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Best possible bounds on expectation values of the energy-averaged Bloch-Horowitz ef-

fective Hamiltonian are derived, assuming knowledge of only moments mo, . . . , m„of
the intermediate-state Hamiltonian. These bounds are independent of the presence of in-

truder states. The simplest case that leads to nontrivial bounds is n =2. Explicit formu-

las are given for the n =2 upper and lower bounds for the Lorentzian averaging width I .
There exists an intermediate range of I values, within which the bounds d'epend weakly

on I . For n =2, the intermediate I" values are of the order of the width of the strength
function of the intermediate-state excitation. For larger n, the intermediate I values de-

crease, permitting finer resolution at the price of increased computation. A universal

graph is given to aid in estimating the effect of Bloch-Horowitz self-consistency on the

n =2 bounds. For a low-lying state with moments typical of those suggested by statistical

spectroscopic theory, the upper and lower bounds differ from their average by about 25%
of the virtual excitation contribution. Finally, an iterative method for approximating the
model-space wave function is described.

NUCLEAR STRUCTURE Energy averaged effective interactions,
Lorentzian averaging. Moments, best possible bounds, inclusion re-

gion, moment cone, bounding polynomial, self-consistency.

I. INTRODUCTION

~(co)X(to) =E(co)X(co), (1.2)

also satisfies

E(to) =to . (1.3)

In realistic cases of physical interest, the second
term of (1.1) cannot be calculated exactly. There-

It is well known' that the calculation of low-

lying states of a nucleus can be formulated in terms
of an effective Hamiltonian A for a finite sub-

space, called the model space, defined by an
orthogonal projection operator P. The definition of
the energy dependent (Bloch-Horowitz) A is

A (to) =Hpp+Hpg(io Hgg) 'Hgp,—

where to is an energy parameter, Q = 1 P, H is-
the full Hamiltonian, and Hpg =PHQ, etc. We—use
Eq. (1.1) because it is easier to analyze than the
energy-independent effective Hamiltonian. Howev-
er it does suffer from the complication of requiring
"self-consistent solutions. " This means that one
must find a value of co such that the corresponding
eigenvalue E(co), defined by

fore, estimates of the errors of approximation are of
interest. The present work gives methods for using
Hamiltonian moments to obtain bounds on any ar-
bitrary expectation value of A . The set of such
bounds for all model-space states in a sense gives
bounds on the operator A . In particular, bounds
on off-diagonal matrix elements (and hence bounds
on eigenvalues) can be calculated from the bounds
on expectation values. (This can be seen by ex-

panding out the expectation with respect to a linear
combination of states, say Pi+$2. )

Our moment-based bounds on expectation values
are best possible bounds, in a sense to be defined in
Sec. IV. However, we have not been able to solve
the problem of constructing best possible bounds
on the eigenvalues of 4 . Fortunately, it has em-

erged from previous work that the major source of
error in eigenvalues is usually the uncertainty in
the operator A, not the uncertainty in its eigenvec-
tors. Consequently, our expectation bounds may,
for practical purposes, be interpreted as best possi-
ble bounds on eigenvalues.

The effective Hamiltonian method is particularly
useful for cases where those eigenstates of H that
have large overlap with the model space ("the
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represented states") lie close together in energy. In
nuclei, pure examples of such behavior are rare; in-
stead one usually finds that the represented states
are separated by several so called "intruder states. "
In any case, the main application of effective Ham-
iltonians is in the construction of an effective in-
teraction 7 for shell-model calculations. This is
done by calculating effective Hamiltonians for
n =0, 1, and 2 valence particles, and performing
appropriate subtractions ' to extract P from
them. Then assuming & to be a two-body opera-
tor, A can be calculated for systems of three or
more valence particles by properly combining core
and single-particle contributions with the two-body
interaction P .

Evidently, this is a kind of extrapolation pro-
cedure in which values of the effective Hamiltonian
A for n =0, 1, and 2 are used to predict values of
A for n & 3. Like all extrapolations, it is vulner-

able to noise in the input data. Such noise is pro-
duced by the intruder-state singularities which

appear in the one- and two-particle effective Ham-
iltonians. These have usually attracted interest be-

cause of their role in preventing convergence of
perturbative expansions. One can see, however,
that the intruder state singularities would cause
difficulties for the F~ extrapolation procedure, even
if it were possible to compute exact values of A
for 0, 1, and 2 valence particles. Obviously, the
singularities of the three-particle A cannot be
predicted from those of the two-body P'. There-
fore, including the exact two-particle intruder state
singularities will not improve the extrapolated
three-particle A . Instead misinformation from the
two-particle singularities will propagate into the
extrapolated n )3 effective Hamiltonians. The un-

itary scalar part of each singularity will actually
be amplified in the n & 3 effective Hamiltonians,
because these contain interactions between more
than one pair of particles.

Experience with ordinary numerical extrapola-
tion suggests an analogous treatment of the in-
truder state diAiculty. Faced with noisy input
data, one gives up the attempt to predict extrapo-
lated values with unlimited accuracy. Instead, one
extrapolates only after first smoothing the input
data, perhaps by fitting a low-order polynomial to
them. The result is a "trend line" which should
predict at least the average behavior, although of
course it cannot reproduce the fluctuations.

There are several ways of applying the idea of
smoothing to the effective Hamiltonian. The
smoothing does not have to be with respect to the

same variable n in 'which the extrapolation is being
done. One still gains the needed stability by
smoothing with respect to some other variable with
respect to which A fluctuates. For example, one
may smooth A „(co) with respect to co, rather than
n. Assuming for the moment that ~ smoothing
has been decided on, it can still be done in different
ways. One may expand A (co} in a Fourier series
or integral, and filter out (or only attenuate}
Fourier components above a certain hmit to get a
smoothed quantity (4 (co) ). This is easily seen to
be equivalent to a convolution or moving average
with respect to a suitable function f:

(A (co) }=f A (u)'}f(co co')dc—g)',

where

f f (co)duo= 1 .

(1.4)

(1.5)

This method is invariant under translation in co

and in a sense weights all values of co equally. One
can instead use an expansion in polynomials which
are orthogonal with respect to some reference den-
sity p~(co), and then truncate the expansion or at-
tenuate the higher coefficients. The truncated
orthogonal polynomial expansion method can thus
be interpreted as an exact calculation of an effec-
tive Hamiltonian that has been smoothed in a par-
ticular way. All that is lacking in the orthogonal
polynomial expansion method is some means of as-
sessing the accuracy and deciding whether the
amount of smoothing is appropriate. And these
concerns are, in, fact, the main motivation of the
present work.

Before going on to discuss the details involved in
m averaging, we mention another kind of motiva-
tion for averaging. In the large problems we have
in mind, the amount of information that can be
computed is far less than is needed to determine A
completely. It is well known that the amount of
information contained in A (co) is sufficient to
determine all eigenvalues of H whose correspond-
ing eigenvectors have nonzero P-space projections.
In contrast, (A ) determines only a small number
of energies, as will be seen in Sec. III. Therefore,
the averaged (A ) contains much less information
than the original A . This allows the possibility
that (A ) can be accurately computed, and such a
calculation would constitute significant progress.
If we then want to calculate the effect of an in-
truder state, we can still do so, by combining an
appropriate model of the intruder state with a
zero-order wave function generated from (A ). It
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is reasonable to hope that (P ) will include most
of the dynamics, and that the intruder state can
therefore be treated as a small perturbation in some
sense. This strategy recalls the separation of nu-

clear reaction amplitudes into direct and com-
pourid parts, where the direct part provides a back-
ground for the study of the compound part.

As we shall see in Sec. IV, co averaging reduces
the effect of intruder states on the bounds. More-
over, smoothing out the intruder-state singularities
filters out their "noise" and so actually improves
the accuracy of the resulting effective interaction.
Motivated by these considerations, we proceed in
Sec. II to discuss specific methods of co averaging.

Also,

(2.8)

Here, and in the following, all singular integrals
are understood in the principal value sense. Com-
bining Eqs. (2.7) and (2.8), we see that

(D(co))„=f dE((co E) '—)~(E)

= f dE(co E) '(—p(E))E,

(2.9)

(2.10)

If m is an even function, it is easy to show that

f ((co E—) ')Ep(E)dE =f (co E—) '(p(E))EdE .

(2 7)

II. METHODS OF a) AVERAGING

To avoid dealing with operators which may not
commute, we confine our attention to an arbitrary
expectation of the effective Hamiltonian, with
respect to a model space state g, say. Thus we

write

&41~~~ )14&=&0
I
Hpp

I
k&+D(~»

where

w(s)=(2m. )
' I 'exp( —s /2I ), (2.11)

would be a good choice. However, the Lorentzian
function

that is, averaging D with respect to co is equivalent
to averaging p with respect to E.

Up to now we have left open the choice of the
weighting function w It is desirable that it should
be positive and go to zero smoothly yet rapidly
outside an interval of width I, say. On these
grounds, the Gaussian of width I,

D(co)=(g
i Hpg(co Hgg) 'Hg—p i g) . (2.2) w (s)=ry~(s'+ r') (2.12)

In principle, g should be an eigenvector of 4 (co).
In practice, errors due to approximation of g are
often unimportant. %e defer until Sec. VI the dis-
cussion of procedures for self-consistent approxima-
tion of g, and assume for now that g is known.

Equation (2.2) can be rewritten
(D (co).)„=ReD(co+ir), (2.13)

h@s advantages of analytic convenience which
outweigh the disadvantage of its long tail. One im-

portant advantage is that for Lorentzian averaging

D(co)= f (co E) 'p(E)dE,—

where

(2 3)

as may be verified by contour integration. Conse-
quently, Lorentzian averaging of D(ca) may be ac-
complished by evaluating it for a complex value of
its argument, say

p(E) =g
i (g i Hpg i QgE ) i

5(E E; ) . (2.4)— z =co+I,I (2.14)

( Q (ro ) ) =f Q (co )w (co co )doo—(2.5)

for the average of any quantity Q(co) with respect
to co, where ur is a normalized weighting function,

w(s)ds =1 . (2.6)

Here the vectors ggE are a complete set of eigen-
l

states of H~~. The range of integration will be un-

derstood to be ( —oo, oo ).
Let us now consider averaging of the type

described by Eqs. (1.4) and (1.5), expressed by the
notation

III. AVERAGING AND SELF-CONSISTENCY

Averaging will be successful in removing fiuc-
tuations only if there is a range of values of I in
which the result depends weakly on I . When we
have expressions for D(ru) in hand it will become
easier to discuss more completely the limits on I .
However, we can anticipate, in general terms, how
averaging will affect practical applications of 4 .

First consider self-consistent solutions of Eqs.
(1.2) and (1.3). Figure 1 shows a plot of a typical
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IV. BOUNDS BASED ON MOMENTS

Let us assume that the computed information
about D consists of a finite number of moments mk
of the density p(E) given by Eq. (2.4), defined by

mk ——J dE p(E)E" (4.1)

FIG. 1. SchSchematic graph to show some of the effects
of averaging. Two eigenvalues E;(~) and E (m) of
A (co) are plotted against m. Their self-consistent solu-

tions are at i and m t", the points of intersection with the
line co=E. Partart (a), before averaging, shows that i is an
intruder state ans ate and that m is a represented state. In (b, i
is shown to be removed without much affectin the so u-

tion of m afterter averaging. Part (c) shows the possibilit
of a ghost solution x.

e posse &sty

etgenvalue E(cg), in accordance with qualitative
properties of A (co) described in .Ref. 2. In Fig

(a) we see that in addition to solutions, such as m

w ich have lar
dE

arge model space overlaps so th t
/dc@ is small, there are solutions, such as i, cor-

a

e positions ofrespon ing to intruder states near th
eigenvalues of Hgg. In Fig. 1(b) we see that
averaging removes the intruder solution without
much affecting the model solution. This is a great
advanta e beg, cause without averaging every eigen-
value of H will be a solution of (1.2) and (1.3, un-

space part.ess some eigenvector has no P
em arrasingAveraging, there ore, can eliminate an emb r

excess o so utions. Figure 1(c) shows thee possib111-

y o a g ost" solution x being produced by
averaging. The positivity of dE/de at x identifies

CC

tion
x as a state o negative norm" because of th 1-e re a-

=a= —&Pz
I Q I SE&~&Ps IP I Pz» 31

where PE is an eigenvector of H. Such solutions
can be identified and discard d He . owever, if the
averaging width I is chosen large enough, the
curve of E against co will have negative slope over
a wide ran e of m v

~ ~ ~

ther
g a ues. Sufficient averaging

'
g is

This
erefore expected to eliminat th he e g ost states.
is automatic removal of unw t d 1an e so utions of

ot types is a strong motivation for avera
'

o er a sufficiently wide co interval.

In practice these would be calculated from the
equivalent expression

mk=&(IHpg(Hgg) Hgp Ig) .

For convenience in later developments we also in-

troduce the normalized moments

(4.2)

m/( mklmo (k=1, 2, . . . ) (4.3)

D(z) =Po'&fo
I
(z —H )

' II"o & . (4 4)

If we divide the space Q into a space P&
——

I fo)

operator identity used in the theory of the o
potential

o e optical

The final estimates of D based on thes
will hav

n ese moments
wi ave the ~ dependence explicit, because mk it-
self is independent of co. This

'
dis is an advantage over

expressions based on terms of Brill
' W'

turbation theo
ri ouin- i ner er-

ry, which depend on co and must be
recomputed for each iteration in solving the self-
consistency equations (1.2) and (1.3).

Comparison with experiment cannot decide the
accuracy of a dynamical calculation in nuclear

Ther
physics, ecause the interaction is n t kno n own.

erefore, we need bounds on D 0 1 fn y rom such
er a c ange in procedureounds can we tell whether a h

ea s to an improved approximation. Moreover
the moments mts mk are expensive to compute. There-

best possible bounds that can be proved on the
basis of the given information. A b d

'
oun is said to

e est possible" when one can find for the un-
known densit a

'
y p choice p~ that reproduces the

known moments, and yields a value of D e ual
n . en pz provides a counterexample to

the possibility that the bound can b
wit out introducing additional information. We
proceed to derive such bounds b

'
1

gion method.
s y an inc usion re-

I-«Po
I fo ) =Hgp

I 0) where fo E Q and

fo I fo ) = 1. The complex value D (z) in Eq.
(2.13) can be written as

Pi(z H) 'P =P—gg &
= &[z Hp p —Hp (z H— ) H— (4.5)
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gives

&fo l(z —Hgg} 'Ifo&=[z —ai —Pi'&fi l(z —Hg, g, } 'Ifi&l ' (4.6)

where

ai=&fo IH Ifo&

Pi lfi &=Qi& lfo& (4.7)

The space Q~ can be subsequently divided into spaces P2 ——
I f~ & &f~ I

and Qz
——Q~ P2, Q—2 in turn can be

divided into spaces P3 and Q3', and so on. Therefore, in general, we will have

&fp l(z —&g g ) 'Ifp&=[z ap+~ —P, +~'—&fp+~ l(z —Hg g „) 'lf~+~&] '

for p =0,1, . . . , where

Qp ~ i =Qp
—

I fp & &f, I

a, +i=&f, IH If, &

Pp+i

Iffy+i

& =Qp+iH
I fl &

&f, +i If, +i&=1

(4.8)

(4.9)

Using identity (4.8) repeatedly for p =0,1, . . . ,n, Eq. (4.4) can be written in the form of a continued frac-
tion,

D(z) =
2

Z —a1 —g~ (4.10)

z —D„+,(z)
'

Dn ]+( )z= a+nI+Pn+1 &fn+] I
(z Hg ~g„&) lfn+1&

Furthermore, Eq. (4.10) can be expressed as a rational fraction

[z D„+) (z)]p„(z) P„—p„,(z)—
D(z) =

[z —D„+)(z)]q„(z)—P„q„,(z)

(4.11)

(4.12)

where p„(z) and q„(z) are the polynomials of degree n —1 and n, respectively, that satisfy the recurrence re-
lations

p„(z)=(z —a„)p„ t(z) —P„ I pn 2(z)

q„(z)=(z —a }q„n)(z}—P —] q —2(z}

with

(4.13)

I

(4.12). For example, using Eq. (4.9) and (4.13),

qo(z)=1, q i(z)=0,

po(z) =0, p i (z) = —1 .
(4.14)

Knowledge of the moment mo, ...,m2„ is neces-
sary and suA)cient to calculate the polynomials p
and q and the coefficient P„appearing in Eq.

2Po™oi
cx1=m )

P) ——(m2 —m) )'~

pi(z}=Po'

q)(z)=z —a) .

(4.15)
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If we assume that these moments are known, Eq.
(4.12) relates D to the unknown quantity Dn+&
through a linear fractional transformation. Be-
cause Im(z) =I &0, Eq. (4.11) implies that
Im(Dn ~, ) &0. From the general properties of
linear fractional transformations, Eq. (4.12) maps
the half plane Im(D„+, ) & 0 onto the interior of a
certain circle C„+& in the D plane. This circle is
the image of the real axis Im(D„+ ~) =0 under the
transformation Eq. (4.12). Therefore, D (z) will lie
inside the circle C„+&. Because the unknown real
coefficients a„+& and P„+& in Eq. (4.11) can be ad-

justed to make D„+] lie as near as desired to any
point on the real axis, D (z) can arbitrarily closely
approach any point on the perimeter of C„+&.
Therefore, the best possible bounds on D(z), given
only moments through order 2n, are determined by
the perimeter of C„+&.

From Eq. (4.12) we can show that the equation
of the circle C„+& is

a„+)D*D +b„+)D +b„*+)D +d„+j
—0,

where

on+I 2 gnawn +tPn (tin qn —1 qntin —1) 9

" +&= 2rP 9' +tl3 (P tl &0 P ——i)

+1 2rP P +tP (P —jp p —1P

(4.16)

and the notation p* represents the complex conju-
gate of p. The center and radius of the circle C„+&
are just

~n+1 ~n+l~~n+] ~

m+1=On I {Pnqn —I Pn —lqn)/on+1
l

2

(4.18)

The best possible bounds for the real part of D(z)
are then given by the two extreme points of the
projection of the circle C„+&

on the real axis.
They are

IU Re(c„+& ) +r„+, , ——
(4.19)

lL ——Re(c„+&)—r„+& .

Let us consider the n =1 case in detail. Here
only mo, m&, and m2 are known. We eliminate
m ~ and m2 in favor of the centroid m

&
and the

variance o =m2 m~ . Substitutin—g Eq. (4.15)
into Eq. (4.17) we have

Equation (4.18) then gives us

——,mo[2I (m) t—o)+i(o +2I' )]

I [(co—m, ) +o +I ]

(4.21)

r2 ———,moo /r[(to —m)) +o. +I ] .

The best possible upper and lower bounds of
(D(to) ) are then

D & (D(to) )„&D+,
where

(4.22)

mo[(to —m
&
)+cr /2I']

D+ ——

[(to—m)) +o +I' ]
(4.23)

An alternative approach is to use the general
Theorem 2.1 given by Karlin and Studden. ' We
call this the bounding polynomial method. For
convenience let us first write the real part of D (z)
as

I= (D (co) ) = J F(t)o (t)dt,

where

(4.24)

t =(E —co)/I

F{t)= t /{1+t'), —

o (t) =p(I t +co) .

(4.25)

The theorem simply says that knowing only the
lowest E moments of cr, the best possible upper
and lower bounds of the integral I are, respectively,
the maximum and minimum of the integral
W= I u (t)o(t)dt when u (t) ranges over the set of
all polynomials of order N that bound F(t) from
above or below. Because an odd order polynomial
ranges from + oo to —(x), it is immediately clear
that, in order to bound F(t) for all t, N must be
even. It can also be shown that only the polynomi-
als that touch F(t) [but do not intersect F(t)] can
possibly attain the best possible bounds. Conse-
quently, only even-order touching polynomials
need to be considered. We shall see that these
polynomials are conveniently parametrized in
terms of their touching points.

Each touching point (t;, say) imposes two condi-
tions on u(t):

a2 ——2r[(co —
m1 ) +~ +r']

b2=mo[2r(m| co)+t (cr +—2I' )],
d2 ——2I mo

(4.20)

u(t;)=F(t;),

[du (t)/dt), , =[dF(t)/dt],

(4.26)
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Therefore, a polynomial of degree 2n with only
2n+1 coeAicients can at most touch F(t) at n +1
points. The 2n +2 touching conditions then not
only determine the 2n +1 coefficients but also con-
strain the touching points; only n of them will be
independent. These polynomials will not intersect
F(t) because b, (t) =—F(t)—u (t) can have at most

2n -+2 real roots (a consequence of the choice of
Lorentzian averaging) and the n + 1 touching
points, each a double root of h(t), are the 2n +2
real solutions. These polynomials then necessarily
bound F(t) from one side.

A polynomial that touches F(t) at n +1 touch-
ing points t1, . . . , t„+1 can be written as

n+1 n+1 n+1
u(t)= y [AJ(t tj)+—8 ] g (t t;)'//—g (t t;)—

i(i')
where

(4.27)

BJ =F(tj ),

n+1
A;=F'(t, ) 2F(t, ) —g (t, t;)—

i(i&j )

(4.28)

This is a polynomial of degree 2n +1. Our polynomial of even degree 2n can, however, be obtained from
Eqs. (4.27) and (4.28) by simply demanding that the coeAicient of t "+' equal zero. This then also gives us
the constraint among the n +1 touching points. Again let us specialize to the n =1 case. Then u (t) should
be a quadratic polynomial. According to Eq. (4.27), however, we will first obtain a cubic polynomial. By
demanding that the coefficient of t equal zero a quadratic polynomial is obtained with a constraint connect-
ing its two touching points. The constraint can be factorized as

(titp+ti+t2 —1)(t, t2 —t, t2 —1)=0—.
Upon substituting the root ti of the first factor into u (t) to eliminate ti, we have

u (t) = u+ (t) = —,[(t,+ 1)'t' —2(t, +1)(t,'+ l)t+ t, '(t, I)']/I—(t, '+1)' .

(4.29)

(4.30)

Because the highest order coefficient of t is positive, this polynomial is positive at infinity. It then must
bound F(t) from above and provide upper bounds. The second factor in Eq. (4.29) will yield a quadratic
polynomial

u(t)=u (t)—:—,[—(t2 —1) t +2(t2 —l)(t2 +1)t —t~ (I+t2) ]/I (tq +1)

Because the highest order coefiicient of t is negative, the polynomial u (t) provides lower bounds.
The best possible upper bound is then the minimum (with respect to tz) of W+ defined by

W+ —f u+(t)o(t)dt.
= —,Mo[(t2+ I) M2 —2(t2+1)(t2 +1)M, +t2 (t2 —1) ]/I (t2 +1)

(4.31)

(4.32)

where Mo ——mo/I and the quantities M~ are normalized moments of the density o of Eq. (4.25), related to
the moments of p through

k k
Mk =I "g ( —1)t' topmk

p=0

The first derivative of W+ can be written in factorized form as

d~ /dt2 = Mo(t2 +2t2 —1)[t2 (Mi + 1)—t2(M2+ 1)+Mi —M2]/I'(t~ + 1)

(4.33)

(4.34)

Because the second derivative of W+ at a value of t2 satisfying t2 +2t2 —1=0 is

d'W+/dt, '= —4[(t,—M, )'+ (M, —M, ')]/(t, '+1)' & 0, (4.35)
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the roots of the first factor in Eq. (4.34) give rela-
tive maxima of W+. The best possible upper
bound then must come from the second factor,
which gives us

bounds [Eq. (4.23)] based on mp, mi, and m2 are
therefore the simplest nontrivial bounds of this
type.

Di = —,Mp(M2 —Mi —2Mi)/(M2+1) . (4.36) U. STABILITY %'ITH RESPECT
TO VARIATION OF I

Similarly, we obtain the best possible lower bound
from the polynomial u of Eq. (4.31):

—
2 mp/I ( (D ) & —,mp/I' (4.38)

Knowledge of m ] does not improve these bounds,
as can most easily be seen by noting that the
bounding polynomials u must be of even degree.
The bounds [Eq. (4.38)] are in a sense trivial, be-

cause they are a direct consequence of the uniform
bounds +(21 )

' on the energy averaged I', and
could be derived by elementary techniques. They
are also uninformative, being insufficient to deter-
mine even the sign of D, which is the least infor-
mation that could be physically significant. The

D = ——,Mp(M2 —M, +2M, )/(M2+1) . (4.37)

Equations (4.36) and (4.37) can be shown to be
identical to Eq. (4.23) with Mi ——(M~ —pi)/I and
o. =(M~ —Mi )/I

The two methods of deriving bounds are to some
extent complementary. The bounding polynomial
method can be applied to other functions I', besides
that defined in Eq. (4.2S). Thus it could be used to
study bounds on a convolution average with a
non-Lorentzian weighting function —for example,
the desirable Gaussian function defined in Eq.
(2.11). Of course, it is then no longer obvious that
h(t) will have at most 2n +2 real roots, and the
constraint Eq. (4.29) will be replaced by a transcen-
dental equation. Therefore, it is probably impossi-
ble to give such an explicit result as Eqs. (4.36) and

(4.37). Nevertheless, the bounding polynomials can
still be parametrized by n independent touching
points.

On the other hand, the inclusion region method
based on Eq. (4.12) is more readily generalized to
higher order. The required polynomials can be
evaluated by means of simple recursion formulas.
If higher-order moments are known one can easily

apply this method, but one is obliged to use
Lorentzian averaging.

The moment m2 is hard to calculate, so one
might ask if there exist bounds that require fewer

moments, perhaps only mo and m ~. The answer is
that the best bounds possible with knowledge of
only rno are

Let us now consider the choice of the averaging
interval I that is appropriate for use in these
bounds. As usual in averaging, we require that I
be confined to a range within which the results are
essentially stable with respect to variations of I . It
is evident from Eq. (4.23) that this requirement
will be satisfied if

(5.1)

and

I &([(co—m)) +o ]'~ (5.2)

because under these conditions one has, for exam-

ple,

D+ —
m p(co —m i ) /[(co —m i ) +o ], (5.3)

which is independent of I . [Interestingly, the right
hand side of Eq. (5.3) can be interpreted as result-

ing from a Lorentzian density p, of width 0. and
centroid mi. ] Now the conditions (5.1) and (S.2)

imply

(co —m i ) +o & o /4(co —m i )

Introducing the reduced energy variable

(5.4)

(5.5)

this becomes

46 +45 —1)0,
which requires

i
5

i
&0455 .

(5.6)

(5.7)

On the basis of the central limit theorem, averaged
spectral densities are expected to have Gaussian
form. " Let us as'sume that the density p in Eq.
(2.4) and the spectral density of H are both Gauss-
ian and (pessimistically) that they have the same
centroid and width. Then we expect 2.3% of the
levels to lie at energies low enough to satisfy

Of course, if
~

5
~

is much larger than this there
will be a wider range of permissible values of I,
defined by

(5.8)
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~

5
~

&2. (It would be quite normal in large shell
model calculations to disregard the remaining
97.7% of the levels. ) The range of permissible I
values is then

~So » I »o/4. (5.9)

1=—o/I (i .
2

(5.10)

For the largest permissible I, this is

(D+ D)/—(D+ +D ) = , fi '(1—+5) 'i, (5.11)

which is 0.11 for 6=2. This means that when

only mo, m ~, and m2 are known and Hp~ is such
that 5=2, we can expect to evaluate (D )„with
I =v'5o only correct to 11%. This shows the im-
portance of choosing the model space to reduce the
magnitude of D, perhaps by Hartree-Fock tech-
niques, before embarking on higher order calcula-
tions of any kind. An interesting step in this direc-
tion is the "correlated core" formulation of Kuo-
and Krenciglowa. '

It seems surprising that the permissible values of
I are so large. One would have expected that I
should be much larger than the typical spacing of
energy levels, and much smaller than cr. One
might feel that even I =0./4 is too large to be legi-
timate. But from another point of view it seems

very natural. The densities that are considered in

constructing bounds are constrained only to be pos-
itive. They may consist of a small number of very
narrow peaks. But statistical considerations" sug-

gest that the many delta function peaks of p are ar-
ranged so that the density is as well represented by
a smooth function as it could be, and still contain
the fluctuations inevitably associated with the
discrete energy levels. Recall that (D) can be ex-

pressed as an integral involving an energy-averaged
density (p)E, as in Eq. (2.10). The averaged den-

sity (p)E is more constrained than p is, because
the averaging excludes the possibility of 5 functions
tions in (p)E. Consider the problem of finding the
upper and lower bounds of the integral

f dE p(E)(ai E), given that p is a —Lorentzian

average of some positive density p, with only the
0th, 1st, and 2nd moments of p known. It is
equivalent to the problem of bounding

This seems a satisfactorily wide range of stability.
Clearly, less I stability is to be expected for higher
lying levels, however.

One can investigate the relative separation be-
tween the upper and lower bounds, namely

(D+ D—)/(D++D )= —,o /I (co —mi)

f dEp(E)((co E—) ')E, knowing only the same

moments of p, and its solution is therefore the
same. In fact, the extremal densities (p)E, which
lead to the bounds D+ and D, will be the sum of
two Lorentzian functions of width I . As an exam-

ple, assume 5=2 and I =(0.646)o. Then the
Lorentzians of the extremal density for D+ will

have equal strengths and separation 2o. Now we
ask if I =(0.646)o. is a reasonable averaging inter-

val. We can easily see that the sum of the two
Lorentzians will exhibit two distinct maxima for
this value of I, and indeed for all I satisfying

I (v'3o . (5.12)

&g~Hpp~g)+&D(~)) =~. (5.13)

To represent the solution of all equations of this

type by means of a universal graph, we define addi-
tional reduced variables

fbi ——((g
~
Hpp

~ g) —m, )/cr

(the "first-order" value of fi) and

y= I /0. .

(5.14)

(5.15)

Now, in Eq. (5,13), (D(co) )„can be replaced by ei-
ther of the bounds given in Eq. (4.23), to obtain
corresponding bounds on the energy. In terms of
the reduced energy variable fi, given by Eq. (5.5),
and the energy-independent quantity 6i, given by

We may make a requirement that the average den-

sity should have only one maximum, as a way of
expressing the conclusion of statistical theory that
the averaged density is smooth. Then we see that
I =(0.646)o is, from this point of view, too small
an averaging interval.

Smaller values of I become permissible when

higher order bounds are used, because the average

spacing of the delta functions of the extremal den-

sity will be less. For some order n, the smallest I
permitted by the stability requirement on the nth
order bound will become comparable with the aver-

age level spacing. Higher orders than this presum-

ably improve the treatment of the fluctuations
without affecting the trend line. This transition
from smooth to fluctuating behavior deserves more
detailed study.

So far, we have presented only bounds on

(D(co)) . To investigate the influence of ru con-

sistency on the energy bounds, we can assume that
we know

~
g), the self-consistent eigenvector of

(4 ), and write the self-consistency relation
E =co as
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(5 14) vie have

+o /2I
2 2

+o5)+mp —)2+o +1 -O. l

so, '
s of the reduced variariables,so that, in terms o e

(5+ 1/2y)/(5'+ 1+y'

=u'(5 —5, )/mp . (5.17

—0.2

O.D

y+ 5 =(5+1/2y)/(5 +1+y (5.18)

can be writtenof, this equation canFor a given value of y
in 5. We shall resort o

't. W df 1 dmethod for solving it. e

+
— +/m, so that -0.4

ofThen the solutions +

3'+ (5)=o (5—5i)/mp (5.19)
-0.5

0

er E,„ob-self-consistent energyglVe bounds on the se -c
tained from (D(co))„,

m +o.6+ .m) +05 &E~y &m) (5.20)

on . For a givensuits depend o y.Of course, the re
b differentiating q.ue of 6, we find yg

has a minimum(5.18) that y+ has tn

root of the cubic equation

45y'~ 3y'+(5'+1) =O . (5.21)

g =C7=o (5—5~)/mp . (5.22)
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of 5 at about —2. On the basis of statistical spec-
troscopy, 5= —2 would correspond to a typical
low-lying level having about 2.3/o of the intruder
strength p below the level. For comparison, Fig. 2
also shows ycLT ——oD/mp, where D is the result of
assuming that the density p of Eq. (2.3) is of
Gaussian form, as implied" by the Central Limit
Theorem (CI.T). Remarkably, this curve is much
closer to the lower bound than to the upper bound,
in the interesting region 5 & —2.

VI. VARIATIONAL ESTIMATION
OF THE MODEL-SPACE EIGENSTATE

For any given value of ~, the eigenvalue calcula-
tion involved in solving the self-consistent equa-
tions (1.2) and (1.3) could be viewed as a search for
a vector g that makes the expectation (g I

A
I g)

stationary. To find g, we would expand it in a
basis for the M-dimensional model space:

(6.1)

and then require (g I
4 (co)

I g) to be stationary
with respect to variation of the coefficients a„, sub-

ject to the constraint

(6.2)

to be stationary with respect to variation of a„.
Recall that D+ depends on m and on the moments
mp, m i, and m2. These moments are quadratic
forms in a„:

mp mpmn~m~n ~ (6.4)

In our search for bounds, let us similarly require
the bounds on the eigenvalue of A (co) under con-
sideration, namely

(6.3)

+g~nnan=~am ~ (6.8)

where

(6.9)

and A, is the Lagrange multiplier associated with
the normalization constraint. Thus the desired
coefficients form an eigenvector of the matrix A+-.

Because 3+- depends on a„ through the derivatives
BD+ /Bmp, however, iteration is required. One be-

gins with some guess for g+ and uses it to calculate
mp, m i, m2, and hence BD+ IBm&. Then one ob-
tains a new value for g+ by solving the eigenvalue
equation (6.8). If the initial guess is close enough,
the process will converge.

Statistical reasoning and experience both suggest
that the matrices mpm„are dominated by scalar
parts. If this is so, the convergence should be ra-
pid, because mp, m i, and m2 then depend weakly
on g+. On may also exploit the fact that the
dependence on mp is linear, to speed up conver-
gence. Finally, it is tempting to assume that m &~„
and m2 „are scalar matrices, in which, case they
can be calculated from trace moments.

When g+ has been found, for a given value of co,

the next value of co is set equal to Eq. (6.3). The
process should be continued until co self-con-
sistency is achieved. Fortunately, neither of these
two kinds of iteration requires the quantities (6.5)
to be recomputed.

The quantities (6.3) rigorously bound the expec-
tations (g+ I

(4 )„Ig+). This does not quite
guarantee that they bound the self-consistent eigen-
value of (A )„,which can be written

(g I
(A )„I g), because g+Qg. However, the error

in g', being of second order in g+ —g, is usually an
unimportant source of error in the self-consistent
energy. This point arises also in Ref. 2, and is
analyzed there.

where

mp „——(P I Hpg(Hgg )PHgp
I P„) .

In the same way,

(gIHppIg)=pa „a'a„,

where

h „=(P I Hpp I P„) .

The condition for Eq. (6.3) to be stationary is

(6.5)

(6.6)

(6.7)

VII. CONCLUSIONS AND OUTLOOK

We have shown how to construct best possible
bounds on the energy averaged effective Hamiltoni-
an from a finite number of moments. The energy
averaging makes these bounds independent of the
presence of intruder states; at the same time, it sta-
bilizes the extrapolation process that is involved in
the construction and use of effective interactions.

We have found explicit formulas for the bounds
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that result when only the integrated strength mo,
centroid m &, and width cr are known. If the ener-

gy is separated from the centroid by about —,0 or
more, the bounds turn out to be stable over a range
of values of the averaging width I . The absolute

accuracy of the bounds is improved when mo is
small. -Because the formulas are so explicit, it is
not necessary to illustrate the method by any ela-

borate numerical example. Indeed, from a univer-

sal graph one can predict the accuracy to be ob-
tained from these bounds when the self-consistency
condition is applied to the energy.

The fact that these are best possible bounds
means that they can be interpreted negatively as
well as positively. %e can be sure that if nothing
besides mo, m &, and 0 is known, it is impossible to
obtain rigorous bounds that are any closer. A pos-
sible response to this negative statement is to reject
rigorous bounds in favor of probabilistic bounds.
These would require knowledge of the probability
distribution of D, based on some suitable statistical
assumption about the unknown function D„+& of
Eq. (4.11). This additional information would have
to come from something like the statistical many-

body theory of French and others.

If the Q space can be partitioned into eigen-
spaces of H~, the eigenspaces will contribute in-

coherently to D and to the moments M&. Each
contribution can then be bounded individually by
the methods we have described, using moments re-
lated to the corresponding subspace. For moments
through a given order, one would expect this parti-
tioning to give increased accuracy, because for each
subspace the strength mo and width o. are smaller,
while the separation of the centroid from the
model-space energy is larger. Unfortunately, exact
eigenspaces of H are not easy to construct, and it
is not yet clear how to use approximate eigenspaces
in this way.

Bounds can also be improved if additional infor-
mation, such as a cutoff on the density, is known.
Cutoff information is of particular interest because
we can easily generalize either the inclusion region
method or the bounding polynomial method to uti-
lize this information and derive better bounds.
This will be discussed in a forthcoming paper.
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