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We examine numerically the influence of the distribution of the poles and residues of
the E matrix on the elastic enhancement factor 8' in the Hauser-Feshbach formula. For
a distribution of pole parameters consistent with the results of random matrix theory, our
results strongly suggest a value of 8'=2.0, in the limit of strongly overlapping reso-

nances.

NUCLEAR REACTIONS Influence of statistical distribution of level

parameters on compound nucleus reaction cross section for strong ab-
sorption.

I. INTRODUCTION

Recently, Moldauer' examined numerically the
influence of the distribution of the poles and resi-
dues of the j' matrix on the values of compound-
nucleus cross sections for strongly overlapping res-
onances. He found that the elastic enhancement
factor 8' depends on both these distributions. This
opens the exciting possibility of investigating ex-

perimentally, albeit indirectly, these distribution
functions in a domain of excitation energies where
such tests have so far not been possible. In view of
the importance of this possibility, we have extend-
ed Moldauer's numerical calculations. While our
numerical findings corroborate his results for
equally chosen distributions, our wider sample of
distributions leads us to somewhat different con-
clusions.

We write the S matrix in the form'

S =(1+iK)(1 iK)—

ables. We neglect direct reactions by choosing the
constant background matrix E diagonal, and by
taking y„' and y„uncorrelated for a+b. Moreover,
the y& and y„are also uncorrelated for pQv, and
the distribution function for yu is independent of
the label p. Average cross sections are generated
in the manner described in Refs. 2 and 3: Values of
the E& and yz are drawn from a random-number

generator, taking into account the assumed distri-
bution function for either variable. The S matrix is
calculated from Eqs. (1.2) and (1.1) and, by repeat-

ing this process, the ensemble average of
~
S,b ~

can be calculated. In our work, we have set

E, =0. The statistical assumptions just mentioned

imply that for a+b, the ensemble average of S,b
vanishes. Denoting the fluctuating part of S by
S"=S—(S), we obtain the elastic enhancement

factor 8' of a set of Xo equivalent channels a, b

(that is, channels with equal transmission coeffi-
cients) from the formulas

where the real and symmetric E matrix is given by

K b 5bK + g yuyu/——(Eu E) . —(1.2) (1.3a)

Channels are labeled a, b, . . . and levels p, v, . . . .
The y„' and the E„are uncorrelated random vari- or

W=No ' g 8', '
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W= g(iS,",
i

)/N
b&c

(1.3b)

The results of both expressions for 8' agree within
the statistical error. It seems, however, that the
method of Eq. (1.3b) underestimates the error of
8'. This is concluded by inspecting the distribu-
tion of 8' values.

What is a suitable choice for the distribution
functions for the E& and for the y&? We expect
that we should use the results of random-matrix
theory of spectra as a guide, testing the sensitivity
of W against deviations from these results.
Random-matrix models predict the distribution of
eigenvalues and eigenvectors of a random Hamil-
tonian. Using either the R-matrix theory, or the
shell-model approach to nuclear reactions, we can
identify the poles E& of the K matrix (1.2) with the
eigenvalues, the reduced partial widths y& with ma-

trix elements of the eigenfunctions, of a random
Hamiltonian. The predictions of random matrix
models fall into two classes, those concerning mean
Ualues (for instance, the mean level density and its
inverse, the mean level spacing, as functions of ex-
citation energy), and those concerning fluctuations
about the mean (for instance, the local fluctuations
of the nearest-neighbor spacings of energy levels
about the mean spacing). In the present context
we are interested only in the fluctuations. While
different random-matrix models (GOE, TBRE,
etc.) predict different mean values, it now ap-
pears that all available models predict the same
distribution functions for the fluctuations of energy
levels about the mean. This situation simplifies
our task, and enhances confidence in the applicabil-
ity of these latter predictions to actual nuclei.
These predictions are consistent with the state-
ments made following Eq. (1.2). Moreover, the
Gaussian orthogonal ensemble yields for the y a
Gaussian distribution centered at zero. There ex-
ists numerical evidence' that the embedded Gauss-
ian ensemble does not yield such a distribution.
The local fluctuations of the eigenvalues E& are,
unfortunately, not completely known analytically.
This poses a major difficulty: How can we study
deviations from the predictions of random-matrix
theory when these predictions are not fully avail-
able? Perhaps the simplest way out of this difficul-

ty would consist of diagonalizing a random Hamil-
tonian, thereby generating a set of eigenvalues

IE„I, the distribution of which is completely con-

sistent with a random-matrix model, and in study-

ing the deviations of 8' that occur when this distri-
bution is changed. Such an investigation is
presently under way. ' We have not followed this
route. Instead, we have attempted to construct a
distribution for the E& which is consistent with the
essential features predicted by random-matrix
theory, and to identify those aspects of the distri-
bution which are essential for the value of 8'.

In order to accomplish this goal, we investigate
separately in Secs. II and III the influence on 8' of
the distribution of the E& and of the y&, respective-
ly. In Sec. II, we assume a Gaussian distribution
centered at zero for the yz, consistent with the
GOE random-matrix model and investigate the in-
fluence of various distribution functions for the Ez
on the value of 8'. Since a number of cases of this
sort were studied already by Moldauer, ' we focus
our attention in this section on identifying the pre-
diction for 8' made by random-matrix theory. Us-
ing a distribution for the E& consistent (in its effect
upon W) with this prediction, we investigate in

Sec. III the consequences of modifying the distribu-
tion of the y„'. Section IV contains our con-
clusions.

II. THE DISTRIBUTION OF THE E„
AND ITS INFLUENCE UPON 8'

We take all penetration factors to be constant,
neglect the existence of channel thresholds in the
energy interval of interest, and are thus led to a sit-
uation where the zero of energy is arbitrary, and
where the quantity of statistical interest is the dis-
tribution of level spacings Ez —E . This distribu-

tion is gauged in units of the mean level spacing d
which we set equal to unity.

For a pair of nearest neighbors, the spacing dis-
tribution is approximated very closely by the
Wigner distribution g~(x) =(m/2)x exp( rex /4)—
with (x )0——1 and with variance

o0——[(4—~)/~]'~ =0.52. For kth nearest neigh-
bors with k ) 1, it is known that the mean values

obey (x )k
——(k + 1), and that the variances ok in-

crease slowly with k, assuming, for instance, the
value 0.80 for k =5. For kazoo, we have"

ok ~cr0 +2m ln(k + 1). These statements
severely constrain the distribution of the E& in a
perhaps unexpected manner. Indeed, intuitively
one might expect that a physically meaningful way
of constructing a sequence of E&, consistent with
random-matrix theory, would consist of drawing a
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sequence of -nearest-neighbor spacings from the
Wigner distribution, and in identifying the differ-
ences E + ~

—E, v= 1,2, . . . , with the spacings
so chosen. ' It is straightforward to show, however,
that with this procedure one obtains (x )k =k + 1

and ok =op(k+1)' . The variances increase with
k much more strongly than 1ogarithmically as
predicted by random-matrix models. In other
words, the spectra obtained from a set of randomly
chosen Hamiltonians are much stiffer than those
generated from the procedure just mentioned. For
large k, the kth nearest-neighbor spacing of a
random-matrix differs from that of a picket-fence
model by a fluctuation which is only of order
[ln(k + 1)]'~, not of order (k +1)'~ .

Figure 1 shows values of o.
k generated with vari-

ous prescriptions, plotted versus k. The procedure
described in the preceding paragraph leads to the
curve labeled Wi, which stands for Wigner. More
generally, given any nearest-neighbor spacing dis-
tribution g(x) with (x )p= 1 aild op=ci, one finds
that (x)k=(k+1) and oi, ——a(k+1)', irrespec-
tive of the higher moments of g (x). For many
simple, analytically given distribution functions
(x ) and crp are determined by the same parameter,

G

Jl
/

mG

-Wi

m Wi

HRTW

m HRTW

&0 20 30 40 50 60 70 80 90 100

FIG. 1. The variance o.k of kth nearest-neighbor
spacing distributions for various model distribution as
described in the text. The reader will observe that even
for large k, o.k does not attain its theoretical value
o.o(k +1)' . This is because by fixing the total length
of the interval (Ref. 3), we have imposed the condition
that oq ——0 for k=200.

however, so that op can be varied, with (x )p fixed
only by changing the form of the distribution. The
curve labeled 6 shows o.k for a Gaussian distribu-
tion (confined to x &0) with (x)p ——l. (For the
Gaussian, op ——[(ir—2)/2]'~ .) The curve labeled
HRTW shows Ok for the choice of spacings
described in Refs. 2 and 3. Any of these curves
lies well above the curve labeled R which displays
the analytical result of random-matrix theory. "

In order to produce kth nearest-neighbor distri-
butions which are closer to the results of random-
matrix theory than the curves 6, Wi, and HRTW,
we have used the following procedure. For each of
the three prescriptions 6, Wi, and HRTW, we
have taken adjacent groups of 11 eigenvalues, and
we have scaled the interval Iio between the first
and the last eigenvalue by a scaling factor P. This
factor was chosen in such a way that PIip was

equal to 10+y, where y is a random number
drawn from a Gaussian distribution with mean
value zero and with variance 6=0.5. In this way
one obviously generates a distribution for which
the crk grow asymptotically like [(k +1)/10]'~25
instead of like (k +1)'~ crp. The resulting curves
are labeled m Wi, m 6, m HRTW in Fig. 1, where
m stands for modified. We have convinced our-
selves numerically that the nearest-neighbor spac-
ing distributions generated by the HRTW and the
m HRTW procedures are statistically indisti»-

guishable, although both differ somewhat from a
Wigner distribution. This reflects the fact that we

do not have a procedure for generating an eigen-
value distribution which would be totally con-
sistent with the results of random-matrix theory.

Using the six eigenvalue distributions Wi, 6,
HRTW, m Wi, m 6, and m HRTW generated in
this manner, and a Gaussian distribution for the
y„', we have calculated a series of elastic enhance-

ment factors 8', for a varying number of open
channels in the strong abs('. &ption limit T, =—1.
The results are displayed in Figs. 2 and. 3. Figure
2 contains in addition the result) of a picket-fence
model for the E&. Comparing these two figures
with each other and with Fig. 1, we are led to the
conclusion that 8' is sensitive mainly to the in-

crease of o.
k with k and not to other details of the

distribution, and that 8' approaches 2.0 as the
asymptotic value of o.k decreases. Our results
strongly suggest, in fact, that 8'=2.0 for a distri-
bution of eigenvalues fully consistent with a
random-matrix model.

Is it possible to understand this trend of the cal-
culations? While we cannot offer an analytical



INFLUENCE OF THE STATISTICAL DISTRIBUTION OF. . . 1887

2.6-

2.5-

2.4.

W

HRTW

j Picketfence

x =E& and y =E„(irrespective of the values of E,
for rQp, v). Let us further make the plausible as-
sumption that the variance o of P„(E„)is indepen-
dent of p. The fact that crk becomes virtually in-
dependent" of k for large k suggests that, for suAi-
ciently large k, we have

2.2- Pz „+k(x,y) P„(x)P&+k(y) . (2.1)

2.1-

2.0
1

1.9-

4 )I 8 12 Na

FIG. 2. The elastic enhancement factor 8' versus No,
the number of equivalent channels (T,=1 in all chan-
nels), for various eigenvalue distributions as explained in
the text.

proof, we do have a plausibility argument which is
based on the techniques of Ref. 12. Let us label
the eigenvalues E& of a random Hamiltonian con-
secutively such that E& g E„, for p & v, and let
P„(x) be the probability distribution for x =E„(ir-
respective of the values of the E„ for tu & v), and let

P„„(x,y) be the joint probability distribution for

Indeed, if this factorization property holds, then O.k

is independent of k. The actual dependence of O.
k

upon k leads us to expect that the factorization
(2.1) of P»+q(x, y) holds to a good degree of ac-
curacy already for k =4 or so. To support this
claim, we recall the k dependence of O.k for small
k OQ —0.53, O.i ——0.65, O.

~ ——0.7 1, 0.
3——0.75,

o.4 ——0.78, and o.
5

——0.80. From then on, the in-
crease is very slow, with o.iQQ=1. 10.

Applying the technique of Ref. 12, one is led to
consider products of sums of the type
X= g„~E E„+(—i/2)I ~, where I' is in-

dependent 'of p. In the notation of Ref. 12, we
have I =2 +,y, /(1+x, ). As an example, let us

focus attention on the evaluation of X . The pro-
cedure of Ref. 12 consists of using a picket-fence
model for the E&. The correct procedure would be
to evaluate the expression

(X )=g Jdx JdyP„„(xy)~E —x+ —I
~

~E —y+ —I
~

jul, V

(2 2)

Using the factorization assumption (2.1), one finds
immediately that (X ) (X) and (X}
=g„~E —(E„}+(i/2)I

~

' if the width I is

2.4-

W

fm G

fm Wi

f m HRTW

2.3-

22-

2.1-

2Q
1 16 N,

FIG. 3. Same as Fig. 2 for the modified set of distri-
butions.

I

large compared to the width o. of the function
P&(x), i.e., compared to the average level spacing.
%e see that two assumptions —applicability of the
factorization (2.1}and I' » d—are sufficient to
yield the same result as the picket-fence model.
Both assumptions are, however, fulfilled to a very
good approximation under the condition of appli-
cability of the technique of Ref. 12. Indeed, the
condition is that the number X =(I /d) & I /d of
overlapping resonances fulfills N ~& 1. Here,
I =d g, T, /(2') is the correlation length of Er-
icson fluctuations, T, the transmission factor in
channel c, and the inequality I & I follows from
the definition. ' Let'us compare X with n, the
number chosen such that for k & n, approximation
(2.1} is valid. If X» n, then the number of terms
typically contributing to sums of the form (2.2) is
very large compared to the number of terms for
which the approximation (2.1) does not hold, and
the error made in using (2.1) to evaluate (2.2) is of
the order n/N « 1. (In view of the values of hark

cited above, we believe that n &4.) For the second
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assumption, the argument rests again on the ine-

quality N » 1. Similar arguments apply to the
evaluation of X~, a&2.

In summary, we have advanced a plausibility ar-
gument to explain why a picket-fence model yields
a good approximation to the results of a random-
matrix model in the limit N » 1, in keeping with

the numerical results presented in Figs. 2 and 3,
and why for decreasing o.k, k large, we approach
the limit 8'=2 which is the result of a picket-
fence model for large N. We are aware, of course,
that our arguments are heuristic and do not consti-
tute a proof. We also recall that in the cases
evaluated numerically, N does not exceed the value

%=NO/(2n )=20/(2m), which is not large com-
pared to n =4. However, the fact that I ) I is

probably of considerable help. In the examples in-

vestigated numerically where all transmission coef-
ficients are unity, we have I =2I for the evalua-

tion of X and find an even bigger factor for prod-
ucts of the form g„[E—E„+(j/2)1 o] ', with

r,=41. (see Ref. 12).
%e conclude this section with a few further ob-

servations. As explained above, the modified
eigenvalue distributions were generated by scaling

PIio to the value 10+@,where y had a variance of
5=0.5. Since o.» -=0.88 from random-matrix
theory, the use of a larger value might have ap-
peared more sensible. %e have also investigated
such cases with the result that 8' always was
somewhat larger than found for 6=0.5. This is in

keeping with the conclusions drawn above. %e
also noted that the modified Gaussian distribution
produces values for 8' which differ from 8'=2.0
more than for any of the other modified distribu-
tions. Moreover, even for 5=0, we found in the
case of the modified Gaussian distribution the
result 8 =2.1. This points to the fact that o.k is
not the only determining factor for O'. It appears
that a wider distribution of spacings —as present in
the Gaussian —also affects 8'. %e finally remark
that the picket-fence (PF) model approaches
8'=2.0 from below, for N =20, we have
8'pp ——1.95.

III. THE DISTRIBUTION OF THE y„
AND ITS INFLUENCE UPON 8'

For isolated resonances, the value of W is given

by W=p4/(p2), where JMz ——((y&) } is the kth
moment of the y&. For the Gaussian distribution
one has 8'=3. For strongly overlapping reso-
nances, the dependence of 8' on the moments of

the distribution is not known analytically. Mol-
dauer' found that W depends on the yz distribu-

tion. In the cases he investigated, there were none

in which the eigenvalue distribution came close to
that of a random matrix model. Moreover, by
changing the 4th moment p4 Moldauer also affect-
ed all higher moments in an unknown fashion.
For these reasons, we have calculated a number of
cases where we changed the p& in a systematic

way, keeping the eigenvalue distribution fixed and

reasonably close to that of a random-matrix model.
For the reasons given in Sec. II, we took for the
eigenvalues a picket-fence model.

The most convenient procedure of testing the
dependence of W on the pz would consist of
changing one p~, keeping the others fixed. How-

ever, aside from all practical considerations, the
following theoretical difficulty arises. The mo-

ments pz of any probability distribution have to
fulfill the inequalities'

Po P i Pl

P& P2 ' Pl+i
)0, l =0, 1,2, . . .

PI PI + 1 P2l

It is easy to verify that if one starts with a given
distribution (for instance, a normal distribution),
already the determinants with small l give very
strict bounds on the possible change of a single low

moment. %e therefore abandoned this idea and

proceeded instead as follows. Starting from a nor-
mal distribution f(x), we modified f(x) for

~

x
~

&E by "stretching" it. We define

g (y)dy =f(x)dx

to preserve normalization and choose

y=x, for ~x
~

&E,

y =x+c( )x (
E).x, for

~

x
(
—&E .

(3.2)

(3.3)

Since dy/dx & 0 for c & 0 we obtain an authentic
probability distribution g(y). For sufHciently large
values of E, this procedure leaves p2 practically un-

changed. This is the case for E 2 and c 2. By
varying E and c, one can generate a set of distribu-
tion functions g(y), the moments of which can be
calculated. Note that g(y) is discontinuous at

In Table I, we give the values of W obtained for
various choices of the parameters E and c, and for
No ——20, 30, or 40 equivalent channels with T, =1.
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TABLE I. Dependence of W on the moments pI, of the distribution function for the y„'. The number Xo denotes
the number of equivalent channels with T,=1. The other symbols are explained in the text.

Case
no.

p4/3(p, 2)
theor. num.

p6/15(p2)
theor. num.

p8/105{p2)
theor. num.

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

20
20
20
20
20
20
30
30
30
30
40
40
40
40
40
40

Gauss
2.12
1.92
2.17
2.09
1.83

Gauss
2.20
1.98
1.83

Gauss
2.17
2.09
2.09
2.17
1.83

1.77
1.77
2.48
2.13
1.77

1.77
1.77
i.77

1.77
2.13
2.13
2.48
1.77

1.00
1.04
1.13
1.05
1.07
1.20
1.00
1.02
1.09
1.20
1.00
1.03
1.07
1.07
1.05
1.20

1.00
1.03
1,11
1.10
1.09
1.19
1.00
1.02
1.09
1.20
1.00
1.03
1.06
1.07
1.07
1.21

1.00
1.64
3.05
2.33
2.35
4.25
1.00
1.38
2.49
4.25
1.00
1.45
2.35
2.35
2.33
4.25

1.00
1.60
2.93
5.47
3.67
3.80
1.00
1.67
2.47
3.80
1.00
1.47
2.27
2.73
3.80
4.27

1.00
11.56
35.79
38.67
30.95
56.93

1.00
7.13

26.03
56.93

1.00
8.36

30.95
30.95
38.67
56.93

0.98
10.65
33.32

207.96
67.94
38.57

1.00
19.50
23.46
35.86

1.00
6.89

26.47
40.00

118.38
45.78

1.95+0.02
1.96+0.02
2.00 +0.02
2.02+0;02
2.01+0.02
2.06+0.02
2.00+0.02
2.00+0.02
2.03+0.02
2.12+0.02
1.99+0.02
2.00+0.02
2.00+0.02
2.00+0.02
1.99+0.02
2.13+0.02

The first line of each group belonging to the same

No corresponds to the Gaussian distribution. For
the ratios p, 2s /[(2k —1)!!(p2) ] we give two values.
The theoretical value (theor) corresponds to g (y) as
determined from Eqs. (3.2) and (3.3) for the given
values of F. and c. The actual value (num) corre-
sponds to the ratio of moments actually sampled in
the calculations. The difference in the two
columns is caused by the fact that with increasing
k, p2k is increasingly determined by large values of
y. These are produced comparatively infrequently
in the random-number generator. The difference
between the two columns may thus be taken as
some indication of the statistical error in determin-

ing the moments.
Table I shows that the statistical accuracy with

which we calculate JV is about 0.02. The largest
observed deviations from 8'=2.0 are only 0.13 or
about six times the statistical error. This limits the
conclusions we can draw.

Comparing cases with similar values of
p4/[3(p2) ] but different higher moments (cases 3,
4, and 5 or cases 13, 14, and 15), we conclude that
the influence of all higher moments but the fourth
is very small. This is particularly demonstrated by
cases 4 and 15. There appears to be a slight ten-
dency for equal values of LM4/[3(p2) ] to have de-

creasing influence on 8'with increasing No. This
is suggested by the comparison of cases 3, 4, and 5

with case 9 and cases 13, 14, and 15. On the other
hand, cases 6, 10, and 16 do not display this trend.
We have to keep in mind, however, that our statis-
tics for the moments are limited.

The facts unambiguously established are that 8'
depends mainly on p4 and very little on the higher
moments, and that 8' increases with increasing p4.

IV. CONCLUSIONS

Our numerical results confirm Moldauer's obser-
vation that even in the strong-absorption limit
(No » 1, all T, =1) the elastic enhancement factor
does depend on both the distributions of the poles
and residues of the K matrix. Moreover, our
results are consistent with those of Ref. 1. For
strongly overlapping resonances, a precise measure-
ment of 8' might yield information on the distribu-
tion of the pole parameters which is not accessible
in any other way.

Keeping the distributions of the residues fixed
and Gaussian, we have found that 8' decreases
with increasing stiffness of the spectrum. We
found the largest values of W for a Gaussian distri-
bution of nearest-neighbor spacings (which leads to
the largest values of the variances O.k among all the
distributions investigated), and the smallest value
for the picket-fence model.

*

By modifying the dis-
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tribution in the manner indicated, i.e., by forcing
the spectrum to become stiffer, we observed, furth-
ermore, that other features of the distribution are
also important. The width of the distribution of
nearest neighbors around the mean value is perhaps
an important parameter, but we have not esta-
blished this point.

The influence of the distribution of the yz on W
can be summarized as follows: As one increases
the higher moments p~ (k )4) by extending the
tail of the distribution, 8'increases. This increase
is mainly due to the increase of p4, and depends
very little on the pk with k )6. There is some .

slight evidence that keeping the pk fixed and in-
creasing the number Xo of equivalent channels
reduces 8'.

We have presented some arguments to under-
stand the influence of the pole distribotion on 8'.

We are led to expect that a pole distribution given

by random-matrix theory and a Gaussian distribu-
tion for the residues yields 8'=2.0. Our argu-
ments also offer a late justification for the use of a
picket-fence model in Ref. 12.

If the influence of the higher moments pj„k )4
on 8' indeed were to decrease with increasing Xo,
it appears that a reasonably stiff spectrum of eigen-
values would lead to 8'=2.0. In this case, the
behavior of the compound nucleus for strongly
overlapping resonances would be determined entire-

ly by (y&), and by the mean level spacing. It
would be independent of other dynamical features.
This would be in keeping with thermodynamic
ideas, and with the maximum entropy approach of
Mello. ' A precise experimental determination of
8', with an error significantly smaller than the
present one, ' would obviously be very interesting.
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