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Reactive content of the Klein-Gordon optical potential
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The reactive content of the pion-nucleus optical potential is explicated in the Klein-

Gordon and relativistic Schrodinger theories. It is proven that even though the solution

of the Klein-Gordon equation introduces intermediate multipion states, there is no inelas-

tic contribution of these states to the scattering amplitudes. This is shown to come about

from an intricate cancellation between diagrams which contain different numbers of pions

at specific intermediate times. Approximation schemes which expand the optical poten-

tial of the relativistic Schrodinger equation in terms of a fixed number of pions present at
a given time are shown not to maintain this cancellation whenever truncated at any finite

order of perturbation theory.

NUCLEAR REACTIONS Reactive content of relativistic Schrodinger

and Klein-Gordon equations are compared. Expansion in terms of
fixed numbers of intermediate meson states is shown to lead to patho-

logical results.

Pion-nucleus scattering can be described theoret-
ically in terms of the solution of the Klein-Gordon
equation or of the relativistic Schrodinger equa-
tion. Theoretical justification for the use of the
relativistic Schrodinger equation is afforded by re-

lativistic potential theory. This approach is con-
venient because traditional multiple scattering" po-
tential theory can be carried over to pion physics.
In such theories pion creation and annihilation is
not a requirement for Lorentz invariance, and in-

termediate states correspond to single particle pion-
ic states. This approach ignores the fundamental
field theoretic understanding of the pion and its in-

teractions. The argument in favor of the Klein-
Gordon equation is that it builds into the equation

of motion the propagation of the pion field both

forward and backward in time, in accordance with

the requirements of modern quantum field theory.
As such, the Klein-Gordon theory is unavoidably a
theory having multiple numbers of pions present

during time intervals of sufficiently short duration.
Numerical studies have shown that these differ-

ences in principle may lead to large differences in

-practice as well.
There exists a point of view midway between

these two philosophies, which would argue that the
Klein-Gordon and relativistic Schrodinger theories
can be made identical provided one is willing to
calculate additional terms. A method of connect-
ing the two approaches is discussed by Cammarata
and Banerjee, but another systematic method ex-
ists, namely to expand in terms of a maximum
number of pions allowed in any given time inter-
val, the fixed pion number expansion (FPNE).
The FPNE has been used both in the meson-
nucleus scattering problem ' and also in the
meson-few body problem. One of the conse-
quences of our work is that the truncation of the
FPNE at any finite order of perturbation theory is
incorrect in principle as a method for approximat-
ing the solution of the n-body problem.

Since each of these approaches treats the mul-

tipion intermediate states differently, it is of in-

terest to study the reactive content of the relativis-
tic equations for pion-nucleus scattering. A ques-
tion basic to this study is whether the pions pro-
duced virtually in intermediate states implied by
propagation of pions backward in time can ever be-
come real, for example, when the initial pion ener-

gy becomes sufficiently large. The answer turns
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out to be difFerent depending upon whether the
question is addressed within the framework of the
Klein-Gordon equation or the FPNE approach.
The contradiction is resolved by a detailed study of
higher order terms in perturbation theory which
shows that the spurious production of pions at one
order of the FPNE theory is canceled by terms of
higher order containing a larger number of pions.
Thus, the only way to completely assure the ab-
sence of spurious pion production in the FPNE
theory is to retain terms containing arbitrary
numbers of pions in intermediate states.

Exact results explicating the reactive content of
the Klein-Gordon and relativistic Schrodinger
theory in an optical potential framework can be
found using unitarity arguments. The use of uni-

tarity arguments to explicate the reactive content
of the optical potential has received much attention
lately. ' ' For the purposes of the present work
we borrow a critical formula from Ref. 10, in
which the necessary conditions for the validity of
the impulse approximation for the optical potential
were first discussed in relation to inelastic scattering.

We begin by reviewing the transformation which
enables the solution of the Klein-Gordon equation
to be obtained as the solution of an equation of the
relativistic Schrodinger form. We define the opti-
cal potential for the Schrodinger equation by URs,

1
T(co)= URs(co)+ URs(co) T(co),

co+i Y/
—Ap

where we use an abstract operator notation and hp
is the kinetic energy operator for the pion. The
operator URs(co) is the relativistic Schrodinger
equation optical potential and may be identified
diagrammatically in the scheme of Ref. 7 as the
sum of all diagrams which cannot be broken into
two pieces by cutting a forward going pion line.
The corresponding operator is identified diagram-
matically in the FPNE by a different criterion,
which is discussed below. One can further define
an additional proper self energy X(co) which is the
sum of all diagrams which cannot be broken into
two pieces by cutting either a forward going or
backward going pion line. The relation between

URs(co) and X is pictured in Fig. 1 and is given

URs + ~ ~ ~

FIG. 1. The relation between the self-energy URs{co)
{the optical potential appropriate for the relativistic
Schrodinger equation) and the self energy X(co) {the
optical potential that occurs in a Klein-Gordon
equation) as given in Ref. 7. The graphs distinguish
between the forward and backward going pions but do
not correspond to strict time ordering of blobs.

by

1
M(co) = UKo(co)+ U~o(co)

co +l'g —Ap
~(~) . (5)

I

This is the Klein-Gordon equation, and U~~ is the
Klein-Gordon optical potential. These results per-
mit us to use unitarity arguments derived in poten-
tial theory' '" to obtain the reactive content of the
Klein-Gordon equation and to study approxima-
tions used in the FPNE of the relativistic
Schrodinger equation.

The unitarity relation for the Schrodinger equa-
tion, Eq. (1), is'o

URs(ri)) =X(co)—X(co) URs(co) . (2
1

CO+ Ap

The propagators in the Feynman diagrams
corresponding to nucleons have not been shown
explicitly; they are included as part of the "blobs."
Inserting Eq. (2) into Eq. (1) gives

2hp
T(~)=X(~)+X(~) 2,T(co),

co +l 'g —A p

which in terms of M and U~~ defined by

~(~) (2ho)1/2T(~)(2ho)1/2

(4)

Uxo(co) =(2ho)'/ X(co)(2ho)'/

becomes

I

T(co) T(co)=T (a))[G'—+'(ar) G' '(co)jT(co)+0—(co)[URs(co) —URs(co)]Q(co), (6)

with

G'+ '(co) =(co+i' ho)-—
&(~)=1 +G+'(co) T(co) .

l

The first term on the right hand side of Eq. (6) is

proportional to the total elastic cross section while
the second term is proportional to the total inelas-

tic cross section. The identification of this second
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term as the total inelastic cross section enables one
to extract' ' from a model of U the implicit
model of inelastic scattering which it contains.

The same algebra that derives Eq. (6) from Eq.
(1) can be used to derive a relationship between
ImURs(co) and ImX(co) from Eq. (2). The result is

URs(~) —URs(~)=Q'(~) X(~)—X'(~) Q(~), (8)

The term proportional to the difference in Green's functions in Eq. (6) vanishes for this case because
(co+ho) ' is real for physical (co&m ) values of the energy. The important aspect of Eq. (8) is that
ImURs(co) is proportional to ImX(co): as long as one is using Eq. (2) the physical nature of the reactive
content of X(co) is the same as the reactive content of Uzs(co). Substituting Eq. (8) into Eq. (6) we find the
result

T(co)—Tt(co)=Tt(co)[G'+'(co) G' '(co—)]T(co) +Q (co)Q (co) X(co)—Xt(co) Q(a))Q(co) .

This can be further simplified if we notice

2ho
Q(co)Q(co)=QKo(co)=1+ T(co),

N +lf) —Ao

which gives the desired result

T(~)—T (~)=T (~)[G'+'(~)—G' '(~)]T(~) +Q„o(~) X(~)—X"(~) Q«(co) . (12)

This equation can, of course, be derived directly
from Eq. (3) or Eq. (5). We have found it
instructive to present an alternate derivation which
explicitly demostrated the proportionality between
ImURs(co) and ImX(co) given in Eq. (8).

The technique for extracting the model for ine-
lastic scattering which is implicitly contained in a
model of the optical potential is best illustrated by
a specific example. The simplest model is the im-

pulse approximation for X(co) which requires sim-

ply the folding of the free pion-nucleon amplitude
with a target density. The corresponding approxi-
mation for the Schrodinger equation would require
one to generate URs(co) from X(co) via Eq. (2).
However, the usual impulse approximation for
URs(co} neglects the backward going pions in Fig.
1 or Eq. (2) and approximates URs(~) simply by
X(co). The arguments of Refs. 10 and 11 state that
the model of inelastic scattering implicit in this ap-
proximation to Uzs(co) is a distorted wave impulse
approximation model for quasielastic scattering in
which only' the incident pion is distorted. From
Eq. (12) it follows immediately that the use of the
impulse approximation for X(co) in the Klein-
Gordon equation contains an implicit model for

inelastic scattering which also is a distorted wave
impluse approximation model for quasielastic
scattering. The distorted waves are now, however,
distorted by the Klein-Gordon distortion operator,
Eq. (11), rather than the Schrodinger distortion
operator. Thus, even though the Klein-Gordon

(a)

FIG. 2. Some low-order terms in the optical. For
URs (co) the nucleon propagators are not shown expli-
citly. The term pictured in (b) would occur as an iterate
of the term in (a) if one were using the Klein-Gordon
equation, while it would be part of optical potential
URs (co) in the relativistic Schrodinger equation ap-
proach.
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-equation introduces intermediate multipion states,
it does not introduce any implicit contributions
from pion production.

This specific application demonstrates a general
conclusion which follows from Eq. (12}: even

though in iterating the Klein-Gordon equation
multipion intermediate states are present, the
unitarity relations do not introduce any
contributions from pion production other than that
which is explicitly introduced into X(co) itself.

Consider now the reactive content of the FPNE
theory of the optical potential. The self-energy X
is defined as before. However, in contrast to the
theory of Ref. 7 the optical potential for the
relativistic Schrodinger equation is defined by the
condition that no time interual contain only
forward propagating pions. We call this operator
U" ( }. The leading terms in the optical
potential are shown in Fig. 2. The value of these
diagrams is

dk" &k'I X
~

k )(k
~

X
~
k)(k'i URs (co) [k) =(k'

i
X

i
k)+ I (13)

where

(14)cok=(k +m~ )'

an w ere ord here for the purposes of illustration we assume that X has no gy pener de endence. The second term in

Eq. (13) contains three pions present in the time interval shown in Fig. 2. oFi . 2. It follows from Eq. (13) that

lm(k' U" ( )
~

k)= —ir I (k' g k )5(co cok co—k —c—ok)(k" g k)
(2ir)'

(15)

which is not zero provided ~ g 3m . Using Eq.
(15} in Eq. (6} implies that the FPNE includes ac-

tual pion production which correponds to virtual

mesons propagating backward in time in the
Klein-Gordon equation.

The only possible explanation for this apparent
contradiction is that there is an intricate cancella-
tion among many diagrams such that the total
result contains no contribution from pion produc-
tion. We shall demonstrate this cancellation expli-
citly for the diagrams pictured in Fig. 3. The dia-

grams are strictly time ordered. Figure 3(a) shows

a contribution to the scattering amplitude in the
FPNE generated when the relativistic Schrodinger
equation is solved. In this figure the pion interacts
with the nucleus over the interval t2-ti through
contributions to U„s shown in Fig. 2(b), pro-
pagates with the relativistic Schrodinger propaga-
tor until time t3 and then interacts with the nu-

cleus over a second time interval t4-t3 through the
contribution shown in Fig. 2(b). The final interac-
tion is with the term in Fig. 2(a). Because of the
requirement that the number of pions remain fixed
during any interval of time, t3 ~ tq and t3 & t4 al-

ways. The terms shown in Fig. 3(b) and 3(c) are
also legitimate contributions to the scattering am-

plitude, but because these diagrams have pieces
with as many as five pions present during any
given time interval they would contain pieces cor-
responding to separate higher order corrections to

tg —-
t)--
t2

t--
2

(b) (c)

FIG. 3. Some higher order diagrams which contain
three and five pion intermediate states. The diagrams
are strictly time ordered as required in the FPNE ap-
proach.

I

the optical potential according to the assumption
of the FPNE. What we want to show now is that
the imaginary piece of the optical potential which
occurs over the interval t4 t3 in Fig-. 3(a) is identi-

cally canceled by similar terms coming from con-
tributions of higher order in the FPNE in Figs.
3(b) and 3(c).

In order to deal with the solution of the time-

independent equation of motion, we will consider

the Fourier-transform of the time-dependent terms

in Fig. 3, and write out the contributions of the en-

ergy denominators. In these -equations

cu& ——co6 ——coo. Because the figures correspond to
scattering amplitudes, there is no contribution from

the incident and final legs. Figure 3(a) gives
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—CO2 —C03

1 1 1
0

Cop —C03+ l 'g Cop —CO3 —CO4 —CO5+ l 'g Cop —C05+ l 'g
(16)

Likewise Fig. 3(b) gives

1 1 1 1

C02 C03 C02 C03 C04 C05 Cop C03 C04 C05+ l g COQ C05+ l g
(17)

and Fig. 3(c)

1 1 1 1

CO4 C05 C02 CO3 C04 C05 Cop C03 C04 C05 + l g COQ C05+ l g
(18)

The bracketed terms in Eqs. (16)—(18) correspond to separate contributions to the' optical potential. Note
that the last two energy denominators in Eqs. (16)—(18) are common, so we consider

—1 1 1 1 1+ +
C02+ C03 Cop CO3+ l q C02+ C03 C02+ C03+CO4+ C05 C04+ C05 C02+C03+ C04+ C05

Thus,

1 1

C02+ C03 C04+ C05

Cop —Co 3
—C04 —Co 5

COQ
—C03

Eq. (16)+Eq. (17)+Eq. (18)= 1 1 1 1

C02+ C03 C94+ C05 Cop —C03+ l 'g COQ
—C05.+ l 'g

(20)

and one sees that there is no singular multipion

propagator in the sum of all the diagrams. An al-

ternative and simpler proof of this cancellation of
the singularity would follow directly from consider-

ing the time dependence of these diagrams. Rela-
tions among energy denominators similar to those
we have used here were exploited in the early work
on nuclear matter theory. ' That this cancellation
of all singularities corresponding to multipion in-

termediate states must occur was proven in general

by our earlier general arguments leading to Eq.
(12).

In summary, we have found that the reactive
content of an optical potential in a Klein-Gordon
equation is completely analagous to the reactive
content of the optical potential used in a
Schrodinger equation. The only change is the re-

placement in the inelastic model of a Schrodinger
distorted wave for the incident pion by a Klein-
Gordon distorted wave. This result follows even

though the use of the Klein-Gordon equation in-

cludes intermediate states with many pions present.
The result comes about through an intricate can-
cellation among many diagrams.

Finally, we remark that one might want to utli-
lize the relativistic Schrodinger theory without the
annoying, spurious particle production by correct-

ing the theory with Eq. (2). This would not
amount to an expansion in terms of the number of
particles present at a given time and could, there-
fore, be arranged to circumvent the difficulties we
have pointed out in attempts to construct a fixed
pion number expansion. However, one would have
introduced the superfluous and numerically difficu-
lt step of first using Eq. (2) to generate URs(co)
from a model for X(co) and then generating the
scattering from URs(co).

We believe that the best solution to these diffi-
culties is to work with the Klein-Gordon equation
from the outset, especially since this equation is
easily solved in momentum space as a modification
of PIPIT'5 or in coordinate space with, for example,
PIRK. There is no worry about the cancellation
of spurious pion production terms as we have
shown that the Klein-Gordon equation handles this
matter automatically.
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