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In a fragmentation or spallation reaction a target nucleus is hit by a high-energy projec-
tile (proton or heavy ion). In the fast step of the reaction highly excited intermediate nu-

clei, the prefragments, are formed. They decay to the particle stable final fragments in a
second step. We treat the first step in Glauber theory. For the decay chain we propose a
master equation and solve it by converting it to a differential equation. Analytical solutions
are obtained. They clarify the underlying physics: The mass yield curve o (A) of the final

fragments is directly related to the distribution of excitation energy in the prefragments.
The isobaric cross sections 4A,N-Z) for fixed A are dominated by the level density of the
final fragment at its lowest particle threshold. Some properties of the target, like its neu-
tron excess, enter via a memory factor. The formulas are successfully compared to the
data.

NUCLEAR REACTIONS Spallation and fragmentation reactions;
projectile protons of several GeV, various targets; theory for cross sec-
tions; two step model; fast step Glauber theory; analytical formula for

evaporation chains.

I. INTRODUCTION

A proton or heavy ion with high energy strikes a
target nucleus. This nucleus then disintegrates into
smaller fragments. What is the physics? Many ex-
periments have been or are still being performed to
study this problem and a wealth of data has been
accumulated. Protons as projectiles are used with
energies between several hundred MeV and 400
GeV and heavy ions up to the presently available

energy of 2 GeV/nucleon. Target nuclei range
from relatively light elements, like Fe, to uranium.
The cross sections o (A +-Z) for the residual nuclei
are usually measured by radio-chemical methods or
with a mass spectrometer. We refer only to a few
recent papers, ' from which the earlier literature
can be traced, and to a collection of articles on
spallation reactions. At present, research focuses on
the momentum distributions of the fragments' and
also coincidence measurements between two frag-
ments are performed. The data on the spallation
and fragmention cross sections (we use the terms

"spallation" and "fragmentation" as synonyms) ex-
hibit the following regularities:

(i) There are some but no dramatic diA'erences

between the results with protons and heavy ions as
projectiles.

(ii) One observes all particle stable fragment nu-

clei with mass smaller than the target. For particle
energies in the GeV region, the mass yield 'curve

tr(A) varies smoothly with A and is usually of the
order of 10—20 mb' .

(iii) For a given element Z the cross sections
o (Z+) for the fragment isotopes show the shape of
a bell, if lno (Z+) is plotted against N. The max-
imum occurs for the most bound isotope ' '

(iv) The fragment cross sections o (Z+) for a
given isotope goes rapidly up with increasing projec-
tile energy until about a few GeV from whereon it
saturates.

The experimental cross sections can be success-
fully parametrized by empirical formulas. ' "
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There are also some phenomenological approaches
to the data. ' ' But really, what is the essential

physics of these reactions? The two-step model,
proposed by Serber, ' is still the accepted frame-
work: In a first fast step of the reaction the projec-
tile knocks a few nucleons out of the target nucleus
and generates a distribution of prefragments, which
are highly excited. The prefragments then decay in

a second step by emitting nucleons or light nuclei
or by fissioning, until the final particle stable frag-
ment nuclei are reached. The two-step model is

usually realized by an intranuclear cascade calcula-
tion' for the fast part of the reaction, and a chain
of compounds nucleus decays' for the second step.
Fission is(usually left]out of the description. The
salient features of the data are mostly, repro-
duced. But, in our opinion, ~"e extremely compli-
cated numerical calculations do not permit sufH-

cient insight into the physics. For instance, which
are relevant and which are redundant assumptions
and parameters?

Therefore, we prefer a diAerent approach. While
we accept the general framework of the two-step

model, we realize it differently. We insist on analyt-
ical results. Thus, our solutions are complementary
to the computer-oriented intranuclear cascade and
compound-chain calculations. Since the underlying
model is the same, the numerical results should be
and are similar. Why do we dare to look for a sim-

ple description of a complicated process such as
fragmentation reactions? A simple description
works because the process is extremely complicated.
Look at themodynamics, for example, or Bohr's
theory of the compound nucleus reaction. Of
course, one can expect only simple answers for sim

pie questions. Thermodynamics, for instance,
describes well the behavior of a few macroscopic
variables, like the average energy, but to calculate
exactly the path of the electron in a solid would be
impossible. We think that a similar situation is real-
ized for fragmentation reactions. Therefore, instead
of following the microscopic details of the reaction
we consider only a few "macroscopic" variables,
like nucleon number or excitation energy, whose
time evolution we describe. The direction in which
the system proceeds is largely determined by phase
space (or level density) and to a smaller degree by
the dynamics (matrix elements). If time sufIices to
reach thermal equilibrium, the results should be
completely independent of the dynamics.

We use Glauber theory to determine the prefrag-
ment distribution in the space of the macroscopic
variables. Then for the second step we propose a

/

master equation in the few variables under con-
sideration. We have not included fission. Therefore,
in the comparison with experiment we mostly re-
strict ourselves to target nuclei with Az- & 100. Yet,
our formulas for the isotope distributions often also
work for fragments which are presumably created
in fission events. The reason may lie in the thermal
nature of the reaction: The isotope distributions are
determined by the level density of the final nuclei
and on very little else. In this paper we restrict our-
selves to a theory of the fragment cross sections
o (Z+) for reactions in which the incident projec-
tile has an energy in the GeV region. We present a
theory of the fast step in the next section, then we
describe the decay chain in Sec. III. In Sec. IV. we
compare with experiment and we close with a con-
clusion.

II. THE FAST STEP

A.high energy proton (E & 1 GeV) traverses a
nucleus essentially on a straight line. On its way it
collides with several target nucleons, transfers ener-

gy and momentum to them, and may excite them
into higher baryonic states. Depending on the place
where they have been struck, the recoiling nucleons
either escape directly or collide with a few other
nucleons and transfer energy to them. Some of
these may leave the nucleus. We do not follow the
evolution of the system, but rather postulate: The
distribution of excitation energy in the prefragment
depends only on the number of primary interac-
tions between the projectile proton and the target
nucleons. The cross section O.„ for n primary col-
lisions can be calculated' as

d2b ~"(b),-nb)
nf

where the function

(2 1)

T(b) dz p(b z}
p(0)

(2.2)

measures the thickness of the target at the impact
parameter (b) in units of the mean free path A,.
(A, = 1.5 fm above 1 GeV.} The total reaction cross
section oii is simply the sum of the o„(n ) 1).—E/Eo
We assume an exponential e ' for the distribu-
tion of energy deposited into the prefragment by one
projectile collision. Eo is the mean energy
transferred. Then the distribution E„(E)after n col-
lisions arises by properly folding the exponentials
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En —1 gEF (E)—
(n —I )! Ep

(2.3)

The cross section for the projectile to deposit an en-

ergy E into the prefragment is then

d cTp

dE
= go„F„(E). (2.4)

For a uniform target density with radius Rz the
integral Eq. (2.1) can be performed to

o„= A—(n , + 1)N (2.5)

(2.6)

If the nucleon number A of the final fragments (i.e.,
after the second step) is sufficiently far from the tar-
get mass number Ar (i.e., if Ar —A « (n ) ), then
the distribution of prefragments in A and I = N-Z
need not be known exactly. We can approximate it
by functions peaked around the mean values A p and

Ip of the prefragment distributions, for instance,

d 0'p
(AgQ) = 5gy 5z,t g cr„F„(E), (2.7)

for 1 & n & 2Rr /A, and zero elsewhere. The
number of nucleons which is removed from the tar-
get in the first step also depends on the number n

of primary projectile collisions. We denote by (n )
the mean number of primary interactions

where oz is the reaction cross section and dop/dE
denotes the cross section to form a prefregment in
this class. We indicate by "t = 0" the time at the
end of the fast step. Then (t & 0) the system
evolves to rid itself of the excitation energy. We
describe this evolution by a master equation

P(x;t) = —P(x;t)f dyM(x~y)Q(y)

+ f dy P(y;t)M(y~x)Q(x),

(32)

where x = (A, I, E. . . ). The functions M (x ~ y )

describe the dynamics (mean squared matrix ele-
ments} for going from class x to class y. The
number of states in each class is denoted by the
density of states Q(x ). In order that a master equa-
tion in the macroscopic variables x applies, the
dynamics must not depend on properties of the indi-
vidual quantum states of the system, but only on
some average quantities like x. The use of a master
equation and the limitation to the macroscopic vari-
ables (A, I,E) is our basic assumption in this Paper.

After a long time (long on the scale of strong in-
teractions) all particle decays have ceased and parti-
cle stable fragments have been formed. Their cross
section is related to the solution of Eq. (3.2) by

E (A,I)
o (A g}= trjt f dE P (A gQ;t ~ oo ),

(3.3)

where we assume Ar —A p ——y (n ) and

Ir —Ip = y (n ). The constants of proportionality

y and y' are of order 1 or 2.' If heavy ions are
used as projectiles, the o„should be calculated from
an abrasion-ablation calculation. '

III. THE DECAY CHAIN

(3 1)

After the fast step, all prefragments are not in

one defined quantum state. Depending on details of
the formation history each prefragment nucleus is in
a different quantum state, whose precise properties
we do not know. Therefore, the prefragments can
be viewed as an ensemble. We classify and group
the members of this ensemble according to a few

macroscopic variables like mass number A, neutron
excess I, excitation energy E, and maybe a few oth-
ers. The probability to find the system in a class
characterized by (A, I, E, etc ), is then.

P(A, I,E, . . . ;t =0) = (A gQ, . . .),] dC7p

o.g dE

8'(x}= f dt P(x;t) . (3 4)

The resulting equation in the P 's can be split into
two parts: If the excitation energy E & E,(Ag) the
system is stable and the matrix elements
M(E~E') = 0. Then we have

P(x;t ~ oo ) = P(x;0}+ Q(x )

&( fdy W(y)M(y~ x) .

(3.5)

In the other case, E & E,(A, I), the system is un-
stable and P(x;t ~oo ) = 0. We get

where the integral over E extends to E,(A g), the
lowest particle threshold, and samples the probabili-

ty from all particle stable states of the isotope
characterized by 3 and I.

In order to solve Eq. (3.2), we integrate it over t
from t = 0 to t = ao and introduce the notation
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JY(x)fdy M(x~y)Q(y) —fdy 8'(y)M(y~ x)Q(x) = P(x;0) . (3.6)

S(x) = lnQ(x} . (3.7)

The derivatives of S are denoted in the thermo-
dynamic way

Equation (3.6) is an inhomogeneous integral equa-
tion for JV( x ), the driving term being the prefrag-
ment distribution P(x;0). The solution of Eq. (3.6)
is inserted into Eq. (3.5) and this result is used to
compute the distribution of fragments Eq. (3.3).
We defer the detailed solution of Eq. (3.6) to the

Appendix, but introduce here the notation which is

necessary to understand the results. The level densi-

ty Q( x) is related to the entropy S(x ) by

&i = (~) = —,( —1) + —,(+ 1) + —,
'
0 = 0

(3.11)

The mean loss in excitation energy

& = (4E) = —,(S„+T) + —,(Sp + T + Vc)

+ —,(S~+ T+ 2Vc) 20 MeV (3.12)

is calculated form the separation energies S;, the
mean kinetic energy (equalling the temperature P,
and the Coulomb barrier' V~. The value 20 MeV
corresponds to nuclei around 3 = 60 and a tem-
perature T = 4 MeV. The mean-square change in
(N Z) is give-n by

BS
BE T
as
ax
as
BZ

= —PPz ~

(3.8)

r, = ((~)') = —, + —, + o= -, . (3.13)

/

With this notation the main results of our paper can
be stated in the following form.

The mass dispersion yield o (A) [(i.e., cr (A,I)
summed over all isobars]

with the temperature T and the chemical potentials

p. For the dynamics contained in the function
M(x ~ y) we consider neutron, proton, and a de-

cay. It turns out (cf. Appendix) that we do not
need to know the precise form of M but that the
solution depends only' on certain mean values of M.
For example, we denote by

(5x ) = fd y(x —y)M(x ~ y)/f d y M(x ~ y)

(3.9)

the average value for the change in x ip one decay
of the system. %hen calculating numerical values
for the relevant mean values, we use the compound
nucleus model. But the final formulas do not
depend very sensitively on these mean values and
not too large deviations from compound nucleus de-
cays can hardly be detected. Similarly, inclusion of
other decay models, like d or t emission, will only
modify the averages. In compound decay theory, '

neutron, proton, and a decay enter with their sta-
tistical weights (2s + 1), i.e., with —,, —,, and —,,
respectively. Then the mean chage a of the nucleon
number in one decay is

2 2 1 8a = (M ) = —1 + —1 + —.4 = —. (3.10)5 5 5 5

The mean change in neutron excess

e(Ao —A)la E, (3.15)

which is the argument in Eq. (3.14). The cross sec-
tion for fragment A equals the formation cross sec-
tion of the prefragment with excitation energy E,
since no probability is lost during the cascade. We
have assumed e to remain constant. In an actual
decay chain the average value e may decrease some-
what during the cascade.

The isobaric cross section o (A g) for fixed A is

given by

E,(A} dop
o(A} = [Ao,Io, . (Ao —A}] (3.14)a dE ' 'a

is directly related to the distribution of excitation en

ergy of the initial prePagments. A o and Io are the
mean values for the prefragment nucleon number
and neutron excess, respectively. The lowest parti-
cle threshold E,(A) (that of the most bound isobar)
arises from the integration over E in Eq. (3.3). The
physics of Eq. (3.14) is very simple: Consider a
prefragment with Ao and excitation energy E being
formed in the first step of the reaction with cross
section doI /dE. It decays. In each step its energy
is reduced by e and its particle number by a (on the
average). Therefore, it has reached a particle stable
nucleus with mass number 3, if
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Q[A gg, (A g)]
Q[Aggg, (A, )]

(I —Ip)

2'(A p
—A )/a

Q(A g+) —e (3.17}

where the level density parameter a =3/8
MeV '. The exponential dependence on the exci-
tation energy in Eq. (3.17) is the crucial factor in
the isobaric distribution of Eq. (3.16). For exam-

ple, it is responsible for the bell shaped isotopic
cross sections. The level density factor is the
"thermal part" of the reaction, it depends only on
the properties of the observed fragment but not at
all on the "history" (which target and which decay
mechanism). The memory factor, Gaussian in the
distance (I-Ip) to the mean neutron excess of the
prefragment, remembers some properties of the
prefragment. However, because of the factor
(Ap —A) the memory is washed out the further
away the final fragment is from the prefragment.
Finally, as already discussed above, the factor 0 (A)
is directly related to the prefragment distribution.
Thus Eqs. (3.14) and (3.16), the main equations of
our paper, show the salient features. The mass
yield curve 0 (A) is directly related to the prefrag-
ment distribution because of conservation of proba-
bility and energy, essentially. Thermalization, i.e.,
loss of memory, characterizes the isobaric (and also
the isotopic) distributions of the cross sections.
Note the absence of adjustable parameters in Eqs.
(3.14) and (3.16).

(3.16)

It contains the factor o (A) from Eq. (3.14) and a
normalization constant c (A) chosen to ensure

g~o (A,I) = 0 (A). The main physics resides ir.

the level density factor and in the Gaussian which
we call the "memory factor. "we discuss them in
detail: In the numerator of Eq. (3.16) is the level

density Q[A,I,E,(A,I)] of the fragment under
consideration (with nucleon number A and neutron
excess I = N-Z) taken at the energy of the lowest

particle threshold E,(A,I) of this particular isotope
We have divided by the corresponding level density
of the most bound isobar with I = I,. Except near
closed shells, the level densities Q(A, I,E) depend
only weakly on I but increase rapidly with excita-
tion energy E. For instance, in the Fermi gas
model

IU. COMPARISON %ITH EXPERIMENT
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FIG. 1. The mass yield curve o.(A) against the nu-

cleon number A of the produced fragments. The points
are from an experiment (Ref. 5) where Ag is bombarded
with 300 GeV protons. The solid line represents the pre-
diction.

The prediction Eq. (3.14) for the mass yield curve
0 (A) and the relation Eq. (3.16) for the isobaric
(and isotopic} distributions of fragments are the cen-
tral results of our paper. They are clear and tran-
sparent in their physics, but how well do they
work? We begin with the mass yield curve o.(A).
It is related [Eq. (3.14)] to the distribution of excita-
tion energies in the prefragment do.p/dE, whose
form is given in Eq. (2.7). There the only free
parameter is Eo, the mean energy transferred to the
prefragment when the projectile collides with one
target nucleon. The parameter Eo may depend on
the incident energy. A value of the order of 100
MeV seems reasonable. ' ' All other quantities, the
a„[Eq. (2.1)] and the mean values a and e [Eqs.
(3.10) and (3.12)] are given. For a comparison with

experiment we have chosen the mass yield curve
o (A) for the reaction 300 GeV protons on Ag. Fig-
ure 1 shows a comparison between experiment and
our prediction. With Eo ——100 MeV the treqd of
the data as well as the absolute magnitude are
reproduced. The agreement is as good as obtained
in an intranuclear cascade calculation followed by
an evaporation chain.

We turn to the isobaric and isotopic distributions .

for the fragments [Eq. (3.16)]. We try to investigate

separately the level density factors and the memory
part. First, fragments are considered which are very
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far removed from the target (Na and K isotopes
produced by 20 GeV protons on uranium). There-

fore, they should have little memory and their dis-

tribution should reflect the density of state factors
most clearly. Figure 2 shows two examples. There
the ratio

tr (Z,N)
0 (Z,N, )

Q[Z,N, E,(Z,N)]
Q[Z,N, E,(Z,N, )]

(4.1)

is plotted. Only isotopic cross sections are com-
pared, normalized to the cross section o (Z jY', ) of
the most bound isotope. The level densities in Eq.
(4.1) are directly obtained by counting levels with

their spin degeneracies (2J + 1) as given in the level

scheme. Sometimes an extrapolation using the ex-
ponential form Eq. (3.17) has been necessary. Ac-
cording to Fig. 2 the prediction follows the experi-
mental curves except on the low A side. Here the
thresholds and, therefore, the level densities are so
small that statistical arguments may no longer be
valid. For instance, in 'Na the threshold is at 2.4
MeV, and there are just 20 particle stable states
[counted with their degeneracy (2J + 1)].

For most nuclei, especially the heavier ones, level

densities are not directly available, and if measured,

they are usually known only for two isotopes.
Therefore, calculated or parametrized level densities

have to be used. For instance, in the Fermi gas
model the level density at the threshold energy E, is

proportional to

= expI 13[E,(Z+) —E,(Z+, )]

—p~(N —N, ) I, (4.3)

where )(3 and )LtN are adjustable parameters. Of

io[-

Figure 3 shows a co~parison between the experi-
mental isotope distribution for Na and the predic-
tion Eq. (4.2), where the experimental energies for
the lowest particle threshold are used. The coeffi-
cient Q(A g,O) has been taken constant and
a = 2.25 MeV '. For most isotopes the calculated
cross sections follow the experimental ones, but cal-
culated even-odd effects are more pronounced than
in the data. Furthermore, for the very neutron rich
isotopes (heavier than Na) the simple formula Eq.
(4.2) fails completely. We do not know the reason,
maybe statistical arguments break down.

The ratio of level densities in Eq. (4.1) can also be
parametrized in a more model-independent
fashion, ' using the thermodynamic relations (3.7)
and (3.8)

tr(Z~) Q[Z+Q, (Z+)]
o (Z+, ) Q[Z+, Q, (ZP', ))

Q(Ag, E, ) = Q(Ag, O)e (4.2)
io'-

where the level density factor a increases with nu-

cleon number A roughly like a = A/8 MeV

& 1

b

b
0.1—

to [-

. i0 '-
I

6E
io '-

b
tO

4-

io '-

0.01 .—

21 23

Na

25

AK

A 38 40 42 A 44

to '-
0-7 I . ~

I

20 25 50 A

FIG. 2. The influence of the level density on the final

fragment cross section, a test of relation {4.1). The iso-

topes Na and K are produced by bombarding U with 20
GeV protons {Refs. 22 and 23). The experimental cross
sections {open circles) are normalized to the one of the
most bound isotope. The crosses are our predictions using

experimentally determined level densities.

FIG. 3. The experimental cross sections (Ref. 22)
{solid points) for the Na isotopes {p + U at 20 GeV) are
compared with the calculation. Two models for the level

densities have been assumed. The crosses correspond to
the Fermi gas model, Eq. (4.2), the open circles arise
from a two parameter fit of a thermodynamic expression
for the level density, Eq. (4.3).
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E* =aT, (4.4)

with the level density factor a. For P = 0.5
MeV ', T = 2 MeV one finds E* = 12 MeV.
Thus, the excitation energy is very small. It essen-

tially corresponds to the threshold energy of the fi-
nal fragment. Therefore, the temperature P has
nothing to do with the excitation energy of the ini-

tial state of the reaction.
Since the physics is clear, we can turn the argu-

ment around. We identify E* = pz and then have
an experimental determination of the level density
factor

f22
&exp = PNP' (4.5)

io pP (MeV ') K

Co

0 20 30 40 50 A

FIG. 4. The parameter pI12, which equals the level

density parameter a,„~, .Eq. (4.5), as a function of the
mass number A of the most bound isoptope. The points
arise from fitting cross sections with the expression Eq.
(4.3) for the level density. Heavy dots: p + U reactions,
open circles Ar+ ' C (Ref. 25). The "standard law"

a = A/8 is also represented.

10

course, in this relation the two threshold energies

E,(ZP') and E,(ZP', ) have to be taken with

respect to the same reference energy, e.g., including
the total binding energy of each nucleus. We use

Eq. (4.3} to make a least square fit to Incr (Z,N} of
the Na isotopes. The parameters take values

P = 0.5 MeV ' and p~ ——7.8 MeV. The fit to the
data is excellent (Fig. 3) and covers essentially the
whole range. The error bar in the calculated value

of Na represents uncertainties in the experimental
binding and neutron separation energies.

What is the physical significance of the tempera-
ture T = P ' and of the chemical potential pz?
For p~ the answer is easy: Its value of 7.8 MeV
obtained in the fit corresponds well to the lowest
threshold in the valley of stability. According to the
Fermi gas model the excitation energy E', which
corresponds to the temperature T, is given by

where the values of piv and P are obtained from a
fit to fragment cross sections. Figure 4 shows the
"experimental" level density factors a,„p as a func-
tion of the mass number 3 for a number of reac-
tions. On the whole, the empirical law 2 /8 is
recovered. This is, we think, another independent
support for our claim that the isobaric and isotopic
cross sections are dominated by the level density at
the lowest particle threshold in the final fragment.

The isobar distribution o (A g) "remembers" the
mean neutron excess of the prefragment via the
Gaussian in Eq. (3.16). The width of the Gaussian
is given by 2(Ac —A)rzia, where the parameters 72

and a are calculated in Eqs. (3.10) and (3.13),
2~2/a = 1. In order to test the memory effect, the
level density dependence has to be eliminated, e.g.,
by comparing cross sections of isobaric fragments
produced from several isobaric targets. Then the
dependence on Io, the neutron excess of the prefrag-
ment, is given by

o.(Ag) (I —I') aln, = c+ .Io,
o (A g') (A p

—A )r2
(4.6)

where the constant c is independent of Io. The ra-
tio of cross sections depends linearly on Io, the
slope being a function of the neutron excesses I and
I' of the fragment isobars. In Fig. 5 the prediction
(4.6) is compared with experiment: 1.8 GeV pro-
tons strike Zr, Mo, and Ru as targets and the
isobars at A = 72 are observed. Indeed, the data
exhibit a linear dependence on Ic (which we identi-
fied with the neutron excess of the target). The
slopes of the straight lines are calculated from Eq.
(4.6) (Ap —A = 20). They fit the data well and
even reproduce the change from increasing to de-
creasing slope, if I —I' becomes negative. To our
knowledge, Eq. (4.6) is the first quantitative pre-
diction of the memory effect.

Figures 6—8 show the combined effect of level
density and memory factors. Figure 6 shows again
very clearly the influence of the target composition.
Three isotopes of Mo have been bombarded by 720
MeV alpha particles and the fragment nuclei in the
region of A = 70 are observed. If the fragment
cross sections are plotted against the ratio N/Z of
the final fragment, three distinctly displaced bells
arise. The curves are parabolic fits to the calculat-
ed cross sections. They contain the memory factor
and the thermodynamic expression for the level
densities. The parameters P, p~ and pz for the
best fit vary by about 10% going from Mo to
'mMo, average values being P = 1.0 MeV

pz ——9.1 MeV, and pz = 7.0 MeV.
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FIG. 5. Test of the "memory effect." The ratio of
cross sections for fragment isobars is plotted against

Io ——(N —Z) of the target nucleus. Experiment from
Ref. 8. The slope of the straight lines is the parmeter-
free prediction of Eq. (4.6), the additive constant of the
straight lines has been adjusted by eye.

FIG. 6. Spallation of molybdenum isotopes Mo, Mo,
and ' Mo by 0.7 GeV alpha particles producing nuclei

around A = 70. The cross sections (Ref. 9) are plotted
against the ratio N/Z of the fragment. The curves are
parabolic fits to the calculated cross sections including
level density and memory factors. The heights of the
three curves are adjusted.

Figure 7 shows an example of a heavy ion reac-
tion: ' C is bombarded by 213 MeV/nucleon.

Ar and the projectile fragments are detected. The
experimental isotope cross sections for three ele-

ments are compared to the calculation. The values

P p~ obtained from the fit to the data are entered
into Fig. 4 and follow the trend. The agreement
with the data is fair, again the calculation shows too
much structure.

So far, we have deliberately restricted the discus-
sion to fragment nuclei below A = 100. For
heavier nuclei we observe irregularities which wc
have not been able to resolve. Figure 8 shows an
example. The trends of the data but not the struc-
ture are reproduced. . The values of the chemical
potentials are p~ ——9.5 MeV and pz ——4.0 MeV

and the "temperature" P ' = 1.3 MeV. The small
value of pz with respect to JM& indicates that some
effects related to the Coulomb potential have been
neglected in our- calculation. The temperature
T =P ' is too large by a factor of 2, if compared
to the relation (4.5). We do not know the reason.

I/

I

I

I

I

I .
I I

I

I

I

Z -13

0.1—

15 20 20 25 25 30

FIG. 7. Projectile fragmentation in the reaction Ar
+ ' C at 213 MeV/nucleon. The data (solid points) are

from Ref. 25, the calculation is represented by the dashed
line. The absolute magnitude is adjusted for each ele-
ment.
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Fig. 8. Spallation of uranium by 28 GeV protons lead-

ing to lutetium and thulium isotopes (Ref. 26). The ex-

perimental cross sections (solid points) are compared with

the predictions, using the two-parameter level density for-
mula Eq. (4.3) and including the memory effect. The ab-

solute value is adjusted, the relative isotope and element
distributions are calculated.

first fast stage of the reaction). The isobaric and iso-

topic distributions are largely determined by the lev-

el density of the final product at the particle thresh-
old and are rather insensitive to the initial condi-
tions. The bell shaped distribution functions reflect
the shape of the valley of stability. The distributions.
retain some memory as to the prefragment distribu-
tion. This memory is weak and cannot be used to
learn about details of the prefragment distribution
(or to determine whether there has been intermedi-

ary fission). The fission channel as well as recoil
properties of the fragments are outside the treat-
ment. Overall the comparison between experiment
and theory is satisfactory. But there are systematic
discrepancies: Usually, even-odd effects are more
pronounced in the prediction. This may be due to
the inadequate formulas for the level density rather
than to a failure of the theory itself. At the
neutron-rich and the neutron-poor of the isobaric
and isotopic distributions, the discrepancies increase.
Most probably because of the low particle thresh-

olds the relevant level densities become so small that
properties of individual levels dominate and a statist-
ical description breaks down.
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APPENDIX: The solution of the master equation

We start from the master equation:. n the form (3.6) of an integral equation

W(x) fdy M(x~y) — —fdy W(y)M(y~x) =
Q(x) Q(x)

If M (x ~ y ) depends only on the difference x —y and if the derivatives of the entropy, Eq. (3.8), do not
vary with x, then

(A 1)

(A2)

is constant with the value

p= exp(IBE p&)' p = (pN + pz)~2 . (A3)

The constants e and a are defined in Eqs. (3.10) and (3.12), respectively. We normalized fd z M ( z) = 1,
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thus redefining the time scale. After having isolated a scale factor

W(y) = c 'W(y)

the function W(y) is smooth and may be approximated by its Taylor expansion. Then

(A4)

pc 'W(x) —c ' Jdy[W(x) + (y —x) W(x) +. . . ]M(y ~ x) =xo ~ xo+a 5 P(x;0)
Bx Q(x)

(AS)

The constant c is chosen to cancel the two terms in W(x ) on the rhs of Eq. (AS). If only the first derivatives

in W( x ) are kept, the function

W(A~) = gW(Ag~)

satisfies the differential equation

P(Ao Io E'0) i+ga W(A, E) + e W(A, E) = 5g,g,
'

p (A7)

Because of ri ——0 [Eq. (3.11)] there is no linear derivative in I. The solution of (A7) is given by

W(A E) —O(A — )—
Q(Ao&Io&E + e(Ao —A)/a)p

If we use the approximation

Q(AQ) = exp[P(E —pA)]

(A8)

(A9)

with constant values P ' and p, , all level density factors cancel and one arrives at Eq. (3.14).
In order to include some features in the evolution of the neutron excess I, we go to second derivatives, but

retain only the term —,r2 8 /dI W(AgQ). The neglect of all other second derivatives like 8 /BE W or
(8 / d Ed I)W is only justified a posteriori by the relative success of our solution when comparing it with ex-

periment. The equation

8 8 +2 8 P(A Io,E;0)a +e + — W(A, I,E) =kg 5il '
p2 BI2 ' ' ' o ' o Q(Ao Io,E) (A10)

is solved exactly by Fourier or Laplace transform. The physics of the additional term can be made transparent
by throwing away all inessentials in Eq. (A10):

a 2aa W(Ag) + — W(Ag) = 5gp 511
BA Q I2 0 ~ 0

(A 1 1)

This is a diffusion equation in the neutron excess I, where A/a plays the role of a negative time. The solution
of this equation is the Gaussian appearing in Eq. (3.16).
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