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A recent study of the effect of the Pauli principle in elastic nuclear scattering uses the

prior off-shell extension for the multichannel transition operators to derive antisymmetrized

Lippmann-Schwinger equations, while such equations are shown not to exist if the off-shell

extension due to Alt, Grassberger, and Sandhas is employed instead. We show that the

limitations associated with this second off-shell extension are inconsequential for all physical

considerations. New physically constrained antisymmetrized Lippmann-Schwinger equa-

tions are found in terms of a simple effective interaction which incorporates all of the ef-

fects of the Pauli principle and whose properties are explicit. These equations, which are

based on the Alt et al. off-shell extension, are employed to obtain in a direct manner the

antisymmetrized generalization of the Feshbach formalism for the two fragment optical po-

tential.

NUCLEAR REACTIONS Pauli principle in nuclear reaction theory. Com-

parison of different off-shell extensions for transition operators. Antisym-

metrized Lippmann-Schwinger equations. Antisymmetrized optical potential.

I. INTRODUCTION

In a recent article Picklesimer and Thaler' advo-

cate a particular way of imposing the Pauli princi-

ple in elastic two-fragment nuclear scattering. This
method is a special case of an approach developed
earlier, but it differs from Refs. 3, 4, and 6
especially, basically on the question of the reality
properties demanded of the optical potential (OP).
The point of departure between Ref. 1 and Refs.
3 —6 involves the commitment to a definite off-shell

extension for the two-fragment transition operators.
The more conventional "prior" form is recommend-
ed in Ref. 1, while the extension proposed by Alt,
Sandhas, and Grassberger (AGS) (Ref. 7) is em-

ployed in Refs. 3—6. The question of off-shell ex-

tension is pertinent because in the usual scattering

theory the Pauli principle is imposed on a frame-

work in which the nucleons are initially regarded as

distinguishable. Thus, even for elastic scattering

one is necessarily involved with a multichannel

problem where the relevant channels are all physi-

cally equivalent by virtue of the Pauli principle.
Various attributes of both the AGS and the prior

off-shell choices have been explored in subsequent

works. ' " However, one important aspect of Ref.
1 remains to be settled satisfactorily. Namely, in

Ref. 1 considerable emphasis is placed upon the at-
tainment of Lippmann-Schwinger (LS) equations for
antisymmetrized transition and wave operators in-

volving an effective interaction V'+ ' which incor-
porates all of the effects of the Pauli principle. '

This result, which is realized in Ref. 1 using the pri-
or off-shell extension, is interesting because of its re-

lative uniqueness. Namely, Picklesimer and Thaler'
find that such LS equations cannot be obtained us-

ing the AGS off-shell extension.
An open question is whether or not the preceding

result is significant for physical applications. The
work of Refs. 10 and 11 suggests it is not and sug-

gests further that some restricted -.type of LS formal-
ism involving the effective interaction VS(z) which
is introduced in Ref. 10 may exist. In the present
article we explicitly establish such an antisym-
metrized LS description, which appears to possess
considerable practical advantages while retaining the
manipulative simplicities of the usual unsym-
metrized LS equations. These simplicities appear to
be the major reason for the emphasis on the attain-
ment of such equations in Ref. 1.
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II. ANTISYMMETRIZED LIPPMANN-SCHWINGER
EQUATIONS

Ta,p = ua, p + g Ta,y Gy"y,P
(+) (+) (+) (+)

y

(2.5)

In this section we determine the reason for the
no-LS-equation property in the case of the AGS ex-
tension. This study suggests a loophole out of the
argument of Ref. 1 involving a set of transition

operators which are both on-shell and off-shell

equivalent to the AGS choice over the physically
relevant portions of the Hilbert space. We then
construct a set of antisymmetrized LS equations
which possess all of the formal advantages of the
equations proposed in Ref. 1 but none of their prac-
tical disadvantages. We also find that all of the
desirable features associated with the AGS
choice ' remain intact. This example eliminates
the attainment of LS-type equations as a distinguish-

ing characteristic of the prior off-shell extension.
Before we introduce the Pauli principle let us

consider the pertinent aspects of the multichannel
scattering formalism. The prior form of the transi-
tion operator for scattering from channel P to chan-

nel a is defined as

T.(+p) = V + V GVP, (2.1)

where Hp is the channel Hamiltonian which has
eigenstates

~
Pp(k ) ) corresponding to both frag-

ments in their ground states with relative momen-
tum k between the fragments.

It is easily shown that Ta+p' satisfies

{2.3)

where G = (z —H ) '. One uses the resolvent
identities relating G and G to obtain (2.3). Sup-
pose we ask whether for some set S of two-cluster
channels there are operators v

' y' such that instead
of (2.3) we have, with a, P, yCS,

T~,p = u~,p + X u~ y GyTy. P
(+) (+) (+) (+)

y

{2.4)

In matrix form (2.4) is similar to a single-channel
LS equation. Evidently, if (2.4) is well-defined
then we also have

where H is the complete Hamiltonian,
G = (z —H) ', and z is a complex parametric en-

ergy which is equal to E + i 0 for scattering. The
various two-fragment channels are labeled by the
partitions a,P,y, of the N nucleon system into
two clusters. - The external interaction between the
two fragments characterized by p is denoted as Vp.

One has the decomposition

{2.2)

so

u~+ y T + [5 G~(+)](+) (+)

y

(2.6)

Ta p —5a pop + Ta p
AGS —1 (+ )

satisfy

T p
——5 pgp '+V5p+VGT p

(2.8}.

(2.9)

So if we postulate operators va p, which are such
that, with a, P, yES,

TAGS AGS + ~ AGSG TAGS
a,p Va,p ~ a,y y y,p

y

(2.10)

we find, following the same steps which led to (2.7),
a sum rule which holds for any a, P, y E S:

gu "p ——5 pGp '+ V 5 p . (2.11)
r

Since the left side of (2.11) is independent of a, we
have arrived at a contradiction. We see that the
AGS off-shell structure and (2.10) [and its counter-
part analogous to (2.5)] are incompatible. The
preceding analysis also applies to the antisym-
metrized problem provided S is restricted to a set of
permutation-related partitions.

The 5 PGp
' term in (2.8} which removes the

channel Green's function mismatch appearing in

(2.3) is responsible for the remarkable off-shell can-
cellations leading to the nonexistence of va p .
However, these cancellations take place over the en-
tire Hilbert space. This suggests that we might in-

troduce an off-shell extension which lacks the full

symmetry of the AGS but only on physically ir-
relevant portions of the Hilbert space.

If we let Pp denote the projector on the space
spanned by the

~
Pp(k) ),' then the transition

operator T p, which satisfies

T~p= 5 pPpGp '+ V 5~P+ V G~T~P,

(2.12)

Thus, if in (2.3) we set P = y, multiply on the right
by [5yp —Gpy+p ], sum over y, and use (2.6) we
find a set of Watson-type equations for v

' p', with
a,P, yFS,

u~ p = V G~GP V G~ g 5~ py p (2 7}
y

whe e 5ap ~ap
On the other hand, the AGS operators
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is both on-shell and off-shell equivalent to T~&
over the physically relevant parts of the Hilbert
space:

AGS
T~,p p —T~,p Pp .

In fact, one easily shows that

(2.13)

~,p ~,p + X ~,r r r,P
r

(2.15)

U,p=&,pPpGp + V fi,p Xfi~,r r rp .
y

(2.16)

An important aspect of (2.16) is that it represents
a set of relatively simple integral equations which
have compact, nonsingular kernels. The matrix in-
versions needed to solve (2.16) are very similar to
those involved in coupled-reaction-channel problems
with the additional simplification of having no boun-
dary conditions. When (2.15) and (2.16) are applied
to the problem of elastic scattering with the Pauli
principle imposed, the solution of (2.16) can be ex-

pressed very simply. By way of contrast, within
(2.7) reside the pathologies and complexities
representative of multiparticle scattering problems
when they are approached frontally using conven-
tional techniques. For example, the kernels of (2.7)
are both noncompact and singular; the significance
of this is made evident later in this section. Evident-

ly, the attainment of the solution of (2.7) is virtually
equivalent to solving the full N-particle scattering
problem.

Let us next impose the Pauli principle which im-

plies the invariance of the physics with respect to
permutations of the nucleons. Let P represent an
arbitrary (but fixed) partition from a set P of physi-
cally equivalent partitions which are related by per-
mutations of identical nucleons. We suppose that

&(P) ~yp(k)) = ~yp(k)) (2.17)

where 3 (P) is the antisymmetrizer (internal to the
fraginents) with respect to all permutations which

map P into itself. We note that A (P) is Hermitian
and

T p ——T p
—5 p(G 'GGp ')Qp, (214)

where Qp = I —Pp.
Evidently T ~ lacks the post-prior symmetry pos-

sessed by T"~ only on physically irrelevant parts
of Hilbert space. However, the lack of the full

symmetry presents a loophole out of the LS-
equation contradiction (2.11). We find that

A(P) =A(P) (2.18)

Because of (2.17) we have A (I3)Pp = PP p
——Pp.

Also, it will become clear that we can regard the
problem as restricted to the Hilbert space projected
out by A (P). Thus, we have Qpgp ——&pQp = Qp
as well. All essential features of our development,
in particular the physical matrix elements, are in-
dependent of the choice of P. ' The antisym-
metrized prior and AGS operators are given by

T'+'(P) = VP&(P)GGp-' (2.19)

and

T" '(i) = T'+'(P) +&(P)Gp-',
respectively. ' ' Here

Q (P) = QQ (P) U (P',P), (2.21)
P'~P

A (P) =A (p) —&(p), (2.22)

where U(P', P) is the parity-weighted unitary permu-
tation operator corresponding to p~ p . The dis-
tinct natures of+(p), &(p), and&(p) should be
clearly kept in mind. Also g(P), Q(P)j = O.

Evidently the antisymmetrized counterpart of
T~p is

T(P) = T '(P) —Gp &(P)GQPGP '. (2.23)

Equation (2.23) still preserves (2.13):

T(P)PP ——T s(P)PP .

We note, e.g., that

T(P) = g~ (I3)U (P',P) Tp,p
P'~P

(2.24)

(2.25)

X =Q (P)PP (2.27)

One can either apply the same procedures to Eqs.
(2.15) and (2.16) or proceed directly from (2.26) to
deduce the antisymmetrized LS equation

T(P) = Vp(z) + VP(z)GPT(P)

where'

(2.28)

Vp(z) = (1+.X) '[VP+X,GP(z) '] . (2.29)

The effective interaction Vp(z) is the antisym-

We can then immediatdy transform (2.12) into

T(I3) =XGp-'+ VP~(I3) + VPGpT(P),

(2.26)
where'
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Related to our previous remarks concerning Eq.
(2.7), we observe that calculating the inverse' in

(2.30) is equivalent to solving the 1(()'-particle prob-
lem. In this instance in place of (2.28) we have'

T( + )(P) V( + )(z) + V( + )(z)G T( + )(P)

(2.31)

Closely related to the preceding is the question of
the existence of LS equations for antisymmetrized
wave operators. If we let

~

Pp+'(k) & denote the an-

tisymmetrized eigenstate of H which corresponds to
+(P)

~ Pp( k ) & in the infinite past, then

~i)jp+'(k)& =Q(P)GGp '
~(lp(k)& (2.32)

This suggests the introduction of an antisy'mmetrized

wave operator'

'(P) =P(P)GGp ' (2.33)

One finds that

IlAGS(p) ~(p) + G TAGS(p) (2.34)

Because of the operator&(p), which is proportional
to the projector onto the antisymmetrized states, the
inverse [0 (p)] ' does not exist on the full un

symmetrized Hilbert space. We note that the ex-
istence of [0 (g)] ' is equivalent to the require-
ment that T s(P) satisfy an LS equation of the
form (2.28) or (2.31). As a consequence, 0 (P)
does not satisfy an LS equation either. '

The wave operators

(2.35)

metrized form of U p. In this case the, solution of
(2.16) is expressed as the right side of (2.29). The
existence of (1 + %) ' has been established previ-

ously. ' The z dependence of Vp(z) is relatively

simple but it is, nevertheless, a crucial determinant
of the unitarity properties of T(p) and other auxili-

ary operators. ' We have ignored explicit&(P) fac-
tors in (2.29).

Equations (2.28) and (2.29) achieve the stated goal
of Ref. 1 of an LS equation wherein all the effects
of antisymmetry are contained in the effective in-

teraction. There is, however, one major advantage
in the present realization of that goal: The effective
interaction (2.29) can be regarded as explicitly
known. On the other hand, the antisymmetrized ef-

fective interaction V'+'(z) found in Ref. 1 is'

V'+'(z) = VQ(P)[1+ Gp(z) VPQ(P)]

(2.30)

II(P) —=&(P) + GpT(P) (2.36)

are half-on-shell equivalent to 0 (P) and may be
used instead in (2.32). The inverses of these
operators are not manifestly nonexistent as is the
case with 0 (p), so we find using (2.28) and
(2.31):

II'+'(P) =& (P) + GpV'+'(z)II'+'(P), (2.37)

T(+)(P) V(+)( )fl(+)(P) (2.38)

A(P) =Q (P) + GpV, (z)Q(P)

T(P) = VP(z)n(P) . (2.40)

Equations (2.35), (2.37), and (2.38) are obtained in
Ref. l. As with the comparison of (2.28) and (2.31)
we see that (2.39) is of precisely the same form as
(2.37) and therefore shares with (2.37) all the possi-
ble benefits which accrue thereby. On the other
hand, (2.39) involves the significantly less complicat-
ed effective potential VP(P). Since

Q(P)Pp ——0 (P)Pp, (2.41)

(2.39)

and therefore

leap+)(k)& = ~yp(k)&+ GpV. (z) ~yp"(k)&

(2.43)

Equations (2.42) and (2.43) reflect the fact that for
all physical considerations the limitations of 0 (p)
noted in Ref. 1 are entirely inconsequential. If one,
for whatever purposes, requires a wave operator de-
fined on the entire Hilbert space it would appear
that the quasi-AGS operator Q(p) is preferable to
0(+)(p) in any case.

We have seen that when the various scattering
operators are restricted to the domains relevant to
their physical application, the LS analogies proposed
in Ref. 1 realize in the AGS case as well. The
AGS example also fulfills one of the claims made in
Ref. 1 of attaining an LS equation [e.g., (2.42)]
which is written in terms of an effective interaction
V,p(z) which incorporates all of the effects of an-
tisymmetrization and whose properties are explicit.
It cannot be fairly stated that the properties of
V'+'(z) are explicated in Ref. 1 as claimed there.

Picklesirner" has pointed out that for the pur-
poses of treating the antisyrnmetrized elastic scatter-
ing problem the Schrodinger equation

G-' ~qp(+)(k)& =0, (2.44)

we obtain from (2.39)

0 (P)Pp = Pp+ GpVP(z)Q s(P)Pp, (2.42)
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can be replaced by

[Gp ' —V,P(z)]
~

Qp+'(k)) = 0, (2.45)

since

(1+ X)-(G ' = G,

G, -' = Gp-' —VP(z) .

(2.46a)

(2 46b)

Equation (2.45) is certainly consistent with (2.43),
but we have also learned that (2.43) and (2.45) are
valid for any process which is initiated from the
state&(P)

~ Pp( k ) ). Moreover, in (2.43) we find an

explicit answer to the question of the appropriate
boundary conditions to be imposed upon the solu-
tion of (2.45). We see that Vp(z) really does behave

as an effective interaction, because even though

~
ll)p+'(k) ) is asymptotic to 2 (p)

~
pp(k)) initially,

in solving (2.45) the "unperturbed" form of the
equation is obtained by setting Vp(z) equal to zero
[cf. (2.43)].

We also note from (2.28} that

the unsymmetrized case are obtained. ' In these ex-
pressions the role of Vp is taken over by V'+ )(p).
Nearly all of this is done over again in Ref. 1

without using the LS equations in order to deal with
the AGS case. The results for the latter appear to
lack the formal resemblance to the Feshbach for-
inalism found in the (+ ) case. Under cir-
cumstances of physical interest this apparent defi-

ciency of the AGS case is now known to be illuso-

ry. ' " In this section we show that with the quasi-
AGS operator T(P) one actually does achieve a
very simple realization of the Feshbach formalism
generalized to include Pauli effects, in accord with
the results of Refs. 10 and 11.

The physical idea behind the definition of the OP
operator proposed in Refs. 3 and 4 is that the elastic
two-fragment scattering equations be manifestly of
the standard two-body type. However, given this

stipulation, the OP operator then depends upon the
off-shell extension of the transition operator em-

ployed. For the cases at hand, we have as defining
integral equations for the OP operators '

U(+)(P) T(+)(/3) T(+ )(P)g/ U(+ )(P)

or

T(P) = V, (z) + VP(z)G, V, (z), (2.47) (3.1)

UAGS(I3) TAGS(P) TAGS(P)gg UAGS(P~)

(3.2)
T(P) = Gp 'G, Gp

' —Gp (2.48)
U(P) = T(P) —T(P)gpPpU(P) . (3.3)

It has been noted in Ref. 11 that

Ppf'Pp = PpT (P)pp . (2.50)

Evidently, T(P) not only satisfies (2.50), but it also
satisfies the much more general relation (2.13). It is
this last property which makes the LS analogies for
T(P) meaningful, with regard to the AGS case. We
remark that only the fully Pp-projected form (2.50)
is exploited in Ref. 11; this fact is very important in

distinguishing some of the results of the present and

the next section from those in Ref. 11.

III. ANTISYMMETRIZED OPTICAL POTENTIAL

The LS equations for T' )(P+) and 0'+)(P) are
used in Ref. 1 to recover the definition of the OP
proposed in Refs. 3 and 4 appropriate to this off-
shell extension. Then expressions for the OP which
are formally similar to those found by Feshbach in

Pp f'Pp=PpGp 'G, Gp. 'Pp —Ppgp
' (2.4.9)

for any transition operator V' such that

U(p)p UAGS(p)p (3.5)

From (2.28) we infer that

[1 —VeP(z)gp]T(P) = VP(z) (3.6)

If we then multiply (3;3) on the left by
[1 —VP(z)Gp] and use (3.6) we obtain the LS equa-

15,25

Equation (3.3), for example, is equivalent to

T(P) = U(P) + U(P)gpPpT(P), (3 4)

with similar equations for the (+ } and AGS opera-
tors. The Ptrspace projection of (3.4) is a two-body
LS equation; given PpU(P)pp, the solution of this
equation determines the physical on-shell elastic
scattering amplitudes (Pp( k ')

~
T(P)

~
(I)p(k ) ).

Analogous remarks apply to the (+ ) and AGS
cases. The two-body wave function associated with
(3.4) and its counterparts for (+ ) and AGS is

Pp
~
()'jp+'(k ) ) in all three cases. ' ' We note that

(2.24) along with (3.2) —(3.4) implies that
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U(P) = V, (z)+ VP(z)gpGpU(P),

and so

(3.7)

U(P) = VP(z) + U(P)gpGpV, (z) (3.8)

U(P) = V, (z) + V, (z)Qp[Gp ' —QpVP(z)gp]

Then using standard manipulations ' we obtain
from (3.7) and (3.8) the closed-form expression
which holds on the entire Hilbert space:

existence of V'+'(z) or any of its properties. Other
advaritages associated with the AGS choice for the
OP operator are explored at length in Refs. 3 —5,
10 and 28. Of particular note is that the AGS form
of the OP leads to the Feshbach resonance structure
in the antisymmetrized case while this is almost cer-
tainly not the case for U'+ ~(P). ' " With the OP
operator U(P} we have the dual advantages of the
Feshbach resonance structure for elastic scattering
along with the LS analogies.

IV. SUMMARY
X QpV, (z) (3.9)

This is of the same form as obtained by Feshbach
in the unsymmetrized case. Indeed, it is clear
that

lim U(P} = [VP+ VPQp(Gp
. f —+0

—QpV Qp} 'QpV 9(P)

(3.10)

We remind ourselves that the intermediate sums in
(3.9) and (3.10) are carried out over the space pro-
jected by A (P).

Physically one only requires the I'p projections of
the various OP operators. Equation (3.5) indicates
that one should be able to obtain the I'& projection
of (3.9) without the intermediary of LS equations
and this is indeed the case. '

An expression similar to (3.9) obtains for U'+'(P)
but with V'+' in place of VP(z). ' In view of our
previous remarks concerning the relative complexity
of V'+'(z), the antisymmetrized version of the Fesh-
bach formalism proposed in Ref. 1 for U'+ '(P) ap-
pears to possess no advantages and many disadvan-
tages compared to what can be achieved in the AGS
case. In this connection we point out that the rela-
tionship of the operator U'+'(P) to antisymmetrized
multiple scattering formalisms which is investigated
in Ref. 1 appears to be entirely independent of the

We have shown that for all physical considera-
tions the limitations associated with the AGS off-
shell extension found in Ref. 1 are inconsequential.
In contrast to the results of Ref. 1, we have ob-
tained Lippmann-Schwinger equations for the AGS
case which are expressed in terms of an effective in-

teraction which contains all of the effects of nucleon
antisymmetrization and whose properties are expli-
cit. The effective interaction which appears in the
case of the AGS off-shell extension is very simple in
structure. We show how the AGS Lippmann-
Schwinger equations derived in the present article
lead very simply to the antisymmetrized generaliza-
tion of the Feshbach OP formalism. These results
supplement those obtained in Refs. 10 and 11 in
providing operator and wave function equations
valid over the entire Hilbert space. We have
demonstrated how one can combine the advantages
of the AGS off-shell extension associated with the
symmetrical treatment of Pauli-equivalent channels
along with a convenient operator formalism which
allows one to exploit the familiar strategies of stand-
ard nuclear reaction theory.
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