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Starting with the previous result that the equation of motion for some collective motion

of the nuclear fluid can be approximated by the Lame equation, we consider the nuclear

giant resonances as elastic vibrations of a nucleus, the properties of elasticity being a

peculiar manifestation of the quantum stress tensor. The nucleus is taken to be compres-

sible and endowed with elastic moduli, surface tension, Coulombic charge, and two-body

viscosity. Eigenenergles and widths for the isoscalar electric multipole states
(0+,1,2+,3,4+, . . . ) and the isoscalar magnetic multipoles states (1+,2,3+,4, . . . )

are obtained. The energies and widths of the 0+, 2+, and 3 states agree well with those

of the observed giant resonances. Such agreement lends support to the present macro-

scopic description of the collective excitation of a nucleus. Nuclear viscosity coeAicients

and the incompressibility of nuclear matter are extracted. In the present unified ap-

proach, the high-lying electric multipole "giant resonance" states and the low-lying

"liquid-drop" states emerge as eigenstates of the same characteristic equation. Similari-

ties and differences-between these two types of states are assessed.

NUCLEAR STRUCTURE Giant resonances vibration of a compres-

sible, elastic sphere with surface tension, charge, and viscosity. Electric
multipole and magnetic multipole resonances. Nuclear viscosity coeffi-

cients and incompressibility extracted.

INTRODUCTION

This is one of a series of articles dealing with the
dynamics of nuclear fluid. Other studies concern
themselves with the time-dependent Hartree-Fock
(TDHF) approximation from a fluid dynamical'
viewpoint, general considerations on the kinetic
theory of the nuclear fluid, spin and isospin waves
in the nuclear fluid, ' the extension of the time-
dependent Hartree-Fock approximation to include
particle collisions, and the time-dependent
Hartree-Fock approximation from a classical
viewpoint. This article deals with the elastic
response of the nuclear fluid and its manifestation
in the form of multipole giant resonances.

Our previous studies of the nuclear collective
motion in terms of nuclear hydrodynamics met
with success in some cases but without success in
some other cases. In particular, although the isos-
calar giant monopole and isovector giant electric

dipole can be explained in the hydrodynamical
model, the giant quadrupole and octupole reso-
nances cannot. With only a partial success in

describing collective excitations, we are motivated
to seek alternative descriptions. On the other
hand, we showed previously that the equations of
motion for a quantum many-body system are simi-
lar in form to those one encounters in classical hy-

drodynamics, with the exception of an additional
quantum stress tensor proportional to A . ' Such
a close analogy does not imply immediately the
validity of a completely macroscopic or a hydro-
dynamical description. The pattern of behavior of
a quantum fluid is governed in an important way

by the quantum stress tensor, the extra term of
quantum origin. In some types of dynamical
motion where the quantum stress tensor is a func-
tion of local density and temperature, as in the case
when local equilibrium can be established, the
equation of motion of a Fermi liquid can be ap-
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proximated by the classical Euler or Navier-Stokes
equation. The dynamics are then described proper-

ly by hydrodynamics. In some other types of
dynamical motion involving fast responses without
local equilibrium, the quantum stress tensor is pro-
portional to the first spatial derivatives of the dis-

placement field. The equation of motion can be
approximated by the Lame equation and the.
dynamics are properly described by an elastic
response of the quantum fluid. Thus, the pattern
of behavior of a Fermi fluid is governed by the
time scale of the dynamical motion as compared to
the relaxation time leading to local equilibrium.
Elastic response results when the relaxation time is
much greater than the time scale for the dynamical
motion, whereas a hydrodynamical motion occurs
in the opposite extreme.

For the nuclear fluid at a collective excitation of
only a few MeV per nucleon, the Pauli principle is

very effective in inhibiting the collisions between

nucleons. The time scale for collective motion is
small compared with the relaxation time leading to
local equilibrium. One expects that the nuclear
fluid behaves like an elastic solid. As was first ob-

served by Bertsch, nuclear multipole giant reso-
nances are simply the manifestation of the elastic
vibration of the nuclear field, although other types
of interpretation are also possible. ' Nuclear elasti-
city also enters in the rotation of deformed nuclei. "
Therefore, nuclear elasticity is of physical interest.

In the previous studies of the giant multipole
resonances in terms of the elastic vibration of a nu-

cleus, an irrotational and incompressible flow was
assumed from the onset as a trial form of the dis-
placement vector in a variational calculation.
Another study' of the same problem also assumed
an irgotational and incompressible flow of the nu-

clear fluid and obtained the eigenenergies by
evaluating the stiffness and mass parameters. The
use of a trial displacement vector of an incompres-
sible and irrotational type only gives an upper
bound to the eigenenergies and cannot encompass
elastic vibrations involving compressional or rota-
tional flows containing vorticities.

We undertake a study of the elastic vibration of
a nucleus based on the solution of the Lame equa-
tion. Here and henceforth, we shall focus our at-
tention to isoscalar excitations; the other excita-
tions involving spin and isospin degrees of freedom
will be the subject of future investigations. The
general treatment to include the rotational and
compressional flows containing vorticities allows
one to study both the isoscalar electric and isos-

calar magnetic multipole resonances. The eigenen-
ergies of these states can be obtained from the
characteristic equations given by Lamb in the last
century. ' Among the electric multipole reso-
nances, the 0+, 1,2+, 3, and other natural pari-
ty states come out from the same characteristic
equation, while the magnetic multipole states
1+,2,3+,4 are solutions for rotational and in-
compressible flow, the 2 vibrational state having
been rediscovered recently. '

Our study of the elastic vibration also helps clar-
ify different types of vibrations of the same mul-
tipolarity. The vibrational eigenenergies of a
liquid-drop nucleus are well known. ' Being rather
low-lying and decreasing with mass number faster
than A ', they are different from those of the
high-lying electric giant multipole resonances.
These vibrational states arise due to the forces of
nuclear surface tension and Coulomb repulsion.
What then are the differences between these low-

lying "liquid-drop" states and the high-lying "giant
resonance" states? Is there a unified model in
which both states appear together as eigenstates of
the same characteristic equation? We shall see that
an inclusion of the nuclear surface tension and
Coulomb interaction into the treatment of elastic
vibration provides just such a unified description.

Besides allowing a more general nature of the
displacement fields, our work also differs from pre-
vious work ' in the introduction of an effective
mass. As is well known, nucleons in a nucleus do
not behave as nucleons with a bare mass. Because
of the velocity dependence and the nonlocality of
the nucleon-nucleon interaction, and also because
of the coupling of the phonons to the single-
'particle motion, the effective mass is reduced inside
a nucleus. ' ' Furthermore, this effective mass
depends on the collective excitation energy, being
approximately the bare mass for low collective ex-
citations and much smaller for the giant multipole
resonances. ' With the introduction of this effec-
tive mass, the giant 2+ energy, which was found to
be substantially lower than the experimental value,
can now be brought to agree with experiment.

The present investigation also serves another
purpose. By generalizing the 'present treatment to
include damping due to nucleon-nucleon collisions
(two-body viscosity), one obtains a stress tensor
which is proportional to the first spatial derivatives
of the displacement field and the velocity field. We
are then dealing with the nucleus as a Maxwell
solid or a viscoelastic system. Comparison of the
widths of the multipole giant resonances allows the
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extraction of the nuclear viscosity coefficients.
New equations of motion for the nuclear Auid are
suggested.

This paper is organized as follows. In Sec. II,
we review how the Lame equation can be approxi-
mated from the TDHF approximation when all the
collective strength is concentrated at one level. In
Sec. III, we show that in a more general many-
body problem in which all the particles have the
same displacement field, we obtain again the Lame
equation as an approximate equation of motion.
We summarize in Sec. IV the solutions of the
Lame equation subject to the boundary condition
that the stress tensor at the surface vanishes. How
the surface tension and Coulomb repulsion can be
included into the treatment of elastic vibration is
discussed in Sec. V. In Sec. VI, we examine the
eigenenergies of the different multipole states and
compare them with experiment. We investigate
the widths of the giant multipole states and extract
the viscosity coefficients in Sec. VII. In Sec. VIII,
we compare the similarities and differences of the
liquid drop vibrational states and the elastic vibra-
tional (giant multipole resonance) states. Section
IX concludes the present discussion. For com-
pleteness, the explicit forms of the basic displace-
ment vectors are given in the Appendix.

II. THE LAME EQUATION AS A
SPECIAL CASE OF THE

RANDOM-PHASE APPROXIMATION

We would like to review the results obtained pre-
viously in deriving the Lame equation for a spe-
cial case of the random-phase approximation. For
a simple short-range, density-dependent effective
interaction, we showed previously from the TI3HF
equations that the equation of motion for the den-

sity field n (r, t) and the velocity field u (r, t) satisfy
the following equations [cf. Eqs. (2.1) and (2.2) of

Ref. 4]:

—n+V.nu=0
Bt

(2.1)

m + g Vi mnu;uj++, i +p,i
l (p) (q)

,j
B(W,n)= —nV;—

Bll
(2 2)

Here p,j.
' is the par-thermal stress tensor arising

from the deviation of the single-particle velocity
from the mean velocity

p;~ =m gP» (V;S» —u;)(VJS» —u )
(p) 2

jlL

(2.3)

and p;Jq' is the quantum stress tensor

(2.4)

where P» and S» are the amplitude and phase of
the single-particle wave function g»

P»(r, t) =P»(r, t}e (2.5)

and m is the mass of a nucleon. In Eq. (2.2), W, n

is the energy density due to short-range interac-
tions alone. We have neglected the long-range
Coulomb interaction and surface tension. They
will be taken up in Sec. V.

We shall examine the quantum and the par-
thermal stress tensors for a special case of the
random-phase approximation. For this purpose,
we wish to write the single-particle wave functions
in the form of Eq. (2.5). It was shown previously
that in the random-phase approximation, a
single-particle wave function P»(r, t) can be quite
generally written in terms of a displacement vector
D»(r, t) and a phase S»(r, t)

g» '( r —D»( r, t),0) exp[i mS» ( r, t) /Pi+i e»(t)t /fi]
»(r, t) =

[1+7.D (r t}]'~'
(2.6}

where g» '( r, t) is the single-particle wave function
in the absence of dynamical motion. A collective
state of the system, if it ever occurs, is character-
ized by a concentration of the collective strength at
one level and by having the same displacement vec-
tor and velocity potential for all the single-particle

D»(r, t}=D(r,t)

S»(r, t)=S(r, t} .

(2.7)

(2.8)
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These relations greatly simplify the evaluation of
the quantum and par-thermal stress tensor. Be-
cause all the single-particle states have the same
velocity field, we have

reads

BDu=
Bt

(2.16)

( ) 0(p) (2.9}
we obtain from (2.2) the Lame equation

A straightforward evaluation of the quantum stress
tensor gives

(} D a'(W, n)
mn() —— A(q)+, p(q),+n, 'O gt2 Bn np

V(V D)

(q)= (0)-2 (0)V 0PlJ PlJ lJ

—g fV;(p' 'D )+V (p; D.„)]j+P(VD),
+ (q)q2D (2.17)

Upon introducing the total Lame coefficients A, ,p:
(2.10}

where p,J
' and v;&

' are the equilibrium quantum
stress tensor and kinetic energy density, respective-

ly. They are given by
and

g(q)+n 2
82( 8;n)

Bn np

p(q)

(2.18)

(2.19)

pil. =+ V.VJ Q I PP, I

'
4m the equation of motion (2.17) becomes the standard

form

y y(p)V V y(p)
l J A, (2.1 1)

2BD
mnp 2

——(A, +)M)V(V D)+)((,V D .' at' (2.20)

and
Noting that the nuclear matter energy density 8'n
is related to 8;n by

gf, VVf,(0) (0) (0)

2m
l J (2.12} 3 A'

8'n = —k~ n+8', n,
10 m

(2.21)

Using the Thomas-Fermi approximation for the
above equilibrium quantities and neglecting
higher-order terms and terms involving V' D, we
have

P.- =Po 5- —A, 6. 7 Q(q) (q) (q)

—p'q'(V';D, .+V,&;), (2.13)

where

)„(q) ., (q) (q) (2.14)

n =np+5n ~np npV'D(i' t) . — (2.15)

and k~ is the Fermi momentum. As the stress ten-
sor depends on the first spatial derivatives, the
coefficients A,

' ' and p'q' are the Lame coefficients
arising from the quantum stress tensor.

We consider now small derivations of the density
from the equilibrium density no

no& 2 A'
kg np.

9 15m
(2.22)

There is an additional amendment to the equa-
tions of motion before we can apply it to the dis-
cussion of nuclear dynamics. We know that be-
cause of the momentum dependence and the nonlo-
cality of the nucleon-nucleon interaction and also
because of the coupling of phonon to the single-
particle motion, the mass of a nucleon can be effec-
tively modified. ' ' Since we have not included
these effects explicitly into our consideration, we
are well advised to use an effective mass m* in our
equation of motion. The effective mass m* is ap-
proximately constant in the interior of a nucleus,
but depends on the energy of the collective excita-
tion. ' Equation (2.20) is thus modified to be

m~np(} D/(}t =(A, +p)V(V.D)+)MV D,
where

(2.23)

we can write the Lame coefficient A, in terms of the
nuclear incompressibility E

From the equation of continuity (2.1) which now p=(fP/Sm~)kt n (2.24)
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and

A, =noE/9 —(2' /15m~)kf no . (2.25)

III. THE LAME EQUATION AS A MORE
GENERAL EQUATION FOR COLLECTIVE MOTION

ai ——

' 1/2
A, +2p (2.26)

and for the shear waves, the speed is

a2= p
m*no

' 1/2

(2.27)

Upon taking kf ——1.3 fm ', E =220 MeV, and
m*/m =0.8, we find the speed of compressional
elastic waves

a 1
——0.2523c,

and the speed of shear waves

(2.28)

a2 ——0.1527c . (2.29)

These speeds can be compared with the speed of
hydrodynamical waves given by

ahyg 0=(E/9m+) ~ =0.1804c (2.30)

We see that the speed of compressional elastic
waves is greater than the speed of hydrodynamical
waves which in turn is greater than the speed of
shear elastic waves.

Before leaving this section, it is of interest to es-
timate the speeds of elastic waves in a nuclear
medium. For the compressional elastic waves, the
speed is

The Lame equation we have obtained admits
both rotational and irrotational flows. On the oth-
er hand, the derivation of the Lame equation from
the TDHF approximation made use of only irrota-
tional velocity fields. Must the flow be irrotational
always? It should be realized that the flow can be
irrotational if and only if: (1) a single Slater deter-
minant adequately describes the dynamics of the
collective motion completely, and (2) all the
single-particle states have the same velocity field.
While a single Slater determinant is often used to
describe collective dynamics, there is no a priori
reason to expect that the description can be com-
plete in view of the large configuration mixing that
occurs even for the ground state of a nucleus. '

When the static ground state is represented by a
more general wave function that is not a single
Slater determinant, rotational flows can be admit-
ted. We shall see that for a general wave function
and the case when the displacement fields of all the
particles are the same, the Lame equation is again
obtained as an approximate equation of motion. It
follows then that the Lame equation is a more gen-
eral approximate result for a Fermi liquid in col-
lective motion and has a range of validity greater
than the TDHF approximation of one Slater deter-
minant.

We consider a many-body system having a
many-body wave function )p' '(r), r2, . . .rN, t) for
the system at equilibrium. For simplicity, we have
suppressed the spin and isospin degrees of freedom.
We consider a collective motion as one in which all
the nucleons have the same displacement field D
and represent the many-body wave function by

(3.1)

A collective eigenstate is one in which D is periodic and satisfies the proper boundary conditions. The equa-
tion of continuity gives [cf. Eq. (3.13) of Ref. 2]

Bn (r), t)

Bt
+V„[n (r), r)u(.r), t)]=0,

where

n(r), t)=N I dr2. . .dr)vg (r). . . rz, t),

(3.2)

(3.3)
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and

r2 D(r2 t)
P(r i. . r~., t}=

g [1+V„.D{r,t)]'~'
a=1

Keeping terms up to the lowest order in the displacement vector, one finds from Eq. (3.2) that

BD(ri, t)

at
=u(ri, t) .

(3.5)

(3.6)

Because u(r it) as given by Eq. (3.4) is not necessarily irrotational, the displacement vector D(r it) need not
be irrotational.

The equation of motion for the system is [Eq. (5.4) of Ref. 2]

mn—(r, )u;(ri)+ g [n(ri}u;(ri)u~(ri)+pj '(r&}+pj~'(r&)+pcs'( i)]
c}t ~ rg~

= —f d r2n' '(r], rp) UL(ri, r2}.
Br&2

(3.7)

Here p's' is the stress tensor due to the short-range interaction, p'i'(r i) is the par-thermal stress tensor, and
p'~' is the quantum stress tensor. They are defined by

pj '(ri)=m f dpi/ [V„S—u;(ri}][V„S—uj(ri)], (3.8)

and

pj.~'(r, )= f dp, V, V„P PV„V—— (39)

where, dp&
——Nd r2. . .dr&, x; is a Cartesian component. of the radii vector r i, and the arguments in P and S

are (ri. . .rz, t). In Eq. (3.7), UI (ri, rz) is the long-range interaction between nucleons, n' '(ri, ri). is the
two-body distribution function, and the term on the right hand side is the force density due to the long-
range interaction. A straightforward evaluation of Eq. (3.9) gives

pg (r&)=pj '(r, ) —2r~ 'V D(ri) —+[V„(pj'r'Dr)+V„(p 'D )]+Pi(V3D),
y

(3.10)

where

f2''= fd V„V„~%' '~ ——4 ' V V (3.1 1)

and

$2

2' X) X)
(3.12)

As 4' ' is the many-body wave function for the
system at equilibrium pj'and 7j'are the quan-
tum stress tensor and kinetic energy density for the
system at equilibrium. These quantities can be
adequately represented by using the Thomas-Fermi
approximation. Equation (3.10) then leads one to
the same Lame constants as before. We can

I

neglect the par-thermal stress tensor which is small
for low-energy phenomena. Upon using a proper
parametrization of p;1

' in terms of i} ( W, n) IBn
and neglecting the long-range interaction, we ob-
tain again the Lame equation (2.20) for nuclear
fluid with a flow that is not restricted to be irrota-
tional. The introduction of an efFective mass then
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leads again to Eqs. (2.23)—(2.25) for the dynamics
of nuclear fluid at low excitation energies. &, (r)= —+1(,(«)(r)&V)Ai

k I

(4 7)

IV. MQLTIPOLE GIANT RESONANCES
AS ELASTIC VIBRATIONS OF A NUCLEUS

We have shown in the last two sections that the
equation of motion for low-excitation collective
motion in a nucleus can be approximated by that
for the propagation of elastic waves. On the other
hand, some of the most notable nuclear collective
states are the multipole giant resonances. As was
first observed by Bertsch, these giant resonances
are manifestations of the elastic vibration of a nu-
cleus. It is therefore of interest to examine the
eigenfrequencies and displacement vectors for the
elastic vibrations of a spherical nucleus.

The mathematical procedures to obtain the
eigenenergies were presented by Lamb in the last
century' and need not be repeated again. We
hereby summarize Lamb's solution with a slight
change of notations.

We look for solutions of the displacement vector
in the form

D(r, t) =& (r )e'"' .

The I.arne equation, (2.23), becomes

—m*noco &(r)= (A, +p)V[V &(r)]

+@V &(r) .

(4.1)

(4.2)

and

V.5' i(R)+0

V.4'2(r)=V D3(r}=0.

(4.3)

Among the displacement fields &2(r), there are
two different solutions &2 and N3 having the
properties of Eq. (4.4) and satisfying Eq. (4.2). In
consequence, the most general solutions of the dis-
placement vector are of the form

D(r, t)=[Ai9, (r)+A2 $2(r)

+As&i(r)je'"', (4.5)

where the A's are constants and the N functions
are the displacement vectors satisfying Eqs.
(4.2)—(4.4):

A general solution of Q'(r) is a linear combination
of three different types of displacement 8' i(r ),~ z( r ), and D3( r ) satisfying

4, (r)=, VX+1(t(«)(rXV)&i
Im

(4.8)

Here, gi(x) is defined in terms of the spherical
Bessel function jI by

Pi (x) = ( —I )'ji(x ) /x ',
and 0& (r, 8,$) is the solid spherical harmonic

(4.9)

(4.10)

The quantities h and k are related to the frequency
N by

h =m*noco /(A+2@, ) (4.11)

and

k =pl 50N /p . (4.12)

1
T; = — $xj5p,j,

p

and to require T to vanish at the surface as the
boundary condition. We shall first consider the
case with no surface tension and Coulomb interac-
tion. The unbalance stress tensor 5p,z comes only
from the displacement fields, as given by Eqs.
(2.13), ('2. 18), and (2.19)

(4.13)

It is easy to prove that the P';( r) functions in Eqs.
(4.6)—(4.8) satisfy Eqs. (4.2) —(4.4) by direct substi-
tution.

Since V(V &,) &x &~ and & i is the gradient of
a scalar, the solution &

&
leads to a compressional

irrotational flow. The solution &2 and &3 lead to
rotational flows with vorticities but because of Eq.
(4.4) they are also isovolumetric. In the case of a
constant derisity, the solution &2 and &3 give rise
to incompressible but rotatiorial flows.

From the general form of the solution Eq. (4.5)
which satisfies the Lame equation, one determines
the eigenfrequencies by imposing the appropriate
boundary condition. For a free vibration, the un-
balanced stress tensor 5p,j (which is the deviation
of the stress tensor from the equilibrium value)
must vanish at the surface r =a so that there is no
residual force acting across the boundary. Instead
of working with 5g,z, it is more convenient to con-
struct the vector T with components

& i(r ) = —
2

V g 1(t(hr)Qt~,
1

Im

(4.6) —AV D5,J- . (4.14)
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Substituting Eqs. (4.14) and (4.5) into Eq. (4.13),
we obtain the vector T:

T= g[(A)aI+A3c(/k )VQt~
Em

+(A~bI+A3d(/k )r '+ V(Q(~/r '+')

+A, er(r &(V}Q( /k]e'"', (4.15)

where the coefficients aE, bE, cE, dE, and dE at the
surface r =a will be given below. As the functions
V'QI, V'(QI /r '+'), and r XVQI are different
functions of 8 and P, the requirement that T van-

ish at the surface will be satisfed if their coeAi-
cients are simultaneously zero

(4.24)

has, in general, both transverse and radial com-
ponents. A nucleus undergoing vibrations of this
type with multipolarity l produces only electric ra-
diation of multipolarity l. Hence, we call these
states electric multipole states. These states have
natural parities given by ( —1) . The displacement
N

&
is irrotational but compressional. However,

&3 is rotational but isovolumetric. It leads to a
flow containing vorticities. A given eigenstate is a
mixture of both & ~ and &3 displacements whose
coe6icients A ~ and A3 are related through Eq.
(4.16) by

aEk'

cE

A, aI+A3cI /k'=0,

A(bI+A3dI/k =0,

(4.16)

(4.17)

In the second class of solutions, which we call
the magnetic multipole states, the coefficients
A

~

——A3 ——0 but A2+0. The characteristic equa-

tion as obtained from Eqs. (4.16)—(4.18) is'

and e~ ——{I—1)PI(ka)+kaf/ (ka) =0 . (4.25)

W, eE
——0. (4.18)

QEdE —
&ECE =0,

where

(4.19)

[ k a Pt(ha)
(21+1)h

+.2(l —1)QI &(ha)], (4.20)

1 k
A(ha)2l+1

2(l +2)
ha

(4.21)

cI= k'a'QI(ka)+2(l —1)g~ ~(ka), (4.22)

l+1 ka
(4.23}

In this class of vibration, only terms involving

&
&

and & 3 are nonvanishing. The displacement

The above conditions lead to two classes of solu-
tions. ' In the first class of solution, which we call
electric multipole states, the coefficients A ~+0,
A 3+0, but A3 ——0. The characteristic equation as
obtained from Eqs. (4.16)—(4.18) is

tanha 1

ha 1 k
1 ——— h a

4 h

This equation can be solved for ha provided the ra-
tio

(4.26}

In this class of solutions, only the term involving
&z is nonvanishing. The displacement for this
class is rotational but isovolumetric. It leads to a
flow containing vorticities. The radial displace-
ment vanishes so that the displacement at any
point is directed at right angles to the radius
drawn from the center of the sphere. it is also
directed at right angles to the normal of the surface
of constant QE . Vibration of this type is a purely
shear vibration. A nucleus undergoing this class of
vibrations of multipolarity / produces only magnet-
ic radiation of multipolarity l. Hence, we call
these states magnetic multipole states. They have
.unnatural parities given by ( —1) +'.

For completeness, we list the explicit form of the
displacement vectors in terms of their components
for a multipolarity of l with a z component m in
the Appendix. They are useful in exhibiting the
currents of the nuclear fluid for different eigen-
modes of vibration.

The eigenvalue equations (4.19)—(4.23) assume a
simple form for the radial vibration with I =0. Be-
cause of the interest in giant electric monopole res-

onances, we write the eigenvalue equation due ori-

ginally to Lamb'
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k A,——+2
h2 p

(4.27)

is known. The eigenenergy is then given in terms
of ha by

1
Rcu =-

a m*

1/2 2 2
' 1/2

ha 12 &kyE+=
31/2 5 m e

For finite nuclei, ha ranges from 1.85 to 2.2 and
fico+ '~ increases from 62.4 to 82.8 MeV as A in-

creases from 50 to 200.

where T is the surface tension coeAicient and a sin-

gle multipolarity I is assumed for the displacement
D„. The change in shape also produces a change
in the Coulomb potential which in turn changes
the stress tensor at the surface. As is well

known, ' the additional efFect of Coulomb interac-
tion for an incompressible flow is to modify Eq.
(5.2) by a factor involving the fissility parameter x

5p =
~

(1 —1)(l +2) D„( a, 8, $)
T

20x
(21 + 1)(l +2)

(5.3)

The characteristic equations obtained by Lamb
are appropriate for the vibration of an elastic
sphere in the absence of surface tension and
Coulomb interaction. The equations need to be
modified if we want to apply them to a nucleus.
Although the effects of surface tension and
Coulomb interaction on elastic vibrations are ex-

pected to be small, their introduction allows one to
uncover the low-lying vibrational states arising
mainly from the forces of surface tension and
Coulomb interaction. The new characteristic equa-
tion will take into account the elastic response, sur-

face tension, and Coulomb interaction, and will

provide a unified description of all the collective
vibrational states of a nucleus. It will become pos-
sible to compare and contrast the high-lying giant
multipole states with the low-lying "liquid-drop"
states because both will come out as solutions of
the same equation.

The results of Lamb can be very simply general-
ized. The displacement field changes the shape of
the nucleus which now becomes

R (8,Itl, t) =a +D, (a,8,$)e'"', (5.1)

where D„(a,8,$) is the radial component of the dis-
placement vector at the nuclear surface. The angu-
lar displacement gives a second-order correction
and is therefore neglected. A change in shape
gives rise to a change in the local radii of curvature
and thus, because of the surface tension, a subse-
quent change in the stress tensor at the surface.
The change in surface stress tensor due to D, is
given by [cf. Eq. (298) of Chap. 10 in Ref. 19]

where

x =(Z /A)/(Z /A)crit .

There is an additional efFect of the Coulomb in-

teraction in a cornpressional oscillation. This is
the tendency of a uniformly charged medium to re-
store a volume-type density variation with a
characteristic frequency co& depending on the
charge density of the nuclear medium. For the nu-

clear fluid, this frequency leads to a characteristic
energy of ~&——7.25 MeV. It is an important ef-

fect in the discussion of monopole oscillations. %'e

first consider the case without this "plasma oscilla-
tion" and shall return to it in a future investiga-
tion.

The boundary condition for a free vibration is
that the total stress tensor at the spherical surface
r =a is zero. Besides the stress tensor due to elas-
tic responses, the total stress tensor must include
the stress tensor due to surface tension and
Coulomb interaction.

For the magnetic multipole states, as the radial
component of &2 is zero, the surface shape does
not change. Hence, surface tension and Coulomb
interaction have no effect on the vibration of mag-
netic multipole states.

For the electric multipole states, the displace-
ment is a combination of &1 and &3. %e cast
the stress tensor (5.3) in the same form as that of
Lamb and collect corresponding terms. The
characteristic equation now reads

(al++I)(dl+bl) (el +1l)(bi+Pl)

5p,„= (1 —1)(1+2) D( , a/8),
T

(5.2) where a~, bI, cI, and dI are given previously in Eqs.
(4.20) —(4.23),
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T (1—1)(l+2)a~= —P~a =—
pa (21 + 1)ha

20x
(2&+1)(1+2)

The surface tension coefficient T is taken to be '

P = 1.017 MeV/fm (6.2)

To obtain the fissility parameter for a given mass
number, we parametrize the P-stability line by

X 4i (ha)+ „a, (5.6)
1$(ha)

ha
Z =A/(2+0. 0146A'"),

and get the fissility parameter as

(6.3)

~ (& —I)(&+2)
pa (21 + 1)ha

20x
(21 + 1)(l +2)

(Z /A)
45

(6.4)

The effective mass depends on the energy of the
collective state %co„;b. We choose it according to
the prescription of Brown and Specht'

Xl(1+1) ' k a
tjj(ka)

ka
(5.7)

=0.64+0.3
2

fico„,b(MeV )
1+——

82/A 1/3 (6.5)

A3

A)

(a(+a()k
cl +Pl

(5.8)

and the displacement vector for each vibrational
state can be determined up to a normalization con-
stant.

The solution of the characteristic equation gives
the eigenenergies of vibration. When the eigenener-

gies are found, the mixtures of & ~ and &3 are
determined by

and

kg

1 5'. (6.6)

where the energy dependence is such that the effec-
tive mass is approximately unity for nucleons on
the top of the Fermi sea but decreases when the
particle-hole energy increases.

With most of the parameters determined by oth-
er methods, the only parameters at our disposal are

k~, E„,E„and Ez. The equilibrium density n p

and the radius parameter rp are related to k~ by
the well-known relations

VI. EIGENFREQUENCIES OF COLLECTIVE
VIBRATIONS 3/l p

rp ——
4m

(6.7)

K(N, Z) =E„+, +Er&s (N —Z)
(6.1)

Given a set of Lame constants for the nuclear
medium, the eigenenergies of collective vibration
can be obtained. The Lame constant p depends on

k~ and m~„while the Lame canstant A, depends ad-
ditionally on E. In our model, we are using a
sharp cutoff density distribution, whereas the prop-
er density has a transitional region of finite thick-
ness. We are therefore advised to use an effective
compressible E and )u which are obtained by
averaging aver the whole nucleus. Such an averag-

ing will lead to an effective compressibility which
contains a surface term proportional to A

Furthermore, as the nuclear energy density depends
on the density difference of neutron and proton, the
nuclear incompressibility also depends on
(N —Z) /A . We can parametrize the nuclear in-

compressibility as"'

A search is made of the best set of parameters of
kf E E and Ez to reproduce the energies of-
the 0+, 2+, and 3 states. There is ambiguity in
determining the coefFicients of E, and Ez. We
found that the set of parameters k~ ——1.25 fm
E„=220MeV, E,= —550 MeV, and E&——0 gives
a reasonably good description of the experimental
data. Good agreement with experimental data can
also be obtained when E, and Ez- are changed to
E,= —500 MeV and E~ ———300 MeV. In what
follows, we shall present results only with the first
set of parameters with E,= —550 MeV and

Ez ——0.
The eigenenergies of the lowest electric multipole

states are shown in Fig. 1, given in terms of
Aco~A

' as a function of A. One observes that
there is a 0+ state at an energy of 63/A '~ MeV
for A =50 which increases up to 82/A ' MeV for
A =200. A more detailed fit to the experimental
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FIG. 4. Comparison of the calculated energies and
widths (solid curves) for the isoscalar giant octupole res-
onances with the experimental data. The data points
are from the compilation of Ref. 24.

fact, if we parametrize m*/m by

m*/m =[1+fuo„;b(MeV)/(82/A ' )] (6.9)

we obtain ficosA'~ = 105, 110, 112 MeV for A =50,
100, and 200, respectively. These results are in
good agreement with experiment (see the dashed
curve in Fig. 1). The effective mass for the lower
states remains about the same as in the parametri-
zation of Eq. (6.5); the new parametrization does
not affect the good agreement for the lower 0+, 2+,
and 3 states. The high-lying 4+ state is now
raised to fico4 154/A ' MeV.

It is worth noting that as the mass number
varies from A = 100 to A =250, the effective in-
compressibility varies by as much as 30%. How-
ever, the positions of fuo~A

' for the 2+, 3, and
4+ "giant" resonances remain essentially indepen-
dent of A and hence independent of the incompres-
sibility E. Ont; concludes therefore that the posi-
tions of these giant resonances depend essentially
on p and are insensitive to A, (or E). This result
has important consequences on the positions of the
giant resonances involving spin and isospin degrees
of freedom.

Within the present model of elastic vibration,
there are also isoscalar 1 states obtained from the
characteristic equation (5.5). They lie at an energy
of 58.8/A '~3 MeV for A =40, increasing in energy
to 71.8/A '~' MeV for A = 100 and to 76.7/A '

20x
(2I +1)(I+2)

(6.10)

The low-lying multipole states in Fig. 1 obtained

by solving the characteristic equation (5.5} agree
well with the formula given above. If there were
no Coulomb repulsion, the energies of these states
will vary as A ' . Because of Coulomb interac-
tion, the energy decreases with A faster than A

(for example, approximately as A ' for the quad-

rupole state, A for the octupole state, and
A 9 for the hexadecapole state}. As is well

known, the position of the low-energy vibrational
state is greatly influenced by the nuclear shell effect

MeV for A =200 (Fig. 1). These states are due to
elastic vibration of the nucleus as the surface ten-
sion and Coulomb interaction give no contributions
for / =1. The flow pattern of the nuclear fluid in
the nucleus indicates that these states are not
spurious states because different layers of the nu-

cleus are displayed by different amounts. Such dif-
ferential displacement gives rise to compressional
and shear distortions. The vibrational motion is a
result of the tendency to drive towards equilibrium
due to the presence of these distortions. Thus,
while an isoscalar 1 state cannot arise from the
restoring force of surface tension and Coulomb
repulsion, the isoscalar electric dipole state can be
an independent state in the elastic vibration of a
nucleus. Future experimental search and identifi-
cation of the isoscalar 1 state is of interest. It
may also be important to examine theoretically the
degree of spuriosity in this 1 state. Experimen-
tally, there is some evidence for the presence of an
isoscalar 1 state at an energy between 13.3 to 16.7
MeV of Ca, which is not far from the energy of
17.2 MeV (58.8/A '~ MeV) predicted from the
present elastic model. More data points for heavier
nuclei will be of great interest in mapping out the
systematics of the isoscalar electric dipole state.

Besides these "giant resonances" whose energies
behave approximately as A ', there are low-

energy vibrational states lying lower than these gi-
ant resonances. They have energies which decrease
faster than A '~ (Fig. 1). These are the liquid-

drop vibrational states of Bohr and Wheeler'
which arise from the restoring force of. surface ten-
sion and the disruptive Coulomb repulsion. The
energies of the liquid-drop vibrational state of mul-

tipolarity is given by' '

l (I —1)(I+2)T
I m*na

1/2
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FIG. 5. Comparison of the calculated energies of the
liquid-drop octupole state (solid curve) with the experi-
mental data of the isoscalar low-energy octupole reso-
nances. The data points are from the compilation of
Ref. 30.

which alters the underlying collective liquid-drop
potential. In many cases, the alteration leads to
permanent deformations in nuclei. In other cases,
the shell effects change the vibrational energy to
A ' or A as was known from the random-
phase approximation and Bohr-Mottelson treat-
ment. ' ' It would be of interest to study the
positions of the identifiable vibrational states that
can be excited from the ground state to discern the
liquid-drop behavior and the shell effects in collec-
tive vibrations. In this respect, a systematic study
of these low-energy quadrupole states has so far
not been carried out but deserves special attention.
For the low-energy 3 state, there is evidence for
its identification in ines, stic scattering experiments
at an excitation energy of 32 A ' MeV, inter-
preted as a 1fico transition between major shells.
It is tempting to suggest that the observed low-

energy octupole state is perhaps built on the
liquid-drop vibrational state with modifications due
to nuclear shell effects. In this interpretation, the
data points at ' Au can be brought to be con-
sistent with those at A —100 (Fig. 5). The data
points at A (70 are lower than these systematics
because of the fragmentation of the low-energy col-
lective strength. Clearly, more data points for
160 &A &230 are needed to confirm or deny the

validity of such an interpretation and to reveal the
importance of the shell effect.

The low-energy 4+ state decreases with A ap-
proximately as A . The systematics of this
liquid-drop 4+ state are very different from what

. one expects of a 2%co-60 to 80 MeV/A'
behavior. In the region of A ) 100, this state lies
distinctly separated from the other resonances (Fig.
1). It is higher than the low-energy octupole state
but lower than the giant quadrupole state. A fu-

ture search for this state in this region will be of
interest.

What we have discussed are the lowest states of
a given multipolarity. There are also higher states
which differ from these by a more complicated
flow pattern. For completeness and future refer-

ence, we list the eigenenergies of these states for
A =200 in Table I. With the exception of the 0+
states and the low'est of the states with 1+0, the
product AcoiA' is essentially independent of the
mass number A. Thus, the results in Table I can
be used for nuclei in other mass regions.

Besides the electric multipole states, we also ob-
tain the magnetic multipole states from Eq. (4.25).
The eigenenergies of these states depend only on k~
and m*. They are independent of the other nuclear
parameters. These are the rotational vibrations of
Lamb. ' The flow pattern of the different states is
illustrated in Fig. 6, where only the surface current
is exhibited. For the 1+ state, the current is in-
dependent of 8 and P but depends on the radial
distance. Thus, there is a differential rotation of
one layer against another. The vibrational motion
results from the restoring force due to the shear
distortion. For the 2 state, the top part of the
nucleus rotates against the bottom part in a twist-

ing motion, in addition to the differential rotation
for the different layers. This is the twisting mode
recently rediscovered by Holzwarth et al. ' For
the 3+ state, the flow pattern is such that the
equatorial section rotates against the top and the
bottom parts of the nucleus (Fig. 6). We list in

Table II the energies of these vibrational states. As
of now, these states have not been observed.

TABLE I. Isoscalar electric multipole states for A =200.

0+

(MeV)
82.8

244.4
76.7

157.7
213.9

8.36
66.49

114.8

24.58
102.87

' 160.34

44.08
133.88
207.51

66.37
162.77
254.50

90.97
190.48

117.52
217.31
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Coulomb repulsion, the efFect of surface tension
raises the eigenenergies only by 1 —2 1o. We see
therefore that these efFects have a small influence
on elastic vibrations but are important in providing
a new degree of freedom for a new group of
liquid-drop vibrations.

VII. DAMPING OF THE GIANT RESONANCES

(c)

FIG. 6. The displacement vector P(r) at the nuclear
surface for magnetic multipole vibrations of I = 1+, 2
and 3+. The complete displacement field is given by the
product of &{r)with a sinusoidal temporal factor
coscoIt.

It is of interest to investigate the effects of sur-
face tension and Coulomb repulsion. We found
that for the giant resonances which are already
present in the absence of surface tension and

We shall consider the damping of the giant reso-
nances due to the two-body viscosity alone. The
introduction of one-body dissipation into the mac-
roscopic picture of the present type requires a dif-

ferent global approach of the dynamics' and will

not be considered here.
Before we introduce the two-body viscosity in

the elastic model, we wish to clarify an apparent
peculiarity concerning the shear viscosity of the
nuclear fluid. On the one hand, theoretical esti-
mates ' of the shear viscosity q of a Fermi fluid

gives a temperature dependence of q-l/T; this is
indeed confirmed by experimental macroscopic
measurements in the case of liquid He. As nu-

clear fluid is a Fermi fluid, one expects that the
shear viscosity goes to infinity as temperatures de-

crease, and a shear flow for the ground state of nu-

clear matter is impossible. How can one under-

stand such a singular behavior of the shear viscosi-

ty? For an elastic medium, a macroscopic shear
strain with a scale much greater than the interpar-
ticle space produces a correspondingly large restor-

ing stress. A continuous shear flow of matter is
therefore impossible. Hence, the "apparent" shear
viscosity near T =0 for a continuous shear flow of
very large scale is infinite. However, this apparent
singularity of shear viscosity is an artifact of treat-

ing an elastic medium as a hydrodynamical medi-

um with viscosity and without elasticity. The
apparent singularity of the shear viscosity arising
from treating an elastic medium as a hydrodynami-
cal medium need not be present when the elastic

property of the medium is taken into account.
When the temperature is decreased further below

a critical temperature Tz, many Fermi fluids be-

come superfluids. Theoretical estimates of the

TABLE II. Isoscalar magnetic multipole states.

1+

(MeV)
161.0
262.0

63.0
202.6

103.S
242.3

140.7 176.2 210.8 244.6
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BQ - BQJ-
p. ~

——'g +
Bx~ Bx.

BQr
3X~

r r

(7 1)

viscosity of such a fluid gives a temperature depen-
dence of q- T', reaching a constant value at the
critical temperature. As a finite nucleus in its
ground state has very strong pairing correlations,
-viscosity in a nucleus near its ground state is ex-
pected to be small. It is reasonable to treat the
viscosity stress tensor phenomenologically in terms
of the Navier-Stokes stress tensor with the viscosity
coeAicients adjusted to fit experimental data.

We introduce the Navier-Stokes stress tensor
given by

(7.5)

For a giant resonance with a & i displacement,
when fico+' is a constant, we can write

C

2/3 (7.6)

where

(7.7)
(ficopA'~ ) (g+ —,ri)

fi(A, +p)

Similarly, for a purely Q'2 or & 3 displacement,
the shear viscosity changes the frequency from cop

to

The inclusion of the Navier-Stokes viscous tensor
into the equation of motion leads to the Lame-
Navier-Stokes equation

$2D
mn

2
——(A, +p)V;(V D)+pVD;

Bt

l COp'g
CO =COp 1+

2p

Consequently, the state has a width given by

I= (ficop) ri

which can be written as

(7.8)

(7 9)

Bx, Bx; ' " ()x
c
2/3 (7.10)

+(V(V.u) . with

BD
mn = [A, +p, +icop(g+ , v]}]V(V D—)

Bt

+(Ic+&copI/)V D (7.3)

We can determine the complex eigenfrequency co

from (7.3}very simply if the motion is such that
only & &, &2, or &3 is present, such as the mag-
netic multipole states which contain a purely & 2

displacement, and the 0+ compressional state
which contains a purely &

&
displacement.

For a purely &
&

displacement, the eAect of
viscosity is to change the frequency from cop to

icop(g+ —,q)
CO =COp I +

2(A, +2p)
which corresponds to a width of

(7.4}

We shall treat the viscous terms as perturbation
and substitute u =icopD on the right hand side of
Eq. (7.2), where cop is the vibration frequency in the
absence of viscosity. The equation of motion be-
comes

(7.11)

Equations (7.5)—(7.7) and (7.9)—(7.11) allow one
to extract the viscosity coeAicients from the widths
of the giant resonances in an approximate way.
The isoscalar monopole resonance involves only
compressional flows represented by a 9' i-type dis-
placement. The width of the monopole resonance
is therefore proportional to (g+ —,ri}. On the other
hand, even though the giant quadrupole and octu-
pole resonances involve a mixture of &

&
and S'3

displacements, the flow is mainly incompressible.
It is reasonable to treat these modes as a purely
&3 displacement in evaluating the eAect of damp-
ing. The widths of these resonances then gives an
estimate of the shear viscosity g. The second
viscosity g can then be obtained from the widths of
the monopole giant resonances.

It is interesting to note that as I is proportional
to (fuup), the width is proportional to the square
of the energies for the same type of vibrations.
This is in accord with the observation that the
widths of the giant octupole states are substantially
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greater than that of the giant quadrupole states.
With a value of r1 =8.3 MeV/fm c, we find from

Eqs. (7.9)—(7.11) for the giant quadrupole vibra-
tion

anu;
(p)m + QVJ[m nu(uj+p;J+pgj ]

j

I'(1 =2)=
2&&

MeV
82

g 2/3 (7.12)
()(u),n)

=F;—nV; +~1.
an

(7.18)

and for the giant octupole vibration

I (1 =3)= z
MeV,185

g 2/3 (7.13)

and

[g(q)+ (q ]V (V. ) q V2
a
at l l (7.19)

which are in good agreement with experimental
data (Figs. 3 and 4). This value of r1 is consider-
ably greater than the values of 2.7—5.7 MeV ob-
tained previously by using very different assump-
tions of the collective dynamics.

As ficoo for the monopole resonance does not
vary as A ', the widths need to be calculated
from Eq. (7.5). Using a value of (=3.79
MeV/fm c, we obtain the widths of the monopole
resonance which agree well with experiment (Fig.
2).

We have found that the elastic model with a
two-body viscosity can properly describe the
dynamics of collective nuclear phenomena. It will
be of interest to apply it to other phenomena such
as heavy-ion collisions. There, it is more con-
venient to deal with the velocity field rather than
the displacement field. We return to Eqs. (2.1) and
(2.2) and add the long-range interaction P I and
the Navier-Stokes stress tensor p,z [Eq. (7.1)] to ob-
tain

The corresponding thermal energy equation is

nET+—V (nEz u)= pTV u—+V.(lcvT)
at

aQ
Xp~j' —

~

'

ij J
(7.20)

where Ez is the thermal energy density, x the ther-
mal conductivity, T the local temperature, and we
have assumed

(p)
p - '=pT5;

Equations (7.14) and (7.18)—(7.20) constitute the
nuclear field equation appropriate for low-energy
nuclear dynamics, its application to nuclear giant
resonances through Eq. (7.18) having been shown
to be successful. It will be of interest to see wheth-
er this set of equations may be useful in studying
heavy-ion collisions.

an
at

+V (nu)=0, (7.14)
VIII. CHARACTERISTICS OF
LIQUID-DROP VIBRATIONS
AND ELASTIC VIBRATIONS

andri (q) & (~)+ g Vi[m nu(ui+p, j +p(1+p(J ]
at

()( 8'gn)
v,. — '

+-
an

(7.15)

where p;Jq' is the elastic stress tensor satisfying

p& = 1.(~)(V u——+V u .) X")8 V—u . -
lJ i J J l lJ (7.16)

F=— V-').(q)
l J lJ

J
(7.17)

In terms of F~, the equation of motion (7.15) be-

It is more convenient to introduce the elastic force
density F;

The coexistence of the low-energy collective elec-
tric multipole state and the giant resonances at a
higher energy poses an interesting question. What
are the diA'erences between these states aside from
their diAerences in energy? Can these diAerences
be put into a pictorial form? Clearly, we can find
answers to these questions when we can put these
two types of states within the same model, as we
have done here. An examination of the eigenvec-
tors appropriate for these two types of states then
provides insight as to why and how these two
types of states are different.

We wish to examine the states of multipolarity l
and natural parity ( —1) (electric multipole states).
For simplicity, we shall consider only m =O. The
spatial part'of the displacement vector is a linear
combination of & ~ and &3. Explicitly, it is given

by
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where p, =coso (not to be confused with the Lame
constant), and l]l] = [4m. /(21 + 1)j '

When the eigenenergies are obtained, we can
determine the ratio A3/A] with Eq. (5.8) and ob-
tain the spatial part of the displacement vector up
to an overall normalization constant.

We plot in Figs. 7—9 the displacement vectors
for quadrupole, octupole, and hexadecapole vibra-

"LIQUID DROP"

I

tions. The length of the arrows represent the mag-
nitude of the displacement. Only the displacement
vectors at the surface r =a and at r =a/2 are exhi-
bited.

From Fig. 7(a), we see that in the liquid-drop vi-

bration, which lies at a low energy, the displace-
ment vectors in the interior, and those at the sur-

face are generally pointing in the same direction.
Furthermore, the displacement vectors around 0'
and 180' point toward the direction of expansion.
As an expansion in these directions leads to a
greater local area, these displacement vectors do
not lead to a compressional or expansional distor-

LIQUID DROP"

GIANT RE'SONANCE

GIANT RESONANCE

FIG. 7. The displacement vector N (r ) for the two
different types of quadrupole vibrations. Figure 7(a) is

for the liquid-drop vibrations. Displacement vector is

given for points on r =a and r =a/2'shown as the light

circles. The dark curve is the envelope of the deformed

surface after displacement. Figure 7(b) is for the giant

quadrupole resonance oscillations at fico2-67 MeV/A ' '.
The complete spatial and temporal variation of the dis-

placement field is given by & (r ) cos~2t.

FIG. 8. The displacement vector N{r ) for the two
different types of octupole vibrations. Figure 8{a) is for
the liquid-drop vibration and Fig. 8(b) is for the giant
octupole resonance at Aco3-103 MeV/A ' '.



24 DYNAMICS OF NUCLEAR FLUID. VI. NUCLEAR GIANT. . . 2307

"LiQUID DROP" found for the octupole and hexadecapole vibrations
'(Figs. 8 and 9).

We see that everi though the surface shape gen-

erated by these two types of vibrations can be ap-

proximately the same, the pattern of flow for the

two are different. The low-energy vibration is a
liquid-drop vibration, while the giant resonance is

an elastic vibration involving vorticities.

GIANT RESONANCE

FIG. 9. The displacement vector &(r ) for the toro
diAerent types of hexadecapole vibrations. Figure 9(a) is
for the liquid-drop vibration and Fig. 9{b) is for the hex-

adecapole vibration at fico4-133 MeV/A '

tion of the surface. Similarly, the displacement
vectors point outward at 90 and 270 and do not
lead to a compressional or expansional distortion at
these points.

The displacement vectors for the giant resonance

(1 =2, Rco2A
' ~67 MeV) are quite different [Fig.

7(b)]. With the exception of the displacement vec-

tors near 0', 90', 180', and 270', the displacement
vectors in the interior are generally pointed in a
direction different from those at the surface. For
example, at 50', the displacement vector in the in-

terior is nearly opposite to that at the surface.
This diffference generates a shear distortion which
causes the nucleus to vibrate. The flow is highly
rotational and contains vorticities. The displace-
ment vector around 0' and 180' at the nuclear sur-

face point away from the direction of expansion
and produce compressional or expansional distor-
tion at the surface, in contrast to the case of
liquid-drop vibration. Similar diA'erences can be

IX. SUMMARY AND CONCLUSIONS

In a collective motion when all the displacemt:nt
fields for all the particles are the same, the equa-

tion of motion for the nuclear fluid is that of the
Lame equation, appropriate for the propagation of
elastic waves, with the Lame constants depending

on the nuclear properties. We explore whether the
elastic vibrations of a finite nucleus can properly be
identified as the observed nuclear giant resonances.

Making use of the solutions obtained by Lamb in

the last century, we found that these: resonances

can indeed be so identified, as was first suggested

by Bertsch.
The generalization of Lamb's solution to include

the effects of surface tension and Coulomb repul-

sion does not produce much change in the energies

and characteristics of the elastic vibrational states.
What emerges is a new group of liquid-drop vibra-

tions of Bohr and Wheeler arising from surface

tension and Coulomb repulsion alone. The coex-

istence of the liquid-drop vibration and elastic vi-

bration in the same model provides one a pictorial
way to spell out the similarities and differences be-

tween the low-energy electric multipole states and

the high-energy states. The changes in surface

shapes are similar but the flow patterns are dif-

ferent. The flow pattern for the elastic vibration is
such that shear and compressional distortions are
created.

The coexistence of the two types of vibrations

also has ari important implication. Because the
high-lying elastic vibrations have been successfully

identified, the low-energy multipole states. which

belong to the same model should also show up in

the spectra. They go as the liquid-drop multipole
energies which decrease with A faster than A

It is suggested that the low-energy 3 state ob-

served at an energy approximately 32 A ' is

perhaps built on the liquid-drop 3 state with

modifications due to nuclear shell effects. For its
proper identifications, it is important to explore the
3 states in the region around 150(A & 230 for
which not much experimental data are available.

The inclusion of the Navier-Stokes tensor into
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the discussion of the dynamics leads to the treat-
ment of a nucleus as a viscoelastic system. The
widths of the giant quadrupole and octupole and
monopole states can be utilized to give an estimate
of the nuclear viscosity coefficients. New equations
of motion for the nuclear fluid are also suggested.

Besides the natural parity electric multipole
states, the solutions of Lamb' also include mag-
netic multipole states of unnatural parity, the 2
state of which has recently been rediscovered
theoretically. These are rotatory vibrations in
which one layer of nuclear matter rotates against
another. As the surface shape does not change,
these states are unaffected by surface tension.
These states have not been observed, although
methods for their excitation have been suggested.

The effective nuclear incompressibility deduced
from the experimental data turns out to be a rela-

tively serisitive function of the mass number A. It
increases by about 30% when A varies from 100 to
250. Such a sensitivity is also the findings of simi-
lar investigations. The nuclear incompressi-
bility extrapolated to infinite matter E„ is found
to be 220 MeV. One expects that when the plasma
frequency is taken into account, the extrapolated
nuclear incompressibility will be slightly lower.

Although the present model gives good agree-
ment with the energy systematics of observed giant
quadrupole states, it remains to be shown whether
the transition strengths are properly accounted for.
It will be of interest to examine the effective mass
associated with each of the multipole states for
some properly chosen collective coordinates. The

ratio of the effective mass to the effective mass for
irrotational flow will give the fraction of sum role
exhaustion as pointed out by Bohr and Mottel-
son.

With regard to the question of nuclear hydro-
dynamics versus nuclear elasticity, the evidence so
far suggests the validity of nuclear elasticity and
not nuclear hydrodynamics in describing the giant
resonances. Similar conclusions are also reached
by other workers. ' ' This seems reasonable be-
cause for these low-energy phenomena the Pauli
exclusion principle may be so restrictive as to inhi-
bit the possibility of local equilibrium, which is a
necessary condition for hydrodynamics. Seen in
this light, previous treatment of the isovector giant
dipole states in terms of hydrodynamics needs to
be reexamined. It is therefore of interest to include
the spin and isospin degrees of freedom in the
present model; a similar treatment in hydrodynam-
ics has already been performed.
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APPENDIX

We list below the displacement vectors for the solutions & i, & z, and S'3 for a multipolarity of order
(Im). The solution & ~(r ) is given explicitly by

&)(r )=— V/I(ha)Q( (8,$)

( 1)l~ eimP

h 1+1

where

jI(hr), „, a im
~ ej('(h )P(~(—p)+ es(1 —p ) PI~(p) e~ 2,~2PI~—(p), (Al)

hr Bp, (1—p2) ~~2

1 /2
4m (l —m)!

21+1 (1+m)!

d
J~ (X)= JI(X),

dx

and P~~(p) is the associated Legendre polynomial of order (lm). The solution &2 (r ) is given by

(A2)

(A3)
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4'2 ———gt(kr)(r XV)Qt (&,Q)
1

k

j,(kr) ee»+e&(& p—'),' ' Pt~(p)kf+I ( 1 z)t/2 g
tll (A4)

The displacement vector &3 is

&&(r )=—VX&2
k

( —1)'Nt~e' & jt(kr)
e„l(l—+1) Pi (ls)

k 1+1 kr

+ +ji'(kr) eo(1 —p ) Pi (p) ei, —
2 &/2Pt (p)

jt(kr), 2, /2 t) im
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