needed, will be as-
sumed throughout this paper.

The Acyl transform of H is then written as

(q p) y H(n)(q) jdog(n)( )eiPolh

n=O

We can now extract the collective Hamiltonian
H (q,p ) by the use of (2.12)

H(q p) = Jdp dq 5(q —q)5(p —p)exp — g ( —1)"H'" (q) e'
2l ()p Bq „0 do

The final result may be cast in the form

H(q,p) = H' '(q)

This Hamiltonian may be interpreted as follows.
The term independent of p, H '(q ), will be con-
sidered a collective potential.

' Its expression is

n=l V(q ) —= H' '(q ) = fH(q, o')der' (3.4)

by the use of (2.13).
By symmetry arguments only, we can show the

vanishing of terms in odd powers of p, i.e.,
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H2n+1( ~) P

The second order term

H' '(q) = —,fH(q, a')(cr') da' (3.5)

the cr variable of that expansion. The final result
obtained by Klein coincides with expression (3.3),
and has been used, in the form mentioned in Ref. 6,
in a description of the Goldhaber-Teller dipole vi-
bration' in He. ' There the result for the collec-
tive Hamiltonian can be exactly given in closed
analytical form due to the fact that the series (3.2)
naturally truncates.

gives information about the inertia of the system.
In favorable cases the collective dynamics will be

well described only by the two terms (3.4) and (3.5).
However, it is important to note that we cannot
consider the collective inertia and the collective po-
tential to be defined unambigously by these expres-
sions. In fact, canonical transformations from q,p
to new variables in the collective subspace will

change these objects while preserving the collective
dynamics given by the collective Hamiltonian. But
since our procedure clearly defines a collective coor-
dinate, we will use it for defining our respresenta-
tion and consistently extract a collective potential
and inertia parameter.

It is important to stress that quasilocal expansion
of the energy and overlap kernels have already ap-
peared in connection with the treatment of the
Griffin-Wheeler equation (1.2), notably in the work
of Brink and Banerjee", in that work, however,
divergences in the weight functions are not dis-

cussed, and the treatment can only be meaningful in

the special case of narrow overlaps. In an earlier
work by Giraud and Grammaticos, ' the idea of a
quasilocal expansion, very much in the spirit of the
present one, is indicated in connection with an
orthonormal representation of the collective space
associated with an auxiliary "collective" variable in-

troduced independently of the generator coordinate
(GC) scheme, leading to a representation in the GC
collective subspace which may be a priori unrelated
to the adopted generator coordinate. Finally, it is
interesting to point out the relationship between this
present method of obtaining collective Hamiltonians
and that of Klein. ' Here we have shown that the
Weyl transformation is a natural tool for treating
the nonlocal energy kernel, even when this kernel is
not expanded as in (3.2); however, under certain sit-

uations, the expansion is very convenient. The treat-
ment presented in Ref. 13 makes use of the quasilo-
cal expansion (3.2), and the extraction of the collec-
tive Hamiltonian proceeds from the integration in

IU. ILLUSTRATIUE EXAMPLES

The spectrum in this case is immediately given by
a Fourier transformation

A(E) = (2m) '~ fdae' n(a) (4.l)

which, under the cases to be treated below, does not
exhibit a null space, but admits zero as a limit point
when ~k

~

~ oo.
When the parameter a is associated to a coordi-

nate, it is easily seen that the collective subspace is
given in a "momentum" representation. We take a
double Fourier transformation of (2.6), in order to
work with a coordinate representation, as mentioned
in Sec. III,

Making use of the transformation

K+K'
2

—X
X +X

2

we have

In this section we intend to show how the above
formal scheme works when we apply it to calculate
collective parameters. We will consider, in what
follows, a simple but already nontrivial case of
translationally invariant GCM overlap kernels with
one real generator coordinate a. Thus

E(a,a') = n (a —a')
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Using (3.1) and (3.4) it is easy to verify that the collective potential is given by

H' '(q)= (2««) 'f f Je '+(X + —H X —— e ' «dKdkdy
2 2

The y and E integrals are trivially obtained and we have

I

V(q)=H''(q)= f f fexp ik + —q
(a[H fa')
k k

A —A
2 2

. -,~2 dada'dk (4.3)

The dependence of the potential on the spectrum
results from the need to "unfold" the finite spread
of the collective dynamical variables in the wave

packets used to set up the energy kernel. In the
present procedure it is thus easy to see that, when

the overlap is narrow, the collective potential is well

described by the diagonal part of the GCM energy
kernel if we neglect the fluctuation energy which al-

ways exists in wave packet formalisms. Owing to
the expected relationship between the overlap width

and the number of particles participating in the
motion, narrow overlaps will tend to occur in con-
nection with collective modes in heavier nuclei; on
the other hand, in light nuclei important corrections

may arise from the dependence on the overlap spec-
trum. Let us consider now two particular cases.

A. Quadratic approximation with Gaussian
overlap kernel

This approximation has been used since its ap-

pearance in the work by GriAin as a test ground of
nuclear collective motion theories. The quadratic
approximation reads

(a ~H ~a') = N(a, a') Ep+ (a —a')Ci
2

r '2
C2 a+a+2 2

(4.4)

with

N(a, a') = exp[ —(a —a') /b ]

The introduction of a complex generator coordinate
in this approximation permitted the treatment of
low amplitude oscillations in a nuclear system, lead-

ing to random-phase approximation (RPA)-like
equations. ' It has been recently shown, however,
that their result is in quantitative disagreement with
the exact solution. ' Here, we are dealing with a
real generator coordinate only and consequently we
are treating the nuclear vibration problem in a more
restricted way.

Using now (4.3) it is trivial to get the collective
potential

C2
V(q) =Ep+

16

Ci 2
C

b + q

C,b4

8'
1

2M(q )

which is independent of q.
The b dependence of M (q ) might seem peculiar.

However, Eo, C &, and C2 may be rewritten as

Zo= Vo+ ~b2

C) —— 4
mg4

C2=mn2 .

The contribution coming from the spectrum,
[(Cq/16) —(C&/4)]b, appears explicitly here and
corresponds to the fluctuation energy. In this sim-

ple case it reduces to a constant and is therefore
trivial. To complete the description of the system
we must calculate the mass parameter. It can be
obtained by the use of (4.4), (4.2), and (3.5). After a
trivial calculation we find
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These expressions are suggested by the form of
(a

~

H
~

a'), when H is a harmonic oscillator Ham-
iltonian, and the states

~

a ) are Gaussians of
parameter b centered on a. In terms of the new ex-
pansion parameters Vo and 0 we find

M(q) =M

and

2 2

V( ) = V — —,~//Q q16

handle, exhibits an undesirable feature; the center of
mass wave function depends on the generator coor-
dinate, giving therefore an energy which does not
separate into intrinsic and center of mass parts.
However, it is possible to circumvent this problem,
the procedure being described in the Appendix.

The interaction to be used is that of Skyrme,
spin-orbit, and Coulomb effects being neglected for
simplicity. For light spherical nuclei (A = 4n) the
GCM overlap kernel is'

B. Isoscalar monopole vibrations
N(P,13') =

P'+ P'2

Many authors have discussed this particular mode
of vibration using the GCM in cases where
3 = 4n. ' ' ' In what follows we will briefly sum-
marize the GCM results, and then we will apply
our formalism to extract the collective potential and
mass parameter.

Let us take the harmonic oscillator determinantal
wave functions as the generating functions

~
rg),

and the inverse of the harmonic oscillator parameter
as the generator coordinate P. This particular
choice for the generating function, although easy to

N(a, a') = sech (a —a') (4.7)

This change of label does not afFect the collective
subspace; therefore the dynamical content of the
method is preserved. The energy kernel, calculated
in Ref. 19, is now written as

where T is an integer constant which depends on A

(T = 6, 36, and 120 for He, ' 0, and Ca, respec-
tively). With a new generator coordinate introduced
through P = Ppea, ' the overlaP kernel becomes
translationally invariant

H(a,a') = N(a, a')[C(sech(a —a')e + + Cqcosh / (a —a')e' / "a+a '

+ C& coshs/2(a —a')e(s/z)(a+a'(+ C4cosh&(a —a')e3(a+a'(]
/

= N (a,a')h (a,a') (4.g)

Unfortunately, this spectrum is not easy to han-

dle, even though it displays no null space, and it has
zero as limit point as E ~ + 00. However, we find

that a Gaussian spectrum

A(J )=
T

1/2
E

exp

is a good approximation to the exact one, if we are

Again the constants C s depend on A, and on the
force parameters. All lengths are measured in units
of Pp

A Fourier transformation diagonalizes the overlap
kernel and the spectrum in this case is

T/2 —1

(4s +E2)
l (T) sinh

2

I

treating heavy nuclei (' 0, Ca). The correspond-
ing Gaussian overlap kernel,

N(a —a ) = exp ——(a —a )
I T 2

2

is, in turn, a good approximation to the exact one. '

The collective potential is now given by expres-
sion (4.3). Nevertheless, before performing that in-

tegration in (4.3), we will make some approxima-
tions in order to put it in such a form as to fully ex-
ploit the advantages of the Weyl transformation. -

First we expand the reduced kernel
H(a,a')

~
N(a, a') in a power series in g = a —a'

and y = (a + a')/2. Here we will adopt the nota-
tion

1 $1l +m
C„~ =, , [H(y, g)/N(rl)]„pn!m! i)q"i)y r=ro
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where yp is the minimum occurring in the diagonal

part of the energy kernel. At this stage we can fix
the parameter Pp defining the scale of lengths. We
will choose Pp such that yp is equal to zero; i.e., the
minimum of the diagonal part of the energy kernel
occurs at that value of y which corresponds to the
oscillator parameter Pp, which gives the variation-

al rms radius.
With this expansion we can now integrate (4.3};

the general term contributing to the potential is

+ 00

G(q) = f exp ——ri ri"dr)

X
+" exp[ik(y —q)]

A(k/2)

y y dkdy . (4.9)

If we retain terms up to fourth order in the ex-

pansion of the reduced kernel we get, after a tedious

but straightforward calculation,

C2o
V(q ) Coo+ T

Co2 1

4T + 2 C4p
4

+ „Cp4T

+ (Czl 4 C03}'q + Coz+ (Czz z C04) q + CQ3q + Cp4q (4.10)

C2o
V(q) =Cop+ T

C2o A2

4T + Cozq . (4.11)

The full expression (4.10) is needed for He, howev-

er.
The linear term in (4.10) comes from the third or-

der terms in the expansion of the reduced kernel. It
causes a shifting of the minimum of the collective
potential away from the minimum of the GCM en-

ergy kernel. Obviously, this implies a nuclear ra-

dius different from that calculated by the variational

method, i.e., using the minimum Po. It is interesting
to note that those third order terms are associated to
the asymmetry of the GCM energy kernel (Cp3}
and to the coupling of the diagonal terms and off-

diagonal terms (Cz, ). In fact, we see this is an im-

portant effect only for light nuclei because the ratio

«zi ——,Co3)~
3

3
Coz+ «zz —

z Co~)~ '

is relatively important when T is small. When we
calculate the minimum of expression (4.11) for He,

The expansion coefficients depend on the Skyrme
parameters in addition to T. Evaluating these coeffi-
cients for ' 0 and Ca, we find that is sufficient to
retain terms up to second order, if we are interested
in the low lying vibrational states. This truncation
can be justified by calculating the ratio Co3g /Cp2g
near the minimum of the expression (4.10). The
values are of the order of 0.25 for ' 0 in contrast to
the value 0.5 for "He. Thus the collective potential
for the heavier nuclei is

usmg the Skyrme III interaction, we get p ' = 1.57
fm. On the other hand, the use of (4.10) gives

p = 1.30 fm (with the same interaction). The
calculation for ' 0 and Ca using (4.11) gives
essentially the same results as those obtained from a
direct treatment of the GriAin-Wheeler equation. '

This is consistent with the validity of the quadratic
approximation in these cases.

The mass parameters can be calculated in exactly
the same way by the use of (3.5). Here, again, the
dominant term is Czp/T com—ing from the qua-
dratic approximation. A kinetic energy term comes
from (3.3)

C2o 2

T2 p = kinetic energy (4.12)

If we want a new momentum operator in proper
units, we must introduce the parameter (Pp '/Pic ) .
In this case we see that the corresponding mass
parameter comes out as

Mc 2
SENTPp-
2C2p

(4.13)

This expression can be calculated in each specific
case. In particular for ' 0 we have

M = 42.6
Pl

where m is the mass of the nucleon. However, this
result is not invariant under canonical scaling ofp
and q. In particular, if we had chosen Pp

' to be
the variational rms radius we would have obtained
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instead

M = 16.8

in close agreement with Giraud and Grammaticos. '

Another important feature of these nuclear sys-
tems can be studied now, once we have an analyti-
cal expression, although approximated, for the col-
lective potential, namely the nuclear incompressibili-

ty modulus. This modulus is defined as

1 4jK = — V(q) ~q q~ dq'
(4.14)

We expect the value of E to approach the value

given by Flocard and Vautherin' as we go to
heavier nuclei, i.e., both values tend to coincide
when the quadratic approximation is sufficient to
describe the monopole vibration. The incornpressi-
bility for ' 0 is K = 227.5 MeV (interaction SIII)
using (4.14), which is greater than K = 200.5 MeV
calculated with the diagonal part of the GCM ener-

gy kernel. Although this high incompressibility
modulus can be partially associated to the Skyrme
interaction, as already suggested in other work, ' it
is important to note that the difference between our
result and that of Flocard and Vautherin' arises be-
cause the collective potential is not the diagonal part
of the GCM energy kernel.

V. CONCLUSIONS

We have shown in detail how a procedure
developed earlier for constructing a well defined

subspace of the full many-body Hilbert space, on
the basis of the GCM, can be exploited to give an

explicit construction of the collective Hamiltonian,
expressed in terms of collective dynamical variables,
defined in that subspace. We started from the ener-

gy kernel (2.6) and from there proceeded to obtain
the Weyl transform of the collective Hamiltonian.

In order to exploit the advantages of the Weyl
transformation, and consequently to get the collec-
tive Hamiltonian as much as possible in an explicit
form, we made a quasilocal expansion of the pro-
jected energy kernel (2.6). This led to a collective
Hamiltonian written as a series in the collective vari-

ables. That expansion, which is not necessarily en-

compassed in the Weyl formalism, does not change,
however, the general character of the procedure, but

gives, in fact, an approximated but effective way of
treating collective motions. The convergence prop-
erties of the series are affected by the features of the
two GCM kernels. The kinematics of the GCM

manifests itself through the width of the overlap ker-

nel; narrow overlaps may give rise to rapidly con-
vergent series for the collective Hamiltonian,
although this is not meant to imply a "kinematic"
criterion of collectivity since the convergence of the
expansion can not be judged without reference to
the GCM energy kernel.

The feasibility of the whole procedure was shown

in two simple illustrative examples, namely the
Gaussian overlap approximation (GOA) and mono-

pole vibrations of light spherical nuclei. This latter
example is nontrivial in the sense that the collective
Hamiltonian is given in the form of an infinite series
in powers of q and p. The point emphasized in

those two examples was the corrections to the sim-

ple variational treatment of the diagonal part of the

energy kernel. In this connection it is interesting to
note that the spectrum of the overlap kernel A(K)
plays an important role. Fluctuation energy correc-
tions and a shifting of the equilibrium point charac-
terizes the corrections in the monopole vibration.
In this particular mode of vibration the incompressi-

bility modulus can be compared with previous
results'; our results show some discrepancies, exhi-

biting a higher degree of incompressibility than that
obtained with the variational method using the same
interaction; part of this effect is due to the particular
interaction used'; however, our result is not con-
clusive since it is necessary to retain terms to higher
order in our series in order to compare the two
results.

Finally, it is important to stress that if we want to
get analytical solutions for the collective Harniltoni-
ans we must first of all be able to analytimlly diago-
nalize the overlap kernel. In many cases, however,
this condition is not fulfilled; this introduces a new

difficulty in the method. An alternative approach,
which may eventually constitute the only way of
treating that difficulty, is a computational one, in

which one performs numerically the different stages
of the whole scheme described here. Thus we get
the collective potential and inertia parameter numer-

ically. In this connection Be has been treated by
this computational scheme and the results will be
presented in a forthcoming publication.

This work was partially supported by Conselho
Nacional de Desenvolvimento Cientifico e
Tecnol6gico.

APPENDIX

For the sake of simplicity we will only discuss the
effect of the choice of the generating function

~
rP}
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for the case of He. The particular choice we have

adopted is

4 ~2
I
r;P) =— IP) =~oexp

(Al)

where ~CO is a normalization constant, can be
rewritten as

2R 4 ~2
pl

I P ) = Mo exp — expP';=i 2P'

(A2}

where we have made the coordinate transformation

R
4

R= —, g r;

with the additional condition

4

+pi =0 .

The remarkable feature of expression (A2) is that
the center of mass contribution as well as the intrin-

sic one depend on the generator coordinate. Even

though we have removed from the Hamiltonian ef-

fects of the center of mass motion, the p dependence
of the center of mass wave function introduces un-

desirable spurious effects. This can, however, be
avoided if we introduce a new nondeterminantal

generating function

we can use the generator coordinate only for the in-

trinsic part, and by virtue of this separation, we can
take into account the center of mass contributions

without having to recourse to projection techniques.
Thus we can write

&P IH IP'& = &P IH ~ IP'&+ &P IH.

and using (A3)

&(t(p} IH .t l4'(P') &&p(po) lio(P. )&

= &p(p)p(po) IH Ip(p')p(po))

(Po)&0(p) IP(p') & (A4)

On the other hand, if we had used (A2),

&(t(P) IH;, IP(P')&&p(P) Ip(P'))

= ($(p)p(p) IH
I
p(p')p(p'))

—&io(P) I a, Iio(p')) &y(P) I
y(P')) . (As)

From (A4} and (AS) we can now separate

&y(p) I~;. Iy(p'))

&~(p) I
~(p, ) &

= I (PP') &p(po) Iio(po}&

X
&p(po)I p(po))

&p(P)Ip(P'))

where we have made use of

&4(p}p(p) I~ Iy(P')p(P'))

4 ~2
IP) =Miexp

i=i 2PO

-, p' —po'
X exp —2R

p2p 2

= &P(P) IP(P'))&p(p) Ip(P')&Ii(PP') . (A6)

It is easy to calculate now the new GCM kernels
for the intrinsic motion only, since we have all the
expressions we need. Thus

' 9/2

where Po is a constant.
The great advantage of this function is that it

separates in the form

—2R
IP) =Miexp 2Po'

= Ip(po)p(p))

4 —++2
pl

exp —g 2;=i 2P'

(A3}

& p(p) IH,„, I
p(p') ) = &p(p) I

p(p') )

3h 4x h(p,p')—

where the center of mass contribution does not
depend on the generator coordinate. In this form

If we go to a new generator coordinate as before,

P = Poe", we get finally
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(P(x)
~
H;„,

~

P(x') ) = sech9~2(x —x')h(x, x')

(A7)

where i't (x,x ') is precisely the expression we have
used in (4.8).

With this new generating function, the GCM en-

ergy kernel has the same structure as before, but
here only the intrinsic contribution is taken into ac-

count. Furthermore, the new GCM overlap kernel
corresponds to a systexn with one particle less than
the original one; this gives a new value of T ( = —, ),
thus reflecting a larger width of this overlap with

respect to the initial one. It is this feature of the
new description that accounts for the redefinition of
the collective parameters appearing in the collective
Hamiltonian of the problem.
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