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Three three-nucleon model problems are proposed as test cases for numerical computa-
tion: the ground and excited states of a spin-isospin independent Yukawa potential

(Delves potential) and the ground state of a spin-isospin independent potential composed
of one attractive and one repulsive Yukawa function (Malfliet-Tjon V). Eigenvalues and

eigenfunctions are calculated using a configuration space Faddeev approach, and varia-

tional upper and lower bounds are evaluated using these wave functions. Each calcula-
tion is performed both as a projected s-wave potential problem, and as a true 'local po-
tential problem in which nucleon-nucleon partial waves through l =6 are kept. For each
case the eigenvalue appears to be converged to within 1 keV and it agrees well with the

upper bound. A brief review of bounding techniques is presented.

NUCLEAR STRUCTURE Variational bounds, three-body problem.

I. INTRODUCTION

Many techniques have been used to solve the
Schrodinger equation for the three-nucleon system.
The earliest technique used was the variational
method. ' Thomas in 1935 used this method to
demonstrate that zero-range forces lead to a col-'

lapse of the ground state. During the decade be-

ginning in 1960, the variational technique was the
primary method of calculating properties of the
trinucleon system. Many different procedures ex-
ist for developing the trial functions used in these
calculations. Some resort to intuition in order to
build in such features as the wave function
suppression caused by strongly repulsive potential
components. Others rely on systematic, brute force
expansions, typified by the use of a harmonic oscil-
lator basis set. ' Another more recent development
is the hypernetted chain expansion.

Alternatively, one may use the Schrodinger
equation in different forms. A direct attempt has
been made to solve the Schrodinger equation; this
was only moderately successful. A second ap-
proach, the hyperspherical expansion of the
Schrodinger equation, approximates the original
equation by a truncated series of coupled differen-
tial equations in a single (hyperspherical) radius

variable. A more recent technique, applied to the
four-nucleon problem and nuclear matter, is the
Green's function Monte Carlo method, ' which
also has its variational counterpart. The decade
beginning in 1970 has been dominated by the Fad-
deev method, "which replaces the Schrodinger
equation with a difFerent equation (or set of cou-
pled equations) and solves the new equation. The
latter technique exists in both configuration
space' ' and momentum space' versions, and as
a mixture of both. '

All of these methods "work" for the bound
states in the sense that the boundary conditions
(finiteness, and vanishingly small wave functions at
infinity) are implementable to arbitrary accuracy in

principle, and are tractable in practice. It remains
to be seen which technique is best in practice, that
is, a solution achieved to a given level of accuracy
with the least effort. Recently, a study' of the
features of the wave functions of various model

problems has shown that for simple smooth poten-
tials with no repulsion, the wave functions are
largely featureless, and presumably every method
works reasonably well. In contradistinction with
this conclusion, the wave functions for models with
strong short range repulsion show considerable
structure. A strong argument was made in such
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cases that the Faddeev method is easier to imple-
ment numerically than the variational method, be-

cause much of the structure is produced when the
"smooth" Faddeev amplitude g~ is permuted to
form the complete Schrodinger wave function

=Q] +Q2 +f3 That is, the permuted functions

$2 and f3, which are obtained "free" in the Fad-
deev approach, build in rapid variations in 'II which
are not present in P~.

Nevertheless, the complexity associated with
solving a (set of) difFerential equation(s) in three in-

dependent coordinate variables is formidable, and
there has been considerable controversy over the
accuracy of various calculations. This problem has
been compounded by an important practical con-
sideration: some methods, including the Faddeev
one, perform a partial wave decomposition of the
nucleon-nucleon force and keep only a finite set of
these waves, while other methods, including the
variational, traditionally keep all partial waves.
Thus, the problems which are solved are not the
same, and different answers are to be expected. To
the best of our knowledge, there exists no set of
semirealistic model problems (or even one} which

has been used as a test of the various techniques.
Only the widely used but esthetically unpleasing
separable potentials are available, as well as the un-

physical harmonic oscillator problem. In the latter
problem, interestingly enough, the Faddeev solu-

tion is far more complex than the Schrodinger
one. '

In this work, we propose a set of three problems;
each involves a local potential but without the
complexity of a tensor component or spin-isospin
dependence. These homework" problems (in
Bethe's original sense) are not new, but we feel they
provide a reasonable test of calculational methods,
and are therefore a useful check for old and new

techniques. This is our primary motivation, since
we feel that the lack of homework problems has
been an impediment to the field. The problems
discussed here all involve a sum of Yukawa func-
tions for the nucleon-nucleon potential in the form

V(r)= —V„e " + Vge /r,

where Vz and V~ are both positive. Each of these
"boson" problems, so called because they do not
involve spin in any way, has characteristic difficul-
ties associated with achieving a solution. The first
model problem involves the ground state of the
Delves potential, ' with Vz

—=0, which is deeply

bound and structureless. The second problem in-

volves the (only) excited state of the same model,
which necessarily has more structure. The third
problem involves the ground state of' the Malfliet-

Tjon V (MT-V) potential, ' which has strong repul-
sion.

Two basic criteria exist for the "goodness" of a
solution: the accuracy of the energy eigenvalue,
and variationa1 upper and lower bounds. Clearly,
the first criterion requires a known solution of ve-

rifiable accuracy. The second criterion is some-
times used to provide such a verification, and,
indeed, is the only mechanism which exists for
purely variational calculations to estimate eigen-
values. We will combine these two criteria.

Our approach will be as follows for each of the
problems. Using a partial wave decomposed po-
tential, the nonrelativistic configuration space
Faddeev-Noyes equation for a Hamiltonian H
will be solved for a sufficient number of partial
waves to generate an eigenvalue converged to
within 1 keV. For each of the partial wave cases,
the wave functions we obtain will be used to calcu-
late (H ) and (H ) '~ (where the potential used in
H is the complete potential), whence variational

upper and lower bounds can be obtained for the
complete (all partial waves) problem. Variational
bounds for the case of a purely s-wave potential
will also be calculated.

In addition to providing a good illustration of
the use of variational bounds, which are briefly re-
viewed in Sec. II, this approach also illustrates the
rate of convergence of the partial wave expansion.
To the best of our knowledge, this is the first Fad-
deev calculation which has been forced to numeri-

cal "completion. " The use of variational bounds
also provides us with a lower bound on the overlap
of the "exact" wave function with the numerically
calculated one, and thus a further check on the
quality of the wave function, as well as the associ-
ated eigenvalue. We will see that the higher partia1
waves in 4 which are induced by the permuted
coordinates in P2 and tP3 provide good variational
estimates for the effect of the higher partial waves
in the potential, even when P, is calculated using
s-waves only. The purely s-wave potential version
of the homework problems is a good check for
Faddeev codes which treat only s-wave interac-
tions. Calculational and numerical rriethod details
will be provided in Sec. III and the Appendix,
while tables of convergence of eigenvalues, upper
and lower bounds, and values of (H ) and (H ) '~

will be given in Sec. IV.
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II. VARIATIONAL BOUNDS lower bounds satisfy EI, &EI, and the various EI,
are

Variational principles are older than quantum
theory, and were implemented at a very early stage
in the development of quantum mechanics. ' '. The
best known of these is the Rayleigh-Ritz variation-
al principle, which states that the lowest eigenvalue

EQ of the Hamiltonian H satisfies the inequality

Eo&(OiH iO) (2a)

where
i
0) is any well-behaved, normalized (to one)

trial function; the equality holds if
~

0)—:
~
$0), the

lowest eigenfunction of H. The relationship clearly
does not hold for excited states Ei,E2, . . . , since
the ground state trial function

~
0) used in place of

the excited state trial function
~

i ) produces an ob-
vious contradiction. One way around this is to di-
agonalize H simultaneously for the first N states,
producing orthogonal trial functions, which then
satisfy

(2b)

Weinstein:

EI E—„(b,I—' 2E—„hl, )' ',
«a+El +i)

EI &

Temple:

arEI, —(EI, —~g )
2

EI
uz. —EI,

Ea «v. &Ex+i '

Stevenson:

Ek a$ (a$2a$EQ + (Eg ~k )

(4a)

(4b)

(5a)

(&b)

and

EI, =(k ~H
~
k)&0

51, ——(k ~H ~k)'~ +El, )0

(3a)

(3b)

where it is assumed that one uses trial functions
which satisfy (k I H

~
k) —= (kH

~

Hk). The latter
form will always be used. The various improvable

This procedure works very well, since it is well
known' that an error of magnitude e in

~
0) [i.e.,

(
~
$0) —

~
0) ) e] produces an upper bound higher

than EQ by a magnitude proportional to e .
Although the true eigenvalue lies below the Ritz

upper bound, it is diAicult to know by how much.
This is the utility of lower bounds, although in
practice lower bounds often work poorly, and wave
functions which produce good upper bounds can
produce poor lower bounds. Four lower bound
techniques are commonly used and are the sim-

plest: (l) The august Temple bound, predating
quantum mechanics; (2) the Stevenson bound; (3)
the Weinstein bound; and (4) the Hall-Post
bound. The first three are improvable, in the
sense that better wave functions yield better
(higher) lower bounds, while the Hall-Post bound is
fixed for a given problem. Other bounding tech-
niques are discussed in the excellent presentation of
Hill and in the review by Weinhold.

We always assume that we are dealing with nor-
malized wave functions. We define

a$ & (Eg+Eg+])/2 (6b)

(6c)

Thus, two of the bounds involve parameters. The
best result for the Temple bound is achieved by
choosing ar as far from EI, as possible (i.e., i ar

~

as small as possible or as close to EI,+i as possi-
ble), while the Stevenson result is best for a$ as
close to (El, +El, + ~)/2 as possible (i.e., i

a$ i
as

small as possible). Note that choosing a$ EI, in-—
the Stevenson formula produces the Weinstein
result, which clearly will be inferior if the wave
functions are good.

The major problem with implementing the
Stevenson and Temple bounds lies in.choosing the
free parameters, u, since both depend implicitly
on the eigenvalues they are bounding. It can be
shown that given only EI, +&, A~, and EI„ the
Temple bound is the best possible lower bound;
however, it does involve an unknown: EI, +&.
Given information on E~ also, the Stevenson bound

may be better, as noted by Walmsely, ' although
Schmid and Schwager have pointed out that
given EI„ the best lower bound is, of course, E~. If
our only information is EI„EI,+&, and AI„EI,+&
then the choices of u must be determined by this
information. We are forced to use the lower
bounds themselves in determining the u's and
choose
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and

&s =«k+i+Ek)/2 ' (6d)

we therefore achieve a functional relationship for
Ek which can be solved to yield a result for Ek
which is identical to Eq. (5a) with aT =Ek+ ~.

Thus, the Temple and Stevenson bound are junc
tionally identical I.f b,k/Ek is small (the result
of using good trial wave functions), one then finds
to first order in hk,

goodness of a trial wave function.
Finally, Hall and Post have developed a

nonimprovable lower bound for ground states,
which uses an eAective two-body Hamiltonian

H, tt
——+—V(r)p 3

M 2

The bound is obtained by taking twice the lowest
eigenvalue of H,~, which uses the usual two-body
center-of-mass kinetic energy, and 1.5 times the
two-body potential V(r).

k —Ek+ s (7a)

III. BOUND STATE WAVE FUNCTIONS

Ek =Ek ( —2~k—Ek—)W 1/2 (7b)

which clearly illustrates the superiority of the
Stevenson (Temple) results. Note that the differ-
ence of the upper and lower bounds, —Ek+Ek,
has a "lever arm" of 2Ek/( Ek+~+E—k). For a
system with a single bound state, we know that
E I =—0, and the Temple and Stevenson result is
particularly simple:

xl-=r J
—rk (12a)

The wave functions used in the evaluation of the
matrix elements of H and H are calculated by the
numerical solution of the Faddeev equations in
configuration space. For three identical particles
with coordinates r I, r 2, and r 3 we use the Jacobi-
an coordinates

Ep-
(ofH fo)

=Ep —2hp (8) y;= —,(ri+r k) —r;, (12b)

Clearly, we wish 4p to be as small as possible. The
lever arm is smallest ( =2.0) for a single bound
state, and is somewhat larger in all other cases.
For two bound states E2 =0; the result for E I con-
sequently has the same form as Eq. (8) with 0~1.

The upper bound when there is a single excited
state can be handled in essentially two different
ways. One of these uses a variation of the Steven-
son bound, while the other diagonalizes in the
subspace of the ground and excited states; we will
follow the latter procedure.

Another physically interesting bound is the
Eckart bound, ' which states that the overlap
between a trial wave function 4 and the exact
ground state wave function + is bounded by

where i, j, and k imply cyclic permutation. One
set of these variables is shown in Fig. 1. The
Hamiltonian for local potentials has the form

H=T+ V(x~)+ V(x2)+ V(x3) (13)

where T is the kinetic energy operator in the
center-of-mass coordinates. The total wave func-
tion 4 for the three-particle system is written as
the sum of three terms

11 =1((x~,y~)+f(x~, y2)+p(X3, y3)

—=4i+6+A
The Schrodinger equation can be separated into the
three coupled equations

1& f(oft) f'—=S'& E, —(&0
f

H
f

4&)
(9)

XI

(10)

In any application we can replace Ei —Ep in the
denominator by the diA'erence of upper and lower
bounds, E~ —Ep, and replace Ei in the numerator
by E I . If there is no excited state, E& =—0 and then

S & 2, =1+6,0/2EO
f
(4 fH f4) f

Thus, hp/Ep provides a direct measure of the FIG. 1. The Jacobian coordinates for three particles.
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[T+1'(X ) .&—]A = 1—'(X )[eJ+ek] .

Since the particles are identical the functions 11; all
have the same functional form and it is only neces-
sary to solve one of the three equations.

The total angular momentum of the system is
zero; hence, the Faddeev amplitude f& can be writ-
ten in the form

60'

0'—
po

(21+ 1)'"
X Pl(p~)

4m.
(16}

FIG. 2. The limits of the 82 integral in Eq. (21) are
indicated by solid lines. Typical discontinuities in the
integrand are illustrated by dashed lines. These discon-
tinuities correspond to having knots in the 0&, 02, and 03
variables at 0, 30', 45', 60', 70', 80', and 90.

where P&(p, ) is the Legendre function and pl is the
cosine of the angle between x~ and y~. Using the

symmetry of the P; one obtains the following cou-
pled equations for the reduced wave function
A(xi yi}:

3 8 l(1+1) 3 1(1+1)+— —— —— —U(xi) —&' A(xiu i)4 ~3'& && 4 Pi

1

=U(x, }f d» " ' g[(21+1)(21'+1}]' Pl(»)PI(pz)QI(xz, yz) (17)

where E =—mE/A', U(x
& ) =m V(x

& )/A, and m is the mass of one particle. The permuted variables xz and

y2 are given by

and

1 2 1/2
xz =

z (x i
—4x iy ill |+4y i ) (18a)

yz= (9x& /4+3xiyi»+yi

The value of pz, the cosine of the angle between xz and yz, can be found from the relationship

2 1 2 2+1 +2 ++23 21 2+3 2

(18b)

(19)

For the actual numerical calculations it is more convenient" ' ' to use the variables p and 0; defined by

xg =p cosO) (20a)

v3
p sin6I; (20b)

In terms of these variables the Faddeev equation has the form

a' 1 a 1 a' 41(1+1)
——U(p cos8i) —K PI(p, 8, )p' p ~p p' hagi p sin 2g

g+

U(p c s8o, )y f '
[(21+1)(21'+1)]' Pl(p|)PI'(lzz)pi'(p, 8z)d8z,

3 8)
(21)
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cos20) +2 cos202Pi=—
V 3 s11128i

(22a)

where the limits 0& and 0&+ of the 02 integral are
the solid lines shown in Fig. 2. The values of p~
and p2 are given by

chosen to be sufficiently large, the error in the
wave function will be neghgible. The final test for
the wave function is the difference between the

upper and lower bounds on the energy calculated
using that wave function.

cos202+ 2 cos28&
IM2 =

~3 sin282
(22b)

To solve Eq. (21) we write each 4~(p, 8, ) in the
form

4((p, 8) ) =pF(p, 8I )e (23)

and expand F(p, 8& } in a complete set of basis
states. We choose as our basis set the bicubic
splines on a rectangular grid in the p —8~ coordi-
nates,

F(p, 8~)= g ga „& (p)&, (8~),
m=1 n=l

(24)

where the number of basis states is M XX. The
coefficients a~„are determined by the method of
orthogonal collocation. ' For s (p) and s„(8~) we

use the piecewise Hermite polynomials; these func-

tions have continuous first derivatives, but the
second derivatives are discontinuous at the knots.
Consequently, when evaluating integrals of these
functions the region of integration must be subdi-

vided into a sum of regions defined by the knots.
This point is discussed further in the Appendix.

The boundary conditions for F(p, 8, ) are

F(p, 0)=F(p, m/2) =0 (25a)

F(p,„,8i) =0 (25b}

where p,„ is the maximum value of the variable p.
The boundary condition at p=p, „ introduces ob-

vious error into the wave function, but this error
should "heal" within a short distance. Ifp,„ is

IV. RESULTS AND DISCUSSION

For our calculations we used the parametriza-
tions of Refs. 33 and 34. This was done in order to
correspond as closely as possible to previous work.
With the Delves potential we used A /m
=41.468 MeV fm and with the MT-V potential
we used 41.470 MeV fm . The potential parame-
ters used in the calculations are listed in Table I.

We first calculated eigenfunctions and eigen-
values for up to (and including) four channels; that
is I =0,2,4,6. For identical particles only even

partial waves are allowed. A single s- wave (l =0
only) calculation using a large number of basis
states was made, as well as a series of calculations
using a smaller number of basis states for each of
the various I's but with exactly the same mesh
parameters (i.e., the same knots and collocation
points). The angular momentum barrier greatly
reduces the efFect of the higher partial waves, as
can be seen in Table II. The topmost results are
for the ground state of the Delves potential, and we
list (H ), (H )'~, the upper and lower bounds,

EU, EL, the eigenvalue resulting from the Faddeev
calculation, and the rms radius. For the Delves
excited state results which are listed in the middle
of the table, we have assumed, and will later justify
in Table III, that (I

~

H
~

I ) by itself gives the
upper bound to Ei correct to the indicated number
of significant figures. The results for the MT-V
potential are listed at the bottom of the table. The
last significant figure listed in these tables is not
necessarily accurate and this will be discussed later.

In Table II the column labeled "s wave" denotes
the results obtained using wave functions from an
s-wave Faddeev calculation, in which the varia-
tional part has also been performed assuming a po-

TABLE I. Parameters for Delves and MT-V potentials, as used in the calculations.
Note that the MT-V potential that we use is the one given in Ref. 34, not the one in Ref.
19.

Vq (MeVfm) V~ (MeVfm) p~(fm-') pg (fm ')

Delves
MT-V

0
1438.4812

49.7616.1.58
570.3316

0
3.11

1/1.58
1.55
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TABLE II. Expectation values, upper and lower bounds, Faddeev eigenvalues, and rms radii various potential
models and for varying numbers of potential partial waves (channels). The energies are in MeV and radii in fm.

s-wave one channel two channel three channel four channel

Delves

—(a)
(H2) 1/2

—Ev

—E„
( p2) I/2

50.5100
50.5100
50.5100
50.5101
50.5093
0.802

50.8271
51.0424
50.8271
51.3558
50.5100
0.8025

50.8596
50.8686
50.8596
50.8816
50.8419
0.8026

50.8600
50.8622
50.8600
50.8655
50.8575
0.8027

50.8600
50.8615
50.8600
50.8636
50.8595
0.8027

Delves
(excited state)

—(a)
(II 2) 1/2

—Ev

—EF
( 2)1/2

8.652
8.655
8.652
8.658.
8.652
2.69

8.861
9.096
8.861
9.338
8.660
2.697

8.878
8.957
8.878
9.036
8.864
2.649

8.878
8.951
8.878
9.024
8.883
2.647

8.878
8.950
8.878
9.022
8.886
2.647

MT-V

—(a)
(@2)1/2

—Ev

—Ep
( p2) 1/2

7.540
7.550
7.540
7.560
7.540
1.727

7.722
8.453
7.722
9.253
7.539
1.727

7.736
7.899
7.736
8.065
7.714
1.711

7.736
7.864
7.736
7.994
7.733
1.710

7.736
7.861
7.736
7.988
7.735
1..710

tential which acts only in s waves; this result is
meant primarily to be a test for Faddeev codes.
The Delves model ground state energy is well
determined by the variational bounds, the upper
and lower bounds differing by 0.17 keV. The Fad-
deev eigenvalue is above the lower bound by 0.7
keV, which is within the roughly 1 keV uncertain-

ty in the eigenvalue. Because the Faddeev calcula-
tion is not variational, the Faddeev eigenvalue does
not necessarily lie within these bounds. Since the
magnitude of 50/Eo in Eq. (10) is approximately
10, the overlap between the calculated and exact
wave functions is virtually one. The n-channel
results in the next few columns indicate the pro-
gression towards numerical completion of the full
(all partial waves) problem, calculated using a
smaller basis/channel than the first column. The
D-wave contribution adds roughly 300 keV to the
eigenvalue, while improving the upper bound by
only 30 keV. The reason for this relatively small

improvement in the bound compared to 300 keV is
the induced D wave components (coming -from
coordinate permutations in f2 and P3) in the Fad-
deev wave. function calculated with s-wave poten-
tials. In this respect the Faddeev wave functions
calculated using s-wave potentials are "better"

than the eigenvalue, as seen by comparing
(0

~

H
~

0) to the complete potential problem.
Higher partial waves add little to the upper bound,
while the lower bound improves considerably, an
expected result. The radius increases very slightly
as the binding increases. This is due to a cancella-
tion between two opposing physical effects. The
increased binding as higher partial waves are in-

cluded shrinks the system, thereby decreasing the
radius. In contradistinction, the higher partial
waves are pushed out by the centrifugal barrier,
thereby increasing the radius. For the nonrepulsive
Delves interaction in the ground state, the centrifu-
gal barrier effect is the more important.

The results for the Delves excited state are not
as well converged as for the ground state. The s-
wave eigenvalue lies very close to the upper bound,
while the lower bound is 7.2 keV lower. The com-
plete problem has an eigenvalue roughly 8 keV
below the upper bound, which is itself 144 keV
above the lower bound. The radius of the excited
state decreases as the higher partial waves are in-
cluded (increasing the binding), an indication that
the nodal structure in the excited state wave func-
tion has pushed it out so that there is less of a
difference between the l =0 and l =2,4, ..., corn-
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ponents.
The MT-V case is the least well converged, a re-

flection of the strong repulsion in the potential for
small nucleon separations which requires a larger
basis set to obtain the same level of accuracy. The
upper bound for the s-wave problem is in good
agreement with the eigenvalue and lies 20 keV
above the lower bound. The eigenvalue for the
complete problem lies about I keV above the upper
bound, which is 2S2 keV above the lower bound.
The radius decreases with the addition of higher
partial waves (increasing the binding).

These numbers reflect a few simple phenomena
which are relevant to all these mses.

(1) The s-wave functions yield quite good upper
bounds to the complete problem because of the in-

duced higher angular momentum components from
the permuted parts of the wave function.

(2) The upper bounds are better converged than
are the lower bounds.

(3) The Faddeev eigenvalues agree well with the
upper bounds, but are considerably higher than the
lower bounds.

(4) Less than 1 keV of binding can be expected
from I )8 waves, and convergence of the eigen-
value as a function of l is fairly rapid.

(5) The radii tend to decrease with increasing I
(binding), except for very compact systems with
nonrepulsive forces. The overall change is small,
less than 2% in all cases.

(6) Any structure in the wave function, whether
due to excited state nodes or repulsion in the po-
tential can cause the lower bound to differ substan-
tially from the upper bound.

We also note that the wave functions which give

good upper bounds do not necessarily generate
good lower bounds. We made little effort to find
the mesh parameter sets which produced the best
lower bounds, except for the s-wave case. In most
cases the upper bounds were very similar, and find-

ing better lower bounds did not change our belief
that the eigenvalues and the upper bounds were
virtually identical.

For comparison, we have also generated the
Hall-Post (HP) lower bounds for the ground states.
We find

EI ———58.6 MeV (Delves)

and

EL, 10.7——MeV (MT —V)

They are not particularly useful when one has good
trial wave functions, as we do.

The expected accuracy of the ground state eigen-
values is roughly 1 keV for the Delves case and 2
keV for the MT-V case while that of the excited
state is perhaps 3 keV for the s-wave problem and
10 keV for the various entries in the complete
problem. Estimating the accuracy of the Faddeev
eigenvalue is a very subjective business, at best.
None of the variational bounds would suggest,
however, that our criteria for making these esti-
mates are too restrictive. The accuracy of the qua-
dratures involved in (H ) and (H ) is somewhat
easier to assess. The expectation values of the vari-
ous pieces of H and H were separately calculated
on a Vax. It was found that double precision was
essential bemuse of enormous cancellations involv-

ing large numbers. The integration over each of

TABLE III. Upper bounds separated into components. The notations 0 and 1 refer to
ground and excited states. All energies are in units of MeV, while the wave function over-

laps are dimensionless.

s-wave
Delves

Complete s-wave

MT-V
Complete

(0[ V(0)
(oi T io)
(OiH (0)

175.606
125.096
50.510

176.632
125.772
50.860

—36.551
29.011

—7.540

37.505
29.768

—7.736

(1/ V(1)
(1[T [1)
(1/H /1)

—43.947
35.295
8.652

—45.392
36.514

8.878

(0[H il)
(0[»

0.00025
—3.05.10

—0.0038
8.03 X 10-'
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the various regions determined by the knots of the
splines was done by n-point Gauss quadrature.
The upper bound was converged at the 0.01 keV
level with four-point rules, while &H ) '~ required
six-point rules. Even then, the difference between
the six- and four-point results for the latter case
was a few hundredths of a keV for the Delves
cases, and a few tenths of a keV for the MT-V
case. It is expected in each case that the error in
the &H )' quadratures is no more than 1 keV in
the final result. (Note the tiny off-diagonal matrix
elements in Table III.)

Using a standard variational approach Bell and
Delves ' calculated upper and lower bounds for
their second (complete} potential (A, =1.2) and
found —50.858 and —50.89 MeV, respectively.
For the excited state, they found —8.87 and
—10.83 MeV, respectively. Their upper bounds

agree well with ours, while the difference between
their upper and lower bounds is roughly a factor of
10 more than the difFepence between our bounds.
For the s-wave MT-V problem Afnan and Reid
found a binding energy of 7.539 MeV, a number in

good agreement with our upper bound and Fad-
deev eigenvalue.

In summary, we have calculated Faddeev eigen-

values and wave functions for a set of model home-

work problems. These wave functions were used to
calculate variational upper and lower bounds using
the Temple prescription; the former are consistent
with the eigenvalues. The eigenvalues of the com-
plete potential problem appears converged (to
within 1 keV), using four partial waves.

Note added in proof It has come to our attention
that some groups are working with a version of the
MT-V potential inferred from Ref. 19 whose
strength parameters differ from those listed in
Table I: Vz ——578.089 MeV fm and Vz ——1458.047
MeV fm. Although this version of the MT-V po-
tential does not yield the two-body binding energy
quoted in Ref. 19, we give here the corresponding
three-body results for completeness. The Faddeev
eigenvalues, upper bounds, and lower bounds are
denoted below in each case by [ Ez, EU, —EL,—]-
MeV. For the large basis calculation of the s-wave
interaction (as the partial-wave local potential was
originally defined) we find [8.0424, 8.0425, 8.0609],
while the 2, 3, and 4 channel calculation results for
the complete, local potential problem are given by
[8.228, 8.252, 8.562], [8.249, 8.253, 8.490], [8.251,
8.253, 8.484]. The Faddeev eigenvalue in the last
case lies 1.5 keV above the upper bound, whereas
in the s-wave case it is 0.12 keV higher.
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APPENDIX

To evaluate the bounds for the energy one needs
to evaluate the matrix elements of H and H . Us-
ing the symmetries of the total wave function these
matrix elements can be expressed in terms of a few

integrals. The form we used was found to be the
most convenient. For example, the expectation
value of H can be written as

&q IH Iq'&=&q'I T lq &+&q'I v lq'&, (Al)

where

v —v(x i ) + V(x p ) + v( x 3 ) = vi + vp + v3

Using Eq. (14}of Sec. III one can show that

&q
I
vlq)=3&q

I
v, lq)

=3[&0
I
v If+24 &

+2&v~ I vi I Vi+e~+O3&]

(A2}

and that

&q'I T
I
q')=3&4

I

T
I Ii+26& .

In a similar manner one writes

(A3)

Tlii
I
Tqi+2Z (A5)

&q'
I
Tv

I

q'& =3[&Tfi I
Vi

I 4+242&

+2& T1(2 I Vl I 41+ (1'2+43 &] ~ «6}
and

&el v'lq)= 3&q
I
v, 'lq)

+6&el viv, Iq),
where

&q'
I
vi'

I
q'& = &Pi I

vi'
I fi+24z&

+2&~
I
v'l~+~+~ &,

(A7)

(A8)

& 4
I

H'
I
qi) =

& iP
I

( T'+2Tv+ v')
I

iP ), (A4)

and the three terms in this expression can be writ-
ten in the form
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and &+
I
+& =3&et

I et+2e2& (A10)

(A9)

The normalization integral can be written as

&~I ~t V2I~&= '&&t I
1't 1'2I &~+&2+'&3&

+&e3I ~t~2I&3&
For the actual numerical evaluation of the ma-

trix elements it is convenient to use the variables

p, 81, and 82. Therefore, we use the transformation

(A11)

where limits of the 82 integral are the solid lines in

Fig. 2. Next the region of integration is subdivided
into a sum of regions in which the integrand is
well behaved, that is, where the various quantities
in the integrand are continuous. Recall that the
second derivatives of the Hermite polynomials are
discontinuous at the knots.

From Fig. 2 one can see that the derivative of
81 is discontinuous at 81——60' and that the deriva-
tive of 81+ is discontinuous at 81 ——30'. Therefore,
the 81 integral is divided into an integral from 0 to
30, an integral from 30' to 60', and an integral

cos281+ cos282+ cos283 —0 . (A12)

An example of the division of the 81-82 plane is
shown in Fig. 2. The integration over each region
was performed by Gaussian quadratures.

I

from 60' to 90'. Each of these regions is further
subdivided into regions where 4 is well behaved;
these regions are defined by the knots of p, 81, 82,
and 83. The regions defined by the knots of p, 81,
and 82 are readily identified since these are the
variables of integration. The location of the knots
of 83 in the 81-82 plane are found from the relation
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